Source code for pyscf.fci.direct_uhf

#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Different FCI solvers are implemented to support different type of symmetry.
                    Symmetry
File                Point group   Spin singlet   Real hermitian*    Alpha/beta degeneracy
direct_spin0_symm   Yes           Yes            Yes                Yes
direct_spin1_symm   Yes           No             Yes                Yes
direct_spin0        No            Yes            Yes                Yes
direct_spin1        No            No             Yes                Yes
direct_uhf          No            No             Yes                No
direct_nosym        No            No             No**               Yes

*  Real hermitian Hamiltonian implies (ij|kl) = (ji|kl) = (ij|lk) = (ji|lk)
** Hamiltonian is real but not hermitian, (ij|kl) != (ji|kl) ...
'''

import ctypes
import numpy
from pyscf import lib
from pyscf import ao2mo
from pyscf.fci import cistring
from pyscf.fci import direct_spin1
from pyscf.fci.spin_op import spin_square

libfci = direct_spin1.libfci

# When the spin-orbitals do not have the degeneracy on spacial part,
# there is only one version of FCI which is close to _spin1 solver.
# The inputs: h1e has two parts (h1e_a, h1e_b),
# h2e has three parts (h2e_aa, h2e_ab, h2e_bb)

[docs] def contract_1e(f1e, fcivec, norb, nelec, link_index=None): fcivec = numpy.asarray(fcivec, order='C') link_indexa, link_indexb = direct_spin1._unpack(norb, nelec, link_index) na, nlinka = link_indexa.shape[:2] nb, nlinkb = link_indexb.shape[:2] assert (fcivec.size == na*nb) ci1 = numpy.zeros_like(fcivec) f1e_tril = lib.pack_tril(f1e[0]) libfci.FCIcontract_a_1e(f1e_tril.ctypes.data_as(ctypes.c_void_p), fcivec.ctypes.data_as(ctypes.c_void_p), ci1.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(norb), ctypes.c_int(na), ctypes.c_int(nb), ctypes.c_int(nlinka), ctypes.c_int(nlinkb), link_indexa.ctypes.data_as(ctypes.c_void_p), link_indexb.ctypes.data_as(ctypes.c_void_p)) f1e_tril = lib.pack_tril(f1e[1]) libfci.FCIcontract_b_1e(f1e_tril.ctypes.data_as(ctypes.c_void_p), fcivec.ctypes.data_as(ctypes.c_void_p), ci1.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(norb), ctypes.c_int(na), ctypes.c_int(nb), ctypes.c_int(nlinka), ctypes.c_int(nlinkb), link_indexa.ctypes.data_as(ctypes.c_void_p), link_indexb.ctypes.data_as(ctypes.c_void_p)) return ci1.view(direct_spin1.FCIvector)
[docs] def contract_2e(eri, fcivec, norb, nelec, link_index=None): fcivec = numpy.asarray(fcivec, order='C') g2e_aa = ao2mo.restore(4, eri[0], norb) g2e_ab = ao2mo.restore(4, eri[1], norb) g2e_bb = ao2mo.restore(4, eri[2], norb) link_indexa, link_indexb = direct_spin1._unpack(norb, nelec, link_index) na, nlinka = link_indexa.shape[:2] nb, nlinkb = link_indexb.shape[:2] assert (fcivec.size == na*nb) ci1 = numpy.empty_like(fcivec) libfci.FCIcontract_uhf2e(g2e_aa.ctypes.data_as(ctypes.c_void_p), g2e_ab.ctypes.data_as(ctypes.c_void_p), g2e_bb.ctypes.data_as(ctypes.c_void_p), fcivec.ctypes.data_as(ctypes.c_void_p), ci1.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(norb), ctypes.c_int(na), ctypes.c_int(nb), ctypes.c_int(nlinka), ctypes.c_int(nlinkb), link_indexa.ctypes.data_as(ctypes.c_void_p), link_indexb.ctypes.data_as(ctypes.c_void_p)) return ci1.view(direct_spin1.FCIvector)
[docs] def contract_2e_hubbard(u, fcivec, norb, nelec, opt=None): neleca, nelecb = direct_spin1._unpack_nelec(nelec) u_aa, u_ab, u_bb = u strsa = numpy.asarray(cistring.gen_strings4orblist(range(norb), neleca)) strsb = numpy.asarray(cistring.gen_strings4orblist(range(norb), nelecb)) na = cistring.num_strings(norb, neleca) nb = cistring.num_strings(norb, nelecb) fcivec = fcivec.reshape(na,nb) fcinew = numpy.zeros_like(fcivec) if u_aa != 0: # u * n_alpha^+ n_alpha for i in range(norb): maska = (strsa & (1 << i)) > 0 fcinew[maska] += u_aa * fcivec[maska] if u_ab != 0: # u * (n_alpha^+ n_beta + n_beta^+ n_alpha) for i in range(norb): maska = (strsa & (1 << i)) > 0 maskb = (strsb & (1 << i)) > 0 fcinew[maska[:,None] & maskb] += 2*u_ab * fcivec[maska[:,None] & maskb] if u_bb != 0: # u * n_beta^+ n_beta for i in range(norb): maskb = (strsb & (1 << i)) > 0 fcinew[:,maskb] += u_bb * fcivec[:,maskb] return fcinew.view(direct_spin1.FCIvector)
[docs] def make_hdiag(h1e, eri, norb, nelec, compress=False): neleca, nelecb = direct_spin1._unpack_nelec(nelec) h1e_a = numpy.ascontiguousarray(h1e[0]) h1e_b = numpy.ascontiguousarray(h1e[1]) g2e_aa = ao2mo.restore(1, eri[0], norb) g2e_ab = ao2mo.restore(1, eri[1], norb) g2e_bb = ao2mo.restore(1, eri[2], norb) occslsta = occslstb = cistring.gen_occslst(range(norb), neleca) if neleca != nelecb: occslstb = cistring.gen_occslst(range(norb), nelecb) na = len(occslsta) nb = len(occslstb) hdiag = numpy.empty(na*nb) jdiag_aa = numpy.asarray(numpy.einsum('iijj->ij',g2e_aa), order='C') jdiag_ab = numpy.asarray(numpy.einsum('iijj->ij',g2e_ab), order='C') jdiag_bb = numpy.asarray(numpy.einsum('iijj->ij',g2e_bb), order='C') kdiag_aa = numpy.asarray(numpy.einsum('ijji->ij',g2e_aa), order='C') kdiag_bb = numpy.asarray(numpy.einsum('ijji->ij',g2e_bb), order='C') libfci.FCImake_hdiag_uhf(hdiag.ctypes.data_as(ctypes.c_void_p), h1e_a.ctypes.data_as(ctypes.c_void_p), h1e_b.ctypes.data_as(ctypes.c_void_p), jdiag_aa.ctypes.data_as(ctypes.c_void_p), jdiag_ab.ctypes.data_as(ctypes.c_void_p), jdiag_bb.ctypes.data_as(ctypes.c_void_p), kdiag_aa.ctypes.data_as(ctypes.c_void_p), kdiag_bb.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(norb), ctypes.c_int(na), ctypes.c_int(nb), ctypes.c_int(neleca), ctypes.c_int(nelecb), occslsta.ctypes.data_as(ctypes.c_void_p), occslstb.ctypes.data_as(ctypes.c_void_p)) return numpy.asarray(hdiag)
[docs] def absorb_h1e(h1e, eri, norb, nelec, fac=1): if not isinstance(nelec, (int, numpy.number)): nelec = sum(nelec) h1e_a, h1e_b = h1e h2e_aa = ao2mo.restore(1, eri[0], norb).copy() h2e_ab = ao2mo.restore(1, eri[1], norb).copy() h2e_bb = ao2mo.restore(1, eri[2], norb).copy() f1e_a = h1e_a - numpy.einsum('jiik->jk', h2e_aa) * .5 f1e_b = h1e_b - numpy.einsum('jiik->jk', h2e_bb) * .5 f1e_a *= 1./(nelec+1e-100) f1e_b *= 1./(nelec+1e-100) for k in range(norb): h2e_aa[:,:,k,k] += f1e_a h2e_aa[k,k,:,:] += f1e_a h2e_ab[:,:,k,k] += f1e_a h2e_ab[k,k,:,:] += f1e_b h2e_bb[:,:,k,k] += f1e_b h2e_bb[k,k,:,:] += f1e_b return (ao2mo.restore(4, h2e_aa, norb) * fac, ao2mo.restore(4, h2e_ab, norb) * fac, ao2mo.restore(4, h2e_bb, norb) * fac)
[docs] def pspace(h1e, eri, norb, nelec, hdiag=None, np=400): if norb >= 64: raise NotImplementedError('norb >= 64') if h1e[0].dtype == numpy.complex128 or eri[0].dtype == numpy.complex128: raise NotImplementedError('Complex Hamiltonian') neleca, nelecb = direct_spin1._unpack_nelec(nelec) h1e_a = numpy.ascontiguousarray(h1e[0]) h1e_b = numpy.ascontiguousarray(h1e[1]) g2e_aa = ao2mo.restore(1, eri[0], norb) g2e_ab = ao2mo.restore(1, eri[1], norb) g2e_bb = ao2mo.restore(1, eri[2], norb) if hdiag is None: hdiag = make_hdiag(h1e, eri, norb, nelec, compress=False) na = cistring.num_strings(norb, neleca) nb = cistring.num_strings(norb, nelecb) assert hdiag.size == na * nb if hdiag.size < np: addr = numpy.arange(hdiag.size) else: try: addr = numpy.argpartition(hdiag, np-1)[:np] except AttributeError: addr = numpy.argsort(hdiag)[:np] addra = addr // nb addrb = addr % nb stra = cistring.addrs2str(norb, neleca, addra) strb = cistring.addrs2str(norb, nelecb, addrb) np = len(addr) h0 = numpy.zeros((np,np)) libfci.FCIpspace_h0tril_uhf(h0.ctypes.data_as(ctypes.c_void_p), h1e_a.ctypes.data_as(ctypes.c_void_p), h1e_b.ctypes.data_as(ctypes.c_void_p), g2e_aa.ctypes.data_as(ctypes.c_void_p), g2e_ab.ctypes.data_as(ctypes.c_void_p), g2e_bb.ctypes.data_as(ctypes.c_void_p), stra.ctypes.data_as(ctypes.c_void_p), strb.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(norb), ctypes.c_int(np)) for i in range(np): h0[i,i] = hdiag[addr[i]] h0 = lib.hermi_triu(h0) return addr, h0
# be careful with single determinant initial guess. It may lead to the # eigvalue of first davidson iter being equal to hdiag
[docs] def kernel(h1e, eri, norb, nelec, ci0=None, level_shift=1e-3, tol=1e-10, lindep=1e-14, max_cycle=50, max_space=12, nroots=1, davidson_only=False, pspace_size=400, orbsym=None, wfnsym=None, ecore=0, **kwargs): return direct_spin1._kfactory(FCISolver, h1e, eri, norb, nelec, ci0, level_shift, tol, lindep, max_cycle, max_space, nroots, davidson_only, pspace_size, ecore=ecore, **kwargs)
[docs] def energy(h1e, eri, fcivec, norb, nelec, link_index=None): h2e = absorb_h1e(h1e, eri, norb, nelec, .5) ci1 = contract_2e(h2e, fcivec, norb, nelec, link_index) return numpy.dot(fcivec.reshape(-1), ci1.reshape(-1))
# dm_pq = <|p^+ q|> make_rdm1s = direct_spin1.make_rdm1s # spacial part of DM, dm_pq = <|p^+ q|>
[docs] def make_rdm1(fcivec, norb, nelec, link_index=None): raise ValueError('Spin trace for UHF-FCI density matrices.')
make_rdm12s = direct_spin1.make_rdm12s trans_rdm1s = direct_spin1.trans_rdm1s # spacial part of DM
[docs] def trans_rdm1(cibra, ciket, norb, nelec, link_index=None): raise ValueError('Spin trace for UHF-FCI density matrices.')
trans_rdm12s = direct_spin1.trans_rdm12s ############################################################### # uhf-integral direct-CI driver ###############################################################
[docs] class FCISolver(direct_spin1.FCISolver): absorb_h1e = staticmethod(absorb_h1e) make_hdiag = staticmethod(make_hdiag) pspace = staticmethod(pspace) contract_1e = lib.module_method(contract_1e) contract_2e = lib.module_method(contract_2e) make_rdm1 = lib.module_method(make_rdm1) trans_rdm1 = lib.module_method(trans_rdm1) spin_square = lib.module_method(spin_square)
FCI = FCISolver