Source code for pyscf.scf.cphf

#!/usr/bin/env python
# Copyright 2014-2018 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Restricted coupled perturbed Hartree-Fock solver
'''


import numpy
from pyscf import lib
from pyscf.lib import logger


[docs] def solve(fvind, mo_energy, mo_occ, h1, s1=None, max_cycle=50, tol=1e-9, hermi=False, verbose=logger.WARN, level_shift=0): ''' Args: fvind : function Given density matrix, compute (ij|kl)D_{lk}*2 - (ij|kl)D_{jk} Kwargs: hermi : boolean Whether the matrix defined by fvind is Hermitian or not. level_shift : float Add to diagonal terms to slightly improve the convergence speed of Krylov solver ''' if s1 is None: return solve_nos1(fvind, mo_energy, mo_occ, h1, max_cycle, tol, hermi, verbose, level_shift) else: return solve_withs1(fvind, mo_energy, mo_occ, h1, s1, max_cycle, tol, hermi, verbose, level_shift)
kernel = solve # h1 shape is (:,nvir,nocc)
[docs] def solve_nos1(fvind, mo_energy, mo_occ, h1, max_cycle=50, tol=1e-9, hermi=False, verbose=logger.WARN, level_shift=0): '''For field independent basis. First order overlap matrix is zero Kwargs: level_shift : float Add to diagonal terms to slightly improve the convergence speed of Krylov solver ''' assert not hermi log = logger.new_logger(verbose=verbose) t0 = (logger.process_clock(), logger.perf_counter()) e_a = mo_energy[mo_occ==0] e_i = mo_energy[mo_occ>0] e_ai = 1 / (e_a[:,None] + level_shift - e_i) mo1base = h1 * -e_ai nvir, nocc = e_ai.shape def vind_vo(mo1): mo1 = mo1.reshape(-1, nvir, nocc) v = fvind(mo1).reshape(-1, nvir, nocc) if level_shift != 0: v -= mo1 * level_shift v *= e_ai return v.reshape(-1, nvir*nocc) mo1 = lib.krylov(vind_vo, mo1base.reshape(-1, nvir*nocc), tol=tol, max_cycle=max_cycle, hermi=hermi, verbose=log) log.timer('krylov solver in CPHF', *t0) return mo1.reshape(h1.shape), None
# h1 shape is (:,nocc+nvir,nocc)
[docs] def solve_withs1(fvind, mo_energy, mo_occ, h1, s1, max_cycle=50, tol=1e-9, hermi=False, verbose=logger.WARN, level_shift=0): '''For field dependent basis. First order overlap matrix is non-zero. The first order orbitals are set to C^1_{ij} = -1/2 S1 e1 = h1 - s1*e0 + (e0_j-e0_i)*c1 + vhf[c1] Kwargs: level_shift : float Add to diagonal terms to slightly improve the convergence speed of Krylov solver Returns: First order orbital coefficients (in MO basis) and first order orbital energy matrix ''' assert not hermi log = logger.new_logger(verbose=verbose) t0 = (logger.process_clock(), logger.perf_counter()) occidx = mo_occ > 0 viridx = mo_occ == 0 e_a = mo_energy[viridx] e_i = mo_energy[occidx] e_ai = 1 / (e_a[:,None] + level_shift - e_i) nvir, nocc = e_ai.shape nmo = nocc + nvir s1 = s1.reshape(-1,nmo,nocc) hs = mo1base = h1.reshape(-1,nmo,nocc) - s1*e_i mo1base = hs.copy() mo1base[:,viridx] *= -e_ai mo1base[:,occidx] = -s1[:,occidx] * .5 def vind_vo(mo1): mo1 = mo1.reshape(-1, nmo, nocc) v = fvind(mo1).reshape(-1, nmo, nocc) if level_shift != 0: v -= mo1 * level_shift v[:,viridx,:] *= e_ai v[:,occidx,:] = 0 return v.reshape(-1, nmo*nocc) mo1 = lib.krylov(vind_vo, mo1base.reshape(-1, nmo*nocc), tol=tol, max_cycle=max_cycle, hermi=hermi, verbose=log) mo1 = mo1.reshape(-1, nmo, nocc) mo1[:,occidx] = mo1base[:,occidx] log.timer('krylov solver in CPHF', *t0) hs += fvind(mo1).reshape(-1, nmo, nocc) mo1[:,viridx] = hs[:,viridx] / (e_i - e_a[:,None]) # mo_e1 has the same symmetry as the first order Fock matrix (hermitian or # anti-hermitian). mo_e1 = v1mo - s1*lib.direct_sum('i+j->ij',e_i,e_i) mo_e1 = hs[:,occidx,:] mo_e1 += mo1[:,occidx] * (e_i[:,None] - e_i) if h1.ndim == 3: return mo1, mo_e1 else: assert h1.ndim == 2 return mo1[0], mo_e1[0]