Source code for pyscf.scf.stability

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''Wave Function Stability Analysis

Ref.
JCP 66, 3045 (1977); DOI:10.1063/1.434318
JCP 104, 9047 (1996); DOI:10.1063/1.471637

See also tddft/rhf.py and scf/newton_ah.py
'''

import numpy
import scipy
from functools import reduce
from pyscf import lib
from pyscf.lib import logger
from pyscf.scf import hf, hf_symm, uhf_symm
from pyscf.scf import _response_functions  # noqa
from pyscf.soscf import newton_ah
from pyscf import __config__

STAB_NROOTS = getattr(__config__, 'stab_nroots', 3)
STAB_TOL = getattr(__config__, 'stab_tol', 1e-4)

[docs] def rhf_stability(mf, internal=True, external=False, verbose=None, return_status=False, nroots=STAB_NROOTS, tol=STAB_TOL): ''' Stability analysis for RHF/RKS method. Args: mf : RHF or RKS object Kwargs: internal : bool Internal stability, within the RHF space. external : bool External stability. Including the RHF -> UHF and real -> complex stability analysis. return_status: bool Whether to return `stable_i` and `stable_e` nroots : int Number of roots solved by Davidson solver tol : float Convergence threshold for Davidson solver Returns: If return_status is False (default), the return value includes two set of orbitals, which are more close to the stable condition. The first corresponds to the internal stability and the second corresponds to the external stability. Else, another two boolean variables (indicating current status: stable or unstable) are returned. The first corresponds to the internal stability and the second corresponds to the external stability. ''' mo_i = mo_e = None stable_i = stable_e = None if internal: mo_i, stable_i = rhf_internal(mf, verbose=verbose, return_status=True, nroots=nroots, tol=tol) if external: mo_e, stable_e = rhf_external(mf, verbose=verbose, return_status=True, nroots=nroots, tol=tol) if return_status: return mo_i, mo_e, stable_i, stable_e else: return mo_i, mo_e
[docs] def uhf_stability(mf, internal=True, external=False, verbose=None, return_status=False, nroots=STAB_NROOTS, tol=STAB_TOL): ''' Stability analysis for UHF/UKS method. Args: mf : UHF or UKS object Kwargs: internal : bool Internal stability, within the UHF space. external : bool External stability. Including the UHF -> GHF and real -> complex stability analysis. return_status: bool Whether to return `stable_i` and `stable_e` nroots : int Number of roots solved by Davidson solver tol : float Convergence threshold for Davidson solver Returns: If return_status is False (default), the return value includes two set of orbitals, which are more close to the stable condition. The first corresponds to the internal stability and the second corresponds to the external stability. Else, another two boolean variables (indicating current status: stable or unstable) are returned. The first corresponds to the internal stability and the second corresponds to the external stability. ''' mo_i = mo_e = None stable_i = stable_e = None if internal: mo_i, stable_i = uhf_internal(mf, verbose=verbose, return_status=True, nroots=nroots, tol=tol) if external: mo_e, stable_e = uhf_external(mf, verbose=verbose, return_status=True, nroots=nroots, tol=tol) if return_status: return mo_i, mo_e, stable_i, stable_e else: return mo_i, mo_e
