Source code for pyscf.dft.rks

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Non-relativistic restricted Kohn-Sham
'''


import textwrap
import numpy
from pyscf import lib
from pyscf.lib import logger
from pyscf import scf
from pyscf.scf import hf
from pyscf.scf import _vhf
from pyscf.scf import jk
from pyscf.scf.dispersion import parse_dft
from pyscf.dft import gen_grid
from pyscf.dft import numint
from pyscf import __config__

[docs] def get_veff(ks, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1): '''Coulomb + XC functional .. note:: This function will modify the input ks object. Args: ks : an instance of :class:`RKS` XC functional are controlled by ks.xc attribute. Attribute ks.grids might be initialized. dm : ndarray or list of ndarrays A density matrix or a list of density matrices Kwargs: dm_last : ndarray or a list of ndarrays or 0 The density matrix baseline. If not 0, this function computes the increment of HF potential w.r.t. the reference HF potential matrix. vhf_last : ndarray or a list of ndarrays or 0 The reference Vxc potential matrix. hermi : int Whether J, K matrix is hermitian | 0 : no hermitian or symmetric | 1 : hermitian | 2 : anti-hermitian Returns: matrix Veff = J + Vxc. Veff can be a list matrices, if the input dm is a list of density matrices. ''' if mol is None: mol = ks.mol if dm is None: dm = ks.make_rdm1() ks.initialize_grids(mol, dm) t0 = (logger.process_clock(), logger.perf_counter()) ground_state = (isinstance(dm, numpy.ndarray) and dm.ndim == 2) ni = ks._numint if hermi == 2: # because rho = 0 n, exc, vxc = 0, 0, 0 else: max_memory = ks.max_memory - lib.current_memory()[0] n, exc, vxc = ni.nr_rks(mol, ks.grids, ks.xc, dm, max_memory=max_memory) logger.debug(ks, 'nelec by numeric integration = %s', n) if ks.do_nlc(): if ni.libxc.is_nlc(ks.xc): xc = ks.xc else: assert ni.libxc.is_nlc(ks.nlc) xc = ks.nlc n, enlc, vnlc = ni.nr_nlc_vxc(mol, ks.nlcgrids, xc, dm, max_memory=max_memory) exc += enlc vxc += vnlc logger.debug(ks, 'nelec with nlc grids = %s', n) t0 = logger.timer(ks, 'vxc', *t0) if not ni.libxc.is_hybrid_xc(ks.xc): vk = None if (ks._eri is None and ks.direct_scf and getattr(vhf_last, 'vj', None) is not None): ddm = numpy.asarray(dm) - numpy.asarray(dm_last) vj = ks.get_j(mol, ddm, hermi) vj += vhf_last.vj else: vj = ks.get_j(mol, dm, hermi) vxc += vj else: omega, alpha, hyb = ni.rsh_and_hybrid_coeff(ks.xc, spin=mol.spin) if (ks._eri is None and ks.direct_scf and getattr(vhf_last, 'vk', None) is not None): ddm = numpy.asarray(dm) - numpy.asarray(dm_last) vj, vk = ks.get_jk(mol, ddm, hermi) vk *= hyb if omega != 0: # For range separated Coulomb vklr = ks.get_k(mol, ddm, hermi, omega=omega) vklr *= (alpha - hyb) vk += vklr vj += vhf_last.vj vk += vhf_last.vk else: vj, vk = ks.get_jk(mol, dm, hermi) vk *= hyb if omega != 0: vklr = ks.get_k(mol, dm, hermi, omega=omega) vklr *= (alpha - hyb) vk += vklr vxc += vj - vk * .5 if ground_state: exc -= numpy.einsum('ij,ji', dm, vk).real * .5 * .5 if ground_state: ecoul = numpy.einsum('ij,ji', dm, vj).real * .5 else: ecoul = None vxc = lib.tag_array(vxc, ecoul=ecoul, exc=exc, vj=vj, vk=vk) return vxc
[docs] def get_vsap(ks, mol=None): '''Superposition of atomic potentials S. Lehtola, Assessment of initial guesses for self-consistent field calculations. Superposition of Atomic Potentials: simple yet efficient, J. Chem. Theory Comput. 15, 1593 (2019). DOI: 10.1021/acs.jctc.8b01089. arXiv:1810.11659. This function evaluates the effective charge of a neutral atom, given by exchange-only LDA on top of spherically symmetric unrestricted Hartree-Fock calculations as described in S. Lehtola, L. Visscher, E. Engel, Efficient implementation of the superposition of atomic potentials initial guess for electronic structure calculations in Gaussian basis sets, J. Chem. Phys., in press (2020). The potentials have been calculated for the ground-states of spherically symmetric atoms at the non-relativistic level of theory as described in S. Lehtola, "Fully numerical calculations on atoms with fractional occupations and range-separated exchange functionals", Phys. Rev. A 101, 012516 (2020). DOI: 10.1103/PhysRevA.101.012516 using accurate finite-element calculations as described in S. Lehtola, "Fully numerical Hartree-Fock and density functional calculations. I. Atoms", Int. J. Quantum Chem. e25945 (2019). DOI: 10.1002/qua.25945 .. note:: This function will modify the input ks object. Args: ks : an instance of :class:`RKS` XC functional are controlled by ks.xc attribute. Attribute ks.grids might be initialized. Returns: matrix Vsap = Vnuc + J + Vxc. ''' if mol is None: mol = ks.mol t0 = (logger.process_clock(), logger.perf_counter()) if ks.grids.coords is None: ks.grids.build(with_non0tab=True) t0 = logger.timer(ks, 'setting up grids', *t0) ni = ks._numint max_memory = ks.max_memory - lib.current_memory()[0] vsap = ni.nr_sap(mol, ks.grids, max_memory=max_memory) return vsap
# The vhfopt of standard Coulomb operator can be used here as an approximate # opt since long-range part Coulomb is always smaller than standard Coulomb. # It's safe to prescreen LR integrals with the integral estimation from # standard Coulomb. def _get_k_lr(mol, dm, omega=0, hermi=0, vhfopt=None): import sys sys.stderr.write('This function is deprecated. ' 'It is replaced by mol.get_k(mol, dm, omege=omega)') dm = numpy.asarray(dm) # Note, ks object caches the ERIs for small systems. The cached eris are # computed with regular Coulomb operator. ks.get_jk or ks.get_k do not evaluate # the K matrix with the range separated Coulomb operator. Here jk.get_jk # function computes the K matrix with the modified Coulomb operator. nao = dm.shape[-1] dms = dm.reshape(-1,nao,nao) with mol.with_range_coulomb(omega): # Compute the long range part of ERIs temporarily with omega. Restore # the original omega when the block ends if vhfopt is None: contents = lambda: None # just a place_holder else: contents = vhfopt._this.contents with lib.temporary_env(contents, fprescreen=_vhf._fpointer('CVHFnrