#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Paul J. Robinson <pjrobinson@ucla.edu>
# Qiming Sun <osirpt.sun@gmail.com>
#
'''
Intrinsic Bonding Orbitals
ref. JCTC, 9, 4834
Below here is work done by Paul Robinson.
much of the code below is adapted from code published freely on the website of Gerald Knizia
Ref: JCTC, 2013, 9, 4834-4843
'''
from functools import reduce
import numpy
from pyscf.lib import logger
from pyscf.lo import iao
from pyscf.lo import orth, pipek
from pyscf import __config__
MINAO = getattr(__config__, 'lo_iao_minao', 'minao')
[docs]
def ibo(mol, orbocc, locmethod='IBO', iaos=None, s=None,
exponent=4, grad_tol=1e-8, max_iter=200, minao=MINAO, verbose=logger.NOTE):
'''Intrinsic Bonding Orbitals
This function serves as a wrapper to the underlying localization functions
ibo_loc and PipekMezey to create IBOs.
Args:
mol : the molecule or cell object
orbocc : occupied molecular orbital coefficients
Kwargs:
locmethod : string
the localization method 'PM' for Pipek Mezey localization or 'IBO' for the IBO localization
iaos : 2D array
the array of IAOs
s : 2D array
the overlap array in the ao basis
Returns:
IBOs in the basis defined in mol object.
'''
if s is None:
if getattr(mol, 'pbc_intor', None): # whether mol object is a cell
if isinstance(orbocc, numpy.ndarray) and orbocc.ndim == 2:
s = mol.pbc_intor('int1e_ovlp', hermi=1)
else:
raise NotImplementedError('k-points crystal orbitals')
else:
s = mol.intor_symmetric('int1e_ovlp')
if iaos is None:
iaos = iao.iao(mol, orbocc)
locmethod = locmethod.strip().upper()
if locmethod == 'PM':
EXPONENT = getattr(__config__, 'lo_ibo_PipekMezey_exponent', exponent)
ibos = PipekMezey(mol, orbocc, iaos, s, exponent=EXPONENT, minao=minao)
del (EXPONENT)
else:
ibos = ibo_loc(mol, orbocc, iaos, s, exponent=exponent,
grad_tol=grad_tol, max_iter=max_iter,
minao=minao, verbose=verbose)
return ibos
[docs]
def ibo_loc(mol, orbocc, iaos, s, exponent, grad_tol, max_iter,
minao=MINAO, verbose=logger.NOTE):
'''Intrinsic Bonding Orbitals. [Ref. JCTC, 9, 4834]
This implementation follows Knizia's implementation except that the
resultant IBOs are symmetrically orthogonalized. Note the IBOs of this
implementation do not strictly maximize the IAO Mulliken charges.
IBOs can also be generated by another implementation (see function
pyscf.lo.ibo.PM). In that function, PySCF builtin Pipek-Mezey localization
module was used to maximize the IAO Mulliken charges.
Args:
mol : the molecule or cell object
orbocc : 2D array or a list of 2D array
occupied molecular orbitals or crystal orbitals for each k-point
Kwargs:
iaos : 2D array
the array of IAOs
exponent : integer
Localization power in PM scheme
grad_tol : float
convergence tolerance for norm of gradients
Returns:
IBOs in the big basis (the basis defined in mol object).
'''
log = logger.new_logger(mol, verbose)
assert (exponent in (2, 4))
# Symmetrically orthogonalization of the IAO orbitals as Knizia's
# implementation. The IAO returned by iao.iao function is not orthogonal.
iaos = orth.vec_lowdin(iaos, s)
#static variables
StartTime = logger.perf_counter()
L = 0 # initialize a value of the localization function for safety
#max_iter = 20000 #for some reason the convergence of solid is slower
#fGradConv = 1e-10 #this ought to be pumped up to about 1e-8 but for testing purposes it's fine
swapGradTolerance = 1e-12
#dynamic variables
Converged = False
# render Atoms list without ghost atoms
iao_mol = iao.reference_mol(mol, minao=minao)
Atoms = [iao_mol.atom_pure_symbol(i) for i in range(iao_mol.natm)]
#generates the parameters we need about the atomic structure
nAtoms = len(Atoms)
AtomOffsets = MakeAtomIbOffsets(Atoms)[0]
iAtSl = [slice(AtomOffsets[A],AtomOffsets[A+1]) for A in range(nAtoms)]
#converts the occupied MOs to the IAO basis
CIb = reduce(numpy.dot, (iaos.T, s , orbocc))
numOccOrbitals = CIb.shape[1]
log.debug(" {0:^5s} {1:^14s} {2:^11s} {3:^8s}"
.format("ITER.","LOC(Orbital)","GRADIENT", "TIME"))
for it in range(max_iter):
fGrad = 0.00
#calculate L for convergence checking
L = 0.
for A in range(nAtoms):
for i in range(numOccOrbitals):
CAi = CIb[iAtSl[A],i]
L += numpy.dot(CAi,CAi)**exponent
# loop over the occupied orbitals pairs i,j
for i in range(numOccOrbitals):
for j in range(i):
# I experimented with exponentially falling off random noise
Aij = 0.0 #numpy.random.random() * numpy.exp(-1*it)
Bij = 0.0 #numpy.random.random() * numpy.exp(-1*it)
for k in range(nAtoms):
CIbA = CIb[iAtSl[k],:]
Cii = numpy.dot(CIbA[:,i], CIbA[:,i])
Cij = numpy.dot(CIbA[:,i], CIbA[:,j])
Cjj = numpy.dot(CIbA[:,j], CIbA[:,j])
#now I calculate Aij and Bij for the gradient search
if exponent == 2:
Aij += 4.*Cij**2 - (Cii - Cjj)**2
Bij += 4.*Cij*(Cii - Cjj)
else:
Bij += 4.*Cij*(Cii**3-Cjj**3)
Aij += -Cii**4 - Cjj**4 + 6*(Cii**2 + Cjj**2)*Cij**2 + Cii**3 * Cjj + Cii*Cjj**3
if (Aij**2 + Bij**2 < swapGradTolerance) and False:
continue
#this saves us from replacing already fine orbitals
else:
#THE BELOW IS TAKEN DIRECTLY FROMG KNIZIA's FREE CODE
# Calculate 2x2 rotation angle phi.
# This correspond to [2] (12)-(15), re-arranged and simplified.
phi = .25*numpy.arctan2(Bij,-Aij)
fGrad += Bij**2
# ^- Bij is the actual gradient. Aij is effectively
# the second derivative at phi=0.
# 2x2 rotation form; that's what PM suggest. it works
# fine, but I don't like the asymmetry.
cs = numpy.cos(phi)
ss = numpy.sin(phi)
Ci = 1. * CIb[:,i]
Cj = 1. * CIb[:,j]
CIb[:,i] = cs * Ci + ss * Cj
CIb[:,j] = -ss * Ci + cs * Cj
fGrad = fGrad**.5
log.debug(" {0:5d} {1:12.8f} {2:11.2e} {3:8.2f}"
.format(it+1, L**(1./exponent), fGrad, logger.perf_counter()-StartTime))
if fGrad < grad_tol:
Converged = True
break
Note = "IB/P%i/2x2, %i iter; Final gradient %.2e" % (exponent, it+1, fGrad)
if not Converged:
log.note("\nWARNING: Iterative localization failed to converge!"
"\n %s", Note)
else:
log.note(" Iterative localization: %s", Note)
log.debug(" Localized orbitals deviation from orthogonality: %8.2e",
numpy.linalg.norm(numpy.dot(CIb.T, CIb) - numpy.eye(numOccOrbitals)))
# Note CIb is not unitary matrix (although very close to unitary matrix)
# because the projection <IAO|OccOrb> does not give unitary matrix.
return numpy.dot(iaos, (orth.vec_lowdin(CIb)))
[docs]
def PipekMezey(mol, orbocc, iaos, s, exponent, minao=MINAO):
'''
Note this localization is slightly different to Knizia's implementation.
The localization here reserves orthogonormality during optimization.
Orbitals are projected to IAO basis first and the Mulliken pop is
calculated based on IAO basis (in function atomic_pops). A series of
unitary matrices are generated and applied on the input orbitals. The
intermediate orbitals in the optimization and the finally localized orbitals
are all orthogonormal.
Examples:
>>> from pyscf import gto, scf
>>> from pyscf.lo import ibo
>>> mol = gto.M(atom='H 0 0 0; F 0 0 1', >>> basis='unc-sto3g')
>>> mf = scf.RHF(mol).run()
>>> pm = ibo.PM(mol, mf.mo_coeff[:,mf.mo_occ>0])
>>> loc_orb = pm.kernel()
'''
# Note: PM with Lowdin-orth IAOs is implemented in pipek.PM class
# TODO: Merge the implementation here to pipek.PM
cs = numpy.dot(iaos.T.conj(), s)
s_iao = numpy.dot(cs, iaos)
iao_inv = numpy.linalg.solve(s_iao, cs)
iao_mol = iao.reference_mol(mol, minao=minao)
# Define the mulliken population of each atom based on IAO basis.
# proj[i].trace is the mulliken population of atom i.
def atomic_pops(mol, mo_coeff, method=None):
nmo = mo_coeff.shape[1]
proj = numpy.empty((mol.natm,nmo,nmo))
orb_in_iao = reduce(numpy.dot, (iao_inv, mo_coeff))
for i, (b0, b1, p0, p1) in enumerate(iao_mol.offset_nr_by_atom()):
csc = reduce(numpy.dot, (orb_in_iao[p0:p1].T, s_iao[p0:p1],
orb_in_iao))
proj[i] = (csc + csc.T) * .5
return proj
pm = pipek.PM(mol, orbocc)
pm.atomic_pops = atomic_pops
pm.exponent = exponent
return pm
PM = Pipek = PipekMezey
[docs]
def shell_str(l, n_cor, n_val):
'''
Help function to define core and valence shells for shell with different l
'''
cor_shell = [
"[{n}s]", "[{n}px] [{n}py] [{n}pz]",
"[{n}d0] [{n}d2-] [{n}d1+] [{n}d2+] [{n}d1-]",
"[{n}f1+] [{n}f1-] [{n}f0] [{n}f3+] [{n}f2-] [{n}f3-] [{n}f2+]"]
val_shell = [
l_str.replace('[', '').replace(']', '') for l_str in cor_shell]
l_str = ' '.join(
[cor_shell[l].format(n=i) for i in range(l + 1, l + 1 + n_cor)] +
[val_shell[l].format(n=i) for i in range(l + 1 + n_cor,
l + 1 + n_cor + n_val)])
return l_str
'''
These are parameters for selecting the valence space correctly.
The parameters are taken from in G. Knizia's free code
https://sites.psu.edu/knizia/software/
'''
[docs]
def MakeAtomInfos():
nCoreX = {"H": 0, "He": 0}
for At in "Li Be B C O N F Ne".split(): nCoreX[At] = 1
for At in "Na Mg Al Si P S Cl Ar".split(): nCoreX[At] = 5
for At in "Na Mg Al Si P S Cl Ar".split(): nCoreX[At] = 5
for At in "K Ca".split(): nCoreX[At] = 18//2
for At in "Sc Ti V Cr Mn Fe Co Ni Cu Zn".split(): nCoreX[At] = 18//2
for At in "Ga Ge As Se Br Kr".split(): nCoreX[At] = 18//2 + 5 # [Ar] and the 5d orbitals.
nAoX = {"H": 1, "He": 1}
for At in "Li Be".split(): nAoX[At] = 2
for At in "B C O N F Ne".split(): nAoX[At] = 5
for At in "Na Mg".split(): nAoX[At] = 3*1 + 1*3
for At in "Al Si P S Cl Ar".split(): nAoX[At] = 3*1 + 2*3
for At in "K Ca".split(): nAoX[At] = 18//2 + 1
for At in "Sc Ti V Cr Mn Fe Co Ni Cu Zn".split(): nAoX[At] = 18//2 + 1 + 5 # 4s, 3d
for At in "Ga Ge As Se Br Kr".split(): nAoX[At] = 18//2 + 1 + 5 + 3
AoLabels = {}
def SetAo(At, AoDecl):
Labels = AoDecl.split()
AoLabels[At] = Labels
assert (len(Labels) == nAoX[At])
nCore = len([o for o in Labels if o.startswith('[')])
assert (nCore == nCoreX[At])
# atomic orbitals in the MINAO basis: [xx] denotes core orbitals.
for At in "H He".split(): SetAo(At, "1s")
for At in "Li Be".split(): SetAo(At, "[1s] 2s")
for At in "B C O N F Ne".split(): SetAo(At, "[1s] 2s 2px 2py 2pz")
for At in "Na Mg".split(): SetAo(At, "[1s] [2s] 3s [2px] [2py] [2pz]")
for At in "Al Si P S Cl Ar".split(): SetAo(At, "[1s] [2s] 3s [2px] [2py] [2pz] 3px 3py 3pz")
for At in "K Ca".split(): SetAo(At, "[1s] [2s] [3s] 4s [2px] [2py] [2pz] [3px] [3py] [3pz]")
for At in "Sc Ti V Cr Mn Fe Co Ni Cu Zn".split(): SetAo(At, "[1s] [2s] [3s] 4s [2px] [2py] [2pz] [3px] [3py] [3pz] 3d0 3d2- 3d1+ 3d2+ 3d1-")
for At in "Ga Ge As Se Br Kr".split(): SetAo(At, "[1s] [2s] [3s] 4s [2px] [2py] [2pz] [3px] [3py] [3pz] 4px 4py 4pz [3d0] [3d2-] [3d1+] [3d2+] [3d1-]")
for At in "Rb Sr".split():
nCoreX[At] = 36/2
nAoX[At] = nCoreX[At] + 1
SetAo(At, ' '.join ([shell_str(0,4,1),
shell_str(1,3,0),
shell_str(2,1,0)]))
for At in "Y Zr Nb Mo Tc Ru Rh Pd Ag Cd".split():
nCoreX[At] = 36/2
nAoX[At] = nCoreX[At] + 1 + 5
SetAo(At, ' '.join ([shell_str(0,4,1),
shell_str(1,3,0),
shell_str(2,1,1)]))
for At in "In Sn Sb Te I Xe".split():
nCoreX[At] = 36/2 + 5
nAoX[At] = nCoreX[At] + 1 + 3
SetAo(At, ' '.join ([shell_str(0,4,1),
shell_str(1,3,1),
shell_str(2,2,0)]))
for At in "Cs Ba".split():
nCoreX[At] = 54/2
nAoX[At] = nCoreX[At] + 1
SetAo(At, ' '.join ([shell_str(0,5,1),
shell_str(1,4,0),
shell_str(2,2,0)]))
for At in "Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu".split():
nCoreX[At] = 54/2
nAoX[At] = nCoreX[At] + 1 + 5 + 7
SetAo(At, ' '.join ([shell_str(0,5,1),
shell_str(1,4,0),
shell_str(2,2,1),
shell_str(3,0,1)]))
for At in "La Hf Ta W Re Os Ir Pt Au Hg".split():
nCoreX[At] = 54/2 + 7
nAoX[At] = nCoreX[At] + 1 + 5
SetAo(At, ' '.join ([shell_str(0,5,1),
shell_str(1,4,0),
shell_str(2,2,1),
shell_str(3,1,0)]))
for At in "Tl Pb Bi Po At Rn".split():
nCoreX[At] = 54/2 + 7 + 5
nAoX[At] = nCoreX[At] + 1 + 3
SetAo(At, ' '.join ([shell_str(0,5,1),
shell_str(1,4,1),
shell_str(2,3,0),
shell_str(3,1,0)]))
for At in "Fr Ra".split():
nCoreX[At] = 86/2
nAoX[At] = nCoreX[At] + 1
SetAo(At, ' '.join ([shell_str(0,6,1),
shell_str(1,5,0),
shell_str(2,3,0),
shell_str(3,1,0)]))
for At in "Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No".split():
nCoreX[At] = 86/2
nAoX[At] = nCoreX[At] + 1 + 5 + 7
SetAo(At, ' '.join ([shell_str(0,6,1),
shell_str(1,5,0),
shell_str(2,3,1),
shell_str(3,1,1)]))
for At in "Ac Lr Rf Db Sg Bh Hs Mt Ds Rg Cn".split():
nCoreX[At] = 86/2 + 7
nAoX[At] = nCoreX[At] + 1 + 5
SetAo(At, ' '.join ([shell_str(0,6,1),
shell_str(1,5,0),
shell_str(2,3,1),
shell_str(3,2,0)]))
for At in "Nh Fl Mc Lv Ts Og".split():
nCoreX[At] = 86/2 + 7 + 5
nAoX[At] = nCoreX[At] + 1 + 3
SetAo(At, ' '.join ([shell_str(0,6,1),
shell_str(1,5,1),
shell_str(2,4,0),
shell_str(3,2,0)]))
# note: f order is '4f1+','4f1-','4f0','4f3+','4f2-','4f3-','4f2+',
return nCoreX, nAoX, AoLabels
[docs]
def MakeAtomIbOffsets(Atoms):
"""calculate offset of first orbital of individual atoms
in the valence minimal basis (IB)"""
nCoreX, nAoX, AoLabels = MakeAtomInfos()
iBfAt = [0]
for Atom in Atoms:
Atom = ''.join(char for char in Atom if char.isalpha())
iBfAt.append(iBfAt[-1] + nAoX[Atom])
return iBfAt, nCoreX, nAoX, AoLabels
del (MINAO)