[docs] def rohf_stability(mf, internal=True, external=False, verbose=None, return_status=False, nroots=STAB_NROOTS, tol=STAB_TOL): ''' Stability analysis for ROHF/ROKS method. Args: mf : ROHF or ROKS object Kwargs: internal : bool Internal stability, within the RHF space. external : bool External stability. It is not available in current version. return_status: bool Whether to return `stable_i` and `stable_e` nroots : int Number of roots solved by Davidson solver tol : float Convergence threshold for Davidson solver Returns: If return_status is False (default), the return value includes two set of orbitals, which are more close to the stable condition. The first corresponds to the internal stability and the second corresponds to the external stability. Else, another two boolean variables (indicating current status: stable or unstable) are returned. The first corresponds to the internal stability and the second corresponds to the external stability. ''' mo_i = mo_e = None stable_i = stable_e = None if internal: mo_i, stable_i = rohf_internal(mf, verbose=verbose, return_status=True, nroots=nroots, tol=tol) if external: mo_e, stable_e = rohf_external(mf, verbose=verbose, return_status=True, nroots=nroots, tol=tol) if return_status: return mo_i, mo_e, stable_i, stable_e else: return mo_i, mo_e
[docs] def dump_status(log, stable, method_class, stab_type): if not stable: log.note(method_class + f' wavefunction has an {stab_type} instability') else: log.note(method_class + f' wavefunction is stable in the {stab_type} ' 'stability analysis')
[docs] def ghf_stability(mf, verbose=None, return_status=False, nroots=STAB_NROOTS, tol=STAB_TOL): ''' Stability analysis for GHF/GKS method. Args: mf : GHF or GKS object Kwargs: return_status: bool Whether to return `stable_i` and `stable_e` nroots : int Number of roots solved by Davidson solver tol : float Convergence threshold for Davidson solver Returns: If return_status is False (default), the return value includes a new set of orbitals, which are more close to the stable condition. Else, another one boolean variable (indicating current status: stable or unstable) is returned. ''' log = logger.new_logger(mf, verbose) with_symmetry = True g, hop, hdiag = newton_ah.gen_g_hop_ghf(mf, mf.mo_coeff, mf.mo_occ) hdiag *= 2 stable = True def precond(dx, e, x0): hdiagd = hdiag - e hdiagd[abs(hdiagd)<1e-8] = 1e-8 return dx/hdiagd def hessian_x(x): # See comments in function rhf_internal return hop(x).real * 2 x0 = numpy.zeros_like(g) x0[g!=0] = 1. / hdiag[g!=0] if not with_symmetry: # allow to break point group symmetry x0[numpy.argmin(hdiag)] = 1 e, v = lib.davidson(hessian_x, x0, precond, tol=tol, verbose=log, nroots=nroots) log.info('ghf_stability: lowest eigs of H = %s', e) if nroots != 1: e, v = e[0], v[0] stable = not (e < -1e-5) dump_status(log, stable, f'{mf.__class__}', 'internal') if stable: mo = mf.mo_coeff else: mo = _rotate_mo(mf.mo_coeff, mf.mo_occ, v) if return_status: return mo, stable else: return mo
[docs] def dhf_stability(mf, verbose=None, return_status=False, nroots=STAB_NROOTS, tol=STAB_TOL): ''' Stability analysis for DHF/DKS method. Args: mf : DHF or DKS object Kwargs: return_status: bool Whether to return `stable_i` and `stable_e` nroots : int Number of roots solved by Davidson solver tol : float Convergence threshold for Davidson solver Returns: If return_status is False (default), the return value includes a new set of orbitals, which are more close to the stable condition. Else, another one boolean variable (indicating current status: stable or unstable) is returned. ''' log = logger.new_logger(mf, verbose) g, hop, hdiag = newton_ah.gen_g_hop_dhf(mf, mf.mo_coeff, mf.mo_occ) hdiag *= 2 stable = True def precond(dx, e, x0): hdiagd = hdiag - e hdiagd[abs(hdiagd)<1e-8] = 1e-8 return dx/hdiagd def hessian_x(x): # See comments in function rhf_internal return hop(x).real * 2 x0 = numpy.zeros_like(g) x0[g!=0] = 1. / hdiag[g!=0] x0[numpy.argmin(hdiag)] = 1 e, v = lib.davidson(hessian_x, x0, precond, tol=tol, verbose=log, nroots=nroots) log.info('dhf_stability: lowest eigs of H = %s', e) if nroots != 1: e, v = e[0], v[0] stable = not (e < -1e-5) dump_status(log, stable, f'{mf.__class__}', 'internal') if stable: mo = mf.mo_coeff else: mo = _rotate_mo(mf.mo_coeff, mf.mo_occ, v) if return_status: return mo, stable else: return mo
[docs] def rhf_internal(mf, with_symmetry=True, verbose=None, return_status=False, nroots=STAB_NROOTS, tol=STAB_TOL): log = logger.new_logger(mf, verbose) g, hop, hdiag = newton_ah.gen_g_hop_rhf(mf, mf.mo_coeff, mf.mo_occ, with_symmetry=with_symmetry) hdiag *= 2 def precond(dx, e, x0): hdiagd = hdiag - e hdiagd[abs(hdiagd)<1e-8] = 1e-8 return dx/hdiagd # The results of hop(x) corresponds to a displacement that reduces # gradients g. It is the vir-occ block of the matrix vector product # (Hessian*x). The occ-vir block equals to x2.T.conj(). The overall # Hessian for internal rotation is x2 + x2.T.conj(). This is # the reason we apply (.real * 2) below def hessian_x(x): return hop(x).real * 2 x0 = numpy.zeros_like(g) x0[g!=0] = 1. / hdiag[g!=0] if not with_symmetry: # allow to break point group symmetry x0[numpy.argmin(hdiag)] = 1 e, v = lib.davidson(hessian_x, x0, precond, tol=tol, verbose=log, nroots=nroots) log.info('rhf_internal: lowest eigs of H = %s', e) if nroots != 1: e, v = e[0], v[0] stable = not (e < -1e-5) dump_status(log, stable, f'{mf.__class__}', 'internal') if stable: mo = mf.mo_coeff else: mo = _rotate_mo(mf.mo_coeff, mf.mo_occ, v) if return_status: return mo, stable else: return mo
def _rotate_mo(mo_coeff, mo_occ, dx): dr = hf.unpack_uniq_var(dx, mo_occ) u = newton_ah.expmat(dr) return numpy.dot(mo_coeff, u) def _gen_hop_rhf_external(mf, with_symmetry=True, verbose=None): mol = mf.mol mo_coeff = mf.mo_coeff mo_occ = mf.mo_occ occidx = numpy.where(mo_occ==2)[0] viridx = numpy.where(mo_occ==0)[0] nocc = len(occidx) nvir = len(viridx) orbv = mo_coeff[:,viridx] orbo = mo_coeff[:,occidx] if with_symmetry and mol.symmetry: orbsym = hf_symm.get_orbsym(mol, mo_coeff) sym_forbid = orbsym[viridx].reshape(-1,1) != orbsym[occidx] h1e = mf.get_hcore() dm0 = mf.make_rdm1(mo_coeff, mo_occ) fock_ao = h1e + mf.get_veff(mol, dm0) fock = reduce(numpy.dot, (mo_coeff.conj().T, fock_ao, mo_coeff)) foo = fock[occidx[:,None],occidx] fvv = fock[viridx[:,None],viridx] hdiag = fvv.diagonal().reshape(-1,1) - foo.diagonal() if with_symmetry and mol.symmetry: hdiag[sym_forbid] = 0 hdiag = hdiag.ravel() vrespz = mf.gen_response(singlet=None, hermi=2) def hop_real2complex(x1): x1 = x1.reshape(nvir,nocc) if with_symmetry and mol.symmetry: x1 = x1.copy() x1[sym_forbid] = 0 x2 = numpy.einsum('ps,sq->pq', fvv, x1) x2-= numpy.einsum('ps,rp->rs', foo, x1) d1 = reduce(numpy.dot, (orbv, x1*2, orbo.conj().T)) dm1 = d1 - d1.conj().T # No Coulomb and fxc contribution for anti-hermitian DM v1 = vrespz(dm1) x2 += reduce(numpy.dot, (orbv.conj().T, v1, orbo)) if with_symmetry and mol.symmetry: x2[sym_forbid] = 0 return x2.ravel() vresp1 = mf.gen_response(singlet=False, hermi=1) def hop_rhf2uhf(x1): # See also rhf.TDA triplet excitation x1 = x1.reshape(nvir,nocc) if with_symmetry and mol.symmetry: x1 = x1.copy() x1[sym_forbid] = 0 x2 = numpy.einsum('ps,sq->pq', fvv, x1) x2-= numpy.einsum('ps,rp->rs', foo, x1) d1 = reduce(numpy.dot, (orbv, x1*2, orbo.conj().T)) dm1 = d1 + d1.conj().T v1ao = vresp1(dm1) x2 += reduce(numpy.dot, (orbv.conj().T, v1ao, orbo)) if with_symmetry and mol.symmetry: x2[sym_forbid] = 0 return x2.real.ravel() return hop_real2complex, hdiag, hop_rhf2uhf, hdiag
[docs] def rhf_external(mf, with_symmetry=True, verbose=None, return_status=False, nroots=STAB_NROOTS, tol=STAB_TOL): log = logger.new_logger(mf, verbose) hop1, hdiag1, hop2, hdiag2 = _gen_hop_rhf_external(mf, with_symmetry) def precond(dx, e, x0): hdiagd = hdiag1 - e hdiagd[abs(hdiagd)<1e-8] = 1e-8 return dx/hdiagd x0 = numpy.zeros_like(hdiag1) x0[hdiag1>1e-5] = 1. / hdiag1[hdiag1>1e-5] if not with_symmetry: # allow to break point group symmetry x0[numpy.argmin(hdiag1)] = 1 e1, v1 = lib.davidson(hop1, x0, precond, tol=tol, verbose=log, nroots=nroots) log.info('rhf_real2complex: lowest eigs of H = %s', e1) if nroots != 1: e1, v1 = e1[0], v1[0] stable1 = not (e1 < -1e-5) dump_status(log, stable1, f'{mf.__class__}', 'real -> complex') def precond(dx, e, x0): hdiagd = hdiag2 - e hdiagd[abs(hdiagd)<1e-8] = 1e-8 return dx/hdiagd x0 = numpy.zeros_like(hdiag2) x0[hdiag2>1e-5] = 1. / hdiag2[hdiag2>1e-5] e3, v3 = lib.davidson(hop2, x0, precond, tol=tol, verbose=log, nroots=nroots) log.info('rhf_external: lowest eigs of H = %s', e3) if nroots != 1: e3, v3 = e3[0], v3[0] stable = not (e3 < -1e-5) dump_status(log, stable, f'{mf.__class__}', 'RHF/RKS -> UHF/UKS') if stable: mo = (mf.mo_coeff, mf.mo_coeff) else: mo = (_rotate_mo(mf.mo_coeff, mf.mo_occ, v3), mf.mo_coeff) if return_status: return mo, stable else: return mo
