Source code for pyscf.lo.ibo

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Paul J. Robinson <pjrobinson@ucla.edu>
#          Qiming Sun <osirpt.sun@gmail.com>
#

'''
Intrinsic Bonding Orbitals
ref. JCTC, 9, 4834

Below here is work done by Paul Robinson.
much of the code below is adapted from code published freely on the website of Gerald Knizia
Ref: JCTC, 2013, 9, 4834-4843
'''

from functools import reduce
import numpy
from pyscf.lib import logger
from pyscf.lo import iao
from pyscf.lo import orth, pipek
from pyscf import __config__

MINAO = getattr(__config__, 'lo_iao_minao', 'minao')

[docs] def ibo(mol, orbocc, locmethod='IBO', iaos=None, s=None, exponent=4, grad_tol=1e-8, max_iter=200, minao=MINAO, verbose=logger.NOTE): '''Intrinsic Bonding Orbitals This function serves as a wrapper to the underlying localization functions ibo_loc and PipekMezey to create IBOs. Args: mol : the molecule or cell object orbocc : occupied molecular orbital coefficients Kwargs: locmethod : string the localization method 'PM' for Pipek Mezey localization or 'IBO' for the IBO localization iaos : 2D array the array of IAOs s : 2D array the overlap array in the ao basis Returns: IBOs in the basis defined in mol object. ''' if s is None: if getattr(mol, 'pbc_intor', None): # whether mol object is a cell if isinstance(orbocc, numpy.ndarray) and orbocc.ndim == 2: s = mol.pbc_intor('int1e_ovlp', hermi=1) else: raise NotImplementedError('k-points crystal orbitals') else: s = mol.intor_symmetric('int1e_ovlp') if iaos is None: iaos = iao.iao(mol, orbocc) locmethod = locmethod.strip().upper() if locmethod == 'PM': EXPONENT = getattr(__config__, 'lo_ibo_PipekMezey_exponent', exponent) ibos = PipekMezey(mol, orbocc, iaos, s, exponent=EXPONENT, minao=minao) del (EXPONENT) else: ibos = ibo_loc(mol, orbocc, iaos, s, exponent=exponent, grad_tol=grad_tol, max_iter=max_iter, minao=minao, verbose=verbose) return ibos
[docs] def ibo_loc(mol, orbocc, iaos, s, exponent, grad_tol, max_iter, minao=MINAO, verbose=logger.NOTE): '''Intrinsic Bonding Orbitals. [Ref. JCTC, 9, 4834] This implementation follows Knizia's implementation except that the resultant IBOs are symmetrically orthogonalized. Note the IBOs of this implementation do not strictly maximize the IAO Mulliken charges. IBOs can also be generated by another implementation (see function pyscf.lo.ibo.PM). In that function, PySCF builtin Pipek-Mezey localization module was used to maximize the IAO Mulliken charges. Args: mol : the molecule or cell object orbocc : 2D array or a list of 2D array occupied molecular orbitals or crystal orbitals for each k-point Kwargs: iaos : 2D array the array of IAOs exponent : integer Localization power in PM scheme grad_tol : float convergence tolerance for norm of gradients Returns: IBOs in the big basis (the basis defined in mol object). ''' log = logger.new_logger(mol, verbose) assert (exponent in (2, 4)) # Symmetrically orthogonalization of the IAO orbitals as Knizia's # implementation. The IAO returned by iao.iao function is not orthogonal. iaos = orth.vec_lowdin(iaos, s) #static variables StartTime = logger.perf_counter() L = 0 # initialize a value of the localization function for safety #max_iter = 20000 #for some reason the convergence of solid is slower #fGradConv = 1e-10 #this ought to be pumped up to about 1e-8 but for testing purposes it's fine swapGradTolerance = 1e-12 #dynamic variables Converged = False # render Atoms list without ghost atoms iao_mol = iao.reference_mol(mol, minao=minao) Atoms = [iao_mol.atom_pure_symbol(i) for i in range(iao_mol.natm)] #generates the parameters we need about the atomic structure nAtoms = len(Atoms) AtomOffsets = MakeAtomIbOffsets(Atoms)[0] iAtSl = [slice(AtomOffsets[A],AtomOffsets[A+1]) for A in range(nAtoms)] #converts the occupied MOs to the IAO basis CIb = reduce(numpy.dot, (iaos.T, s , orbocc)) numOccOrbitals = CIb.shape[1] log.debug(" {0:^5s} {1:^14s} {2:^11s} {3:^8s}" .format("ITER.","LOC(Orbital)","GRADIENT", "TIME")) for it in range(max_iter): fGrad = 0.00 #calculate L for convergence checking L = 0. for A in range(nAtoms): for i in range(numOccOrbitals): CAi = CIb[iAtSl[A],i] L += numpy.dot(CAi,CAi)**exponent # loop over the occupied orbitals pairs i,j for i in range(numOccOrbitals): for j in range(i): # I experimented with exponentially falling off random noise Aij = 0.0 #numpy.random.random() * numpy.exp(-1*it) Bij = 0.0 #numpy.random.random() * numpy.exp(-1*it) for k in range(nAtoms): CIbA = CIb[iAtSl[k],:] Cii = numpy.dot(CIbA[:,i], CIbA[:,i]) Cij = numpy.dot(CIbA[:,i], CIbA[:,j]) Cjj = numpy.dot(CIbA[:,j], CIbA[:,j]) #now I calculate Aij and Bij for the gradient search if exponent == 2: Aij += 4.*Cij**2 - (Cii - Cjj)**2 Bij += 4.*Cij*(Cii - Cjj) else: Bij += 4.*Cij*(Cii**3-Cjj**3) Aij += -Cii**4 - Cjj**4 + 6*(Cii**2 + Cjj**2)*Cij**2 + Cii**3 * Cjj + Cii*Cjj**3 if (Aij**2 + Bij**2 < swapGradTolerance) and False: continue #this saves us from replacing already fine orbitals else: #THE BELOW IS TAKEN DIRECTLY FROMG KNIZIA's FREE CODE # Calculate 2x2 rotation angle phi. # This correspond to [2] (12)-(15), re-arranged and simplified. phi = .25*numpy.arctan2(Bij,-Aij) fGrad += Bij**2 # ^- Bij is the actual gradient. Aij is effectively # the second derivative at phi=0. # 2x2 rotation form; that's what PM suggest. it works # fine, but I don't like the asymmetry. cs = numpy.cos(phi) ss = numpy.sin(phi) Ci = 1. * CIb[:,i] Cj = 1. * CIb[:,j] CIb[:,i] = cs * Ci + ss * Cj CIb[:,j] = -ss * Ci + cs * Cj fGrad = fGrad**.5 log.debug(" {0:5d} {1:12.8f} {2:11.2e} {3:8.2f}" .format(it+1, L**(1./exponent), fGrad, logger.perf_counter()-StartTime)) if fGrad < grad_tol: Converged = True break Note = "IB/P%i/2x2, %i iter; Final gradient %.2e" % (exponent, it+1, fGrad) if not Converged: log.note("\nWARNING: Iterative localization failed to converge!" "\n %s", Note) else: log.note(" Iterative localization: %s", Note) log.debug(" Localized orbitals deviation from orthogonality: %8.2e", numpy.linalg.norm(numpy.dot(CIb.T, CIb) - numpy.eye(numOccOrbitals))) # Note CIb is not unitary matrix (although very close to unitary matrix) # because the projection <IAO|OccOrb> does not give unitary matrix. return numpy.dot(iaos, (orth.vec_lowdin(CIb)))
[docs] def PipekMezey(mol, orbocc, iaos, s, exponent, minao=MINAO): ''' Note this localization is slightly different to Knizia's implementation. The localization here reserves orthogonormality during optimization. Orbitals are projected to IAO basis first and the Mulliken pop is calculated based on IAO basis (in function atomic_pops). A series of unitary matrices are generated and applied on the input orbitals. The intermediate orbitals in the optimization and the finally localized orbitals are all orthogonormal. Examples: >>> from pyscf import gto, scf >>> from pyscf.lo import ibo >>> mol = gto.M(atom='H 0 0 0; F 0 0 1', >>> basis='unc-sto3g') >>> mf = scf.RHF(mol).run() >>> pm = ibo.PM(mol, mf.mo_coeff[:,mf.mo_occ>0]) >>> loc_orb = pm.kernel() ''' # Note: PM with Lowdin-orth IAOs is implemented in pipek.PM class # TODO: Merge the implementation here to pipek.PM cs = numpy.dot(iaos.T.conj(), s) s_iao = numpy.dot(cs, iaos) iao_inv = numpy.linalg.solve(s_iao, cs) iao_mol = iao.reference_mol(mol, minao=minao) # Define the mulliken population of each atom based on IAO basis. # proj[i].trace is the mulliken population of atom i. def atomic_pops(mol, mo_coeff, method=None): nmo = mo_coeff.shape[1] proj = numpy.empty((mol.natm,nmo,nmo)) orb_in_iao = reduce(numpy.dot, (iao_inv, mo_coeff)) for i, (b0, b1, p0, p1) in enumerate(iao_mol.offset_nr_by_atom()): csc = reduce(numpy.dot, (orb_in_iao[p0:p1].T, s_iao[p0:p1], orb_in_iao)) proj[i] = (csc + csc.T) * .5 return proj pm = pipek.PM(mol, orbocc) pm.atomic_pops = atomic_pops pm.exponent = exponent return pm
PM = Pipek = PipekMezey
[docs] def shell_str(l, n_cor, n_val): ''' Help function to define core and valence shells for shell with different l ''' cor_shell = [ "[{n}s]", "[{n}px] [{n}py] [{n}pz]", "[{n}d0] [{n}d2-] [{n}d1+] [{n}d2+] [{n}d1-]", "[{n}f1+] [{n}f1-] [{n}f0] [{n}f3+] [{n}f2-] [{n}f3-] [{n}f2+]"] val_shell = [ l_str.replace('[', '').replace(']', '') for l_str in cor_shell] l_str = ' '.join( [cor_shell[l].format(n=i) for i in range(l + 1, l + 1 + n_cor)] + [val_shell[l].format(n=i) for i in range(l + 1 + n_cor, l + 1 + n_cor + n_val)]) return l_str
''' These are parameters for selecting the valence space correctly. The parameters are taken from in G. Knizia's free code https://sites.psu.edu/knizia/software/ '''
[docs] def MakeAtomInfos(): nCoreX = {"H": 0, "He": 0} for At in "Li Be B C O N F Ne".split(): nCoreX[At] = 1 for At in "Na Mg Al Si P S Cl Ar".split(): nCoreX[At] = 5 for At in "Na Mg Al Si P S Cl Ar".split(): nCoreX[At] = 5 for At in "K Ca".split(): nCoreX[At] = 18//2 for At in "Sc Ti V Cr Mn Fe Co Ni Cu Zn".split(): nCoreX[At] = 18//2 for At in "Ga Ge As Se Br Kr".split(): nCoreX[At] = 18//2 + 5 # [Ar] and the 5d orbitals. nAoX = {"H": 1, "He": 1} for At in "Li Be".split(): nAoX[At] = 2 for At in "B C O N F Ne".split(): nAoX[At] = 5 for At in "Na Mg".split(): nAoX[At] = 3*1 + 1*3 for At in "Al Si P S Cl Ar".split(): nAoX[At] = 3*1 + 2*3 for At in "K Ca".split(): nAoX[At] = 18//2 + 1 for At in "Sc Ti V Cr Mn Fe Co Ni Cu Zn".split(): nAoX[At] = 18//2 + 1 + 5 # 4s, 3d for At in "Ga Ge As Se Br Kr".split(): nAoX[At] = 18//2 + 1 + 5 + 3 AoLabels = {} def SetAo(At, AoDecl): Labels = AoDecl.split() AoLabels[At] = Labels assert (len(Labels) == nAoX[At]) nCore = len([o for o in Labels if o.startswith('[')]) assert (nCore == nCoreX[At]) # atomic orbitals in the MINAO basis: [xx] denotes core orbitals. for At in "H He".split(): SetAo(At, "1s") for At in "Li Be".split(): SetAo(At, "[1s] 2s") for At in "B C O N F Ne".split(): SetAo(At, "[1s] 2s 2px 2py 2pz") for At in "Na Mg".split(): SetAo(At, "[1s] [2s] 3s [2px] [2py] [2pz]") for At in "Al Si P S Cl Ar".split(): SetAo(At, "[1s] [2s] 3s [2px] [2py] [2pz] 3px 3py 3pz") for At in "K Ca".split(): SetAo(At, "[1s] [2s] [3s] 4s [2px] [2py] [2pz] [3px] [3py] [3pz]") for At in "Sc Ti V Cr Mn Fe Co Ni Cu Zn".split(): SetAo(At, "[1s] [2s] [3s] 4s [2px] [2py] [2pz] [3px] [3py] [3pz] 3d0 3d2- 3d1+ 3d2+ 3d1-") for At in "Ga Ge As Se Br Kr".split(): SetAo(At, "[1s] [2s] [3s] 4s [2px] [2py] [2pz] [3px] [3py] [3pz] 4px 4py 4pz [3d0] [3d2-] [3d1+] [3d2+] [3d1-]") for At in "Rb Sr".split(): nCoreX[At] = 36/2 nAoX[At] = nCoreX[At] + 1 SetAo(At, ' '.join ([shell_str(0,4,1), shell_str(1,3,0), shell_str(2,1,0)])) for At in "Y Zr Nb Mo Tc Ru Rh Pd Ag Cd".split(): nCoreX[At] = 36/2 nAoX[At] = nCoreX[At] + 1 + 5 SetAo(At, ' '.join ([shell_str(0,4,1), shell_str(1,3,0), shell_str(2,1,1)])) for At in "In Sn Sb Te I Xe".split(): nCoreX[At] = 36/2 + 5 nAoX[At] = nCoreX[At] + 1 + 3 SetAo(At, ' '.join ([shell_str(0,4,1), shell_str(1,3,1), shell_str(2,2,0)])) for At in "Cs Ba".split(): nCoreX[At] = 54/2 nAoX[At] = nCoreX[At] + 1 SetAo(At, ' '.join ([shell_str(0,5,1), shell_str(1,4,0), shell_str(2,2,0)])) for At in "Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu".split(): nCoreX[At] = 54/2 nAoX[At] = nCoreX[At] + 1 + 5 + 7 SetAo(At, ' '.join ([shell_str(0,5,1), shell_str(1,4,0), shell_str(2,2,1), shell_str(3,0,1)])) for At in "La Hf Ta W Re Os Ir Pt Au Hg".split(): nCoreX[At] = 54/2 + 7 nAoX[At] = nCoreX[At] + 1 + 5 SetAo(At, ' '.join ([shell_str(0,5,1), shell_str(1,4,0), shell_str(2,2,1), shell_str(3,1,0)])) for At in "Tl Pb Bi Po At Rn".split(): nCoreX[At] = 54/2 + 7 + 5 nAoX[At] = nCoreX[At] + 1 + 3 SetAo(At, ' '.join ([shell_str(0,5,1), shell_str(1,4,1), shell_str(2,3,0), shell_str(3,1,0)])) for At in "Fr Ra".split(): nCoreX[At] = 86/2 nAoX[At] = nCoreX[At] + 1 SetAo(At, ' '.join ([shell_str(0,6,1), shell_str(1,5,0), shell_str(2,3,0), shell_str(3,1,0)])) for At in "Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No".split(): nCoreX[At] = 86/2 nAoX[At] = nCoreX[At] + 1 + 5 + 7 SetAo(At, ' '.join ([shell_str(0,6,1), shell_str(1,5,0), shell_str(2,3,1), shell_str(3,1,1)])) for At in "Ac Lr Rf Db Sg Bh Hs Mt Ds Rg Cn".split(): nCoreX[At] = 86/2 + 7 nAoX[At] = nCoreX[At] + 1 + 5 SetAo(At, ' '.join ([shell_str(0,6,1), shell_str(1,5,0), shell_str(2,3,1), shell_str(3,2,0)])) for At in "Nh Fl Mc Lv Ts Og".split(): nCoreX[At] = 86/2 + 7 + 5 nAoX[At] = nCoreX[At] + 1 + 3 SetAo(At, ' '.join ([shell_str(0,6,1), shell_str(1,5,1), shell_str(2,4,0), shell_str(3,2,0)])) # note: f order is '4f1+','4f1-','4f0','4f3+','4f2-','4f3-','4f2+', return nCoreX, nAoX, AoLabels
[docs] def MakeAtomIbOffsets(Atoms): """calculate offset of first orbital of individual atoms in the valence minimal basis (IB)""" nCoreX, nAoX, AoLabels = MakeAtomInfos() iBfAt = [0] for Atom in Atoms: Atom = ''.join(char for char in Atom if char.isalpha()) iBfAt.append(iBfAt[-1] + nAoX[Atom]) return iBfAt, nCoreX, nAoX, AoLabels
del (MINAO)