[docs] def rohf_internal(mf, with_symmetry=True, verbose=None, return_status=False, nroots=STAB_NROOTS, tol=STAB_TOL): log = logger.new_logger(mf, verbose) g, hop, hdiag = newton_ah.gen_g_hop_rohf(mf, mf.mo_coeff, mf.mo_occ, with_symmetry=with_symmetry) hdiag *= 2 def precond(dx, e, x0): hdiagd = hdiag - e hdiagd[abs(hdiagd)<1e-8] = 1e-8 return dx/hdiagd def hessian_x(x): # See comments in function rhf_internal return hop(x).real * 2 x0 = numpy.zeros_like(g) x0[g!=0] = 1. / hdiag[g!=0] if not with_symmetry: # allow to break point group symmetry x0[numpy.argmin(hdiag)] = 1 e, v = lib.davidson(hessian_x, x0, precond, tol=tol, verbose=log, nroots=nroots) log.info('rohf_internal: lowest eigs of H = %s', e) if nroots != 1: e, v = e[0], v[0] stable = not (e < -1e-5) dump_status(log, stable, f'{mf.__class__}', 'internal') if stable: mo = mf.mo_coeff else: mo = _rotate_mo(mf.mo_coeff, mf.mo_occ, v) if return_status: return mo, stable else: return mo
[docs] def rohf_external(mf, with_symmetry=True, verbose=None, return_status=False, nroots=STAB_NROOTS, tol=STAB_TOL): raise NotImplementedError
[docs] def uhf_internal(mf, with_symmetry=True, verbose=None, return_status=False, nroots=STAB_NROOTS, tol=STAB_TOL): log = logger.new_logger(mf, verbose) g, hop, hdiag = newton_ah.gen_g_hop_uhf(mf, mf.mo_coeff, mf.mo_occ, with_symmetry=with_symmetry) hdiag *= 2 def precond(dx, e, x0): hdiagd = hdiag - e hdiagd[abs(hdiagd)<1e-8] = 1e-8 return dx/hdiagd def hessian_x(x): # See comments in function rhf_internal return hop(x).real * 2 x0 = numpy.zeros_like(g) x0[g!=0] = 1. / hdiag[g!=0] if not with_symmetry: # allow to break point group symmetry x0[numpy.argmin(hdiag)] = 1 e, v = lib.davidson(hessian_x, x0, precond, tol=tol, verbose=log, nroots=nroots) log.info('uhf_internal: lowest eigs of H = %s', e) if nroots != 1: e, v = e[0], v[0] stable = not (e < -1e-5) dump_status(log, stable, f'{mf.__class__}', 'internal') if stable: mo = mf.mo_coeff else: nocca = numpy.count_nonzero(mf.mo_occ[0]> 0) nvira = numpy.count_nonzero(mf.mo_occ[0]==0) mo = (_rotate_mo(mf.mo_coeff[0], mf.mo_occ[0], v[:nocca*nvira]), _rotate_mo(mf.mo_coeff[1], mf.mo_occ[1], v[nocca*nvira:])) if return_status: return mo, stable else: return mo
def _gen_hop_uhf_external(mf, with_symmetry=True, verbose=None): mol = mf.mol mo_coeff = mf.mo_coeff mo_occ = mf.mo_occ occidxa = numpy.where(mo_occ[0]>0)[0] occidxb = numpy.where(mo_occ[1]>0)[0] viridxa = numpy.where(mo_occ[0]==0)[0] viridxb = numpy.where(mo_occ[1]==0)[0] nocca = len(occidxa) noccb = len(occidxb) nvira = len(viridxa) nvirb = len(viridxb) orboa = mo_coeff[0][:,occidxa] orbob = mo_coeff[1][:,occidxb] orbva = mo_coeff[0][:,viridxa] orbvb = mo_coeff[1][:,viridxb] if with_symmetry and mol.symmetry: orbsyma, orbsymb = uhf_symm.get_orbsym(mol, mo_coeff) sym_forbida = orbsyma[viridxa].reshape(-1,1) != orbsyma[occidxa] sym_forbidb = orbsymb[viridxb].reshape(-1,1) != orbsymb[occidxb] sym_forbid1 = numpy.hstack((sym_forbida.ravel(), sym_forbidb.ravel())) h1e = mf.get_hcore() dm0 = mf.make_rdm1(mo_coeff, mo_occ) fock_ao = h1e + mf.get_veff(mol, dm0) focka = reduce(numpy.dot, (mo_coeff[0].conj().T, fock_ao[0], mo_coeff[0])) fockb = reduce(numpy.dot, (mo_coeff[1].conj().T, fock_ao[1], mo_coeff[1])) fooa = focka[occidxa[:,None],occidxa] fvva = focka[viridxa[:,None],viridxa] foob = fockb[occidxb[:,None],occidxb] fvvb = fockb[viridxb[:,None],viridxb] h_diaga =(focka[viridxa,viridxa].reshape(-1,1) - focka[occidxa,occidxa]) h_diagb =(fockb[viridxb,viridxb].reshape(-1,1) - fockb[occidxb,occidxb]) hdiag1 = numpy.hstack((h_diaga.reshape(-1), h_diagb.reshape(-1))) if with_symmetry and mol.symmetry: hdiag1[sym_forbid1] = 0 vrespz = mf.gen_response(with_j=False, hermi=2) def hop_real2complex(x1): if with_symmetry and mol.symmetry: x1 = x1.copy() x1[sym_forbid1] = 0 x1a = x1[:nvira*nocca].reshape(nvira,nocca) x1b = x1[nvira*nocca:].reshape(nvirb,noccb) x2a = numpy.einsum('pr,rq->pq', fvva, x1a) x2a-= numpy.einsum('sq,ps->pq', fooa, x1a) x2b = numpy.einsum('pr,rq->pq', fvvb, x1b) x2b-= numpy.einsum('qs,ps->pq', foob, x1b) d1a = reduce(numpy.dot, (orbva, x1a, orboa.conj().T)) d1b = reduce(numpy.dot, (orbvb, x1b, orbob.conj().T)) dm1 = numpy.array((d1a-d1a.conj().T, d1b-d1b.conj().T)) v1 = vrespz(dm1) x2a += reduce(numpy.dot, (orbva.conj().T, v1[0], orboa)) x2b += reduce(numpy.dot, (orbvb.conj().T, v1[1], orbob)) x2 = numpy.hstack((x2a.ravel(), x2b.ravel())) if with_symmetry and mol.symmetry: x2[sym_forbid1] = 0 return x2 if with_symmetry and mol.symmetry: orbsyma, orbsymb = uhf_symm.get_orbsym(mol, mo_coeff) sym_forbidab = orbsyma[viridxa].reshape(-1,1) != orbsymb[occidxb] sym_forbidba = orbsymb[viridxb].reshape(-1,1) != orbsyma[occidxa] sym_forbid2 = numpy.hstack((sym_forbidab.ravel(), sym_forbidba.ravel())) hdiagab = fvva.diagonal().reshape(-1,1) - foob.diagonal() hdiagba = fvvb.diagonal().reshape(-1,1) - fooa.diagonal() hdiag2 = numpy.hstack((hdiagab.ravel(), hdiagba.ravel())) if with_symmetry and mol.symmetry: hdiag2[sym_forbid2] = 0 vresp1 = mf.gen_response(with_j=False, hermi=0) # Spin flip GHF solution is not considered def hop_uhf2ghf(x1): if with_symmetry and mol.symmetry: x1 = x1.copy() x1[sym_forbid2] = 0 x1ab = x1[:nvira*noccb].reshape(nvira,noccb) x1ba = x1[nvira*noccb:].reshape(nvirb,nocca) x2ab = numpy.einsum('pr,rq->pq', fvva, x1ab) x2ab-= numpy.einsum('sq,ps->pq', foob, x1ab) x2ba = numpy.einsum('pr,rq->pq', fvvb, x1ba) x2ba-= numpy.einsum('qs,ps->pq', fooa, x1ba) d1ab = reduce(numpy.dot, (orbva, x1ab, orbob.conj().T)) d1ba = reduce(numpy.dot, (orbvb, x1ba, orboa.conj().T)) dm1 = numpy.array((d1ab+d1ba.conj().T, d1ba+d1ab.conj().T)) v1 = vresp1(dm1) x2ab += reduce(numpy.dot, (orbva.conj().T, v1[0], orbob)) x2ba += reduce(numpy.dot, (orbvb.conj().T, v1[1], orboa)) x2 = numpy.hstack((x2ab.real.ravel(), x2ba.real.ravel())) if with_symmetry and mol.symmetry: x2[sym_forbid2] = 0 return x2 return hop_real2complex, hdiag1, hop_uhf2ghf, hdiag2
[docs] def uhf_external(mf, with_symmetry=True, verbose=None, return_status=False, nroots=STAB_NROOTS, tol=STAB_TOL): log = logger.new_logger(mf, verbose) hop1, hdiag1, hop2, hdiag2 = _gen_hop_uhf_external(mf, with_symmetry) def precond(dx, e, x0): hdiagd = hdiag1 - e hdiagd[abs(hdiagd)<1e-8] = 1e-8 return dx/hdiagd x0 = numpy.zeros_like(hdiag1) x0[hdiag1>1e-5] = 1. / hdiag1[hdiag1>1e-5] if not with_symmetry: # allow to break point group symmetry x0[numpy.argmin(hdiag1)] = 1 e1, v = lib.davidson(hop1, x0, precond, tol=tol, verbose=log, nroots=nroots) log.info('uhf_real2complex: lowest eigs of H = %s', e1) if nroots != 1: e1, v = e1[0], v[0] stable1 = not (e1 < -1e-5) dump_status(log, stable1, f'{mf.__class__}', 'real -> complex') def precond(dx, e, x0): hdiagd = hdiag2 - e hdiagd[abs(hdiagd)<1e-8] = 1e-8 return dx/hdiagd x0 = numpy.zeros_like(hdiag2) x0[hdiag2>1e-5] = 1. / hdiag2[hdiag2>1e-5] if not with_symmetry: # allow to break point group symmetry x0[numpy.argmin(hdiag2)] = 1 e3, v = lib.davidson(hop2, x0, precond, tol=tol, verbose=log, nroots=nroots) log.info('uhf_external: lowest eigs of H = %s', e3) if nroots != 1: e3, v = e3[0], v[0] stable = not (e3 < -1e-5) dump_status(log, stable, f'{mf.__class__}', 'UHF/UKS -> GHF/GKS') mo = scipy.linalg.block_diag(*mf.mo_coeff) if not stable: occidxa = numpy.where(mf.mo_occ[0]> 0)[0] viridxa = numpy.where(mf.mo_occ[0]==0)[0] occidxb = numpy.where(mf.mo_occ[1]> 0)[0] viridxb = numpy.where(mf.mo_occ[1]==0)[0] nocca = len(occidxa) nvira = len(viridxa) noccb = len(occidxb) nvirb = len(viridxb) nmo = nocca + nvira dx = numpy.zeros((nmo*2,nmo*2)) dx[viridxa[:,None],nmo+occidxb] = v[:nvira*noccb].reshape(nvira,noccb) dx[nmo+viridxb[:,None],occidxa] = v[nvira*noccb:].reshape(nvirb,nocca) u = newton_ah.expmat(dx - dx.conj().T) mo = numpy.dot(mo, u) mo = numpy.hstack([mo[:,:nocca], mo[:,nmo:nmo+noccb], mo[:,nocca:nmo], mo[:,nmo+noccb:]]) if return_status: return mo, stable else: return mo
if __name__ == '__main__': from pyscf import gto, scf, dft mol = gto.M(atom='O 0 0 0; O 0 0 1.2222', basis='631g*') mf = scf.RHF(mol).run() rhf_stability(mf, True, True, verbose=4) mf = dft.RKS(mol).run(level_shift=.2) rhf_stability(mf, True, True, verbose=4) mf = scf.UHF(mol).run() mo1 = uhf_stability(mf, True, True, verbose=4)[0] mf = scf.newton(mf).run(mo1, mf.mo_occ) uhf_stability(mf, True, False, verbose=4) mf = scf.newton(scf.UHF(mol)).run() uhf_stability(mf, True, False, verbose=4) mol.spin = 2 mf = scf.UHF(mol).run() uhf_stability(mf, True, True, verbose=4) mf = dft.UKS(mol).run() uhf_stability(mf, True, True, verbose=4) mol = gto.M(atom=''' O1 O2 1 1.2227 O3 1 1.2227 2 114.0451 ''', basis = '631g*') mf = scf.RHF(mol).run() rhf_stability(mf, True, True, verbose=4) mf = scf.UHF(mol).run() mo1 = uhf_stability(mf, True, True, verbose=4)[0] mf = scf.newton(scf.UHF(mol)).run() uhf_stability(mf, True, True, verbose=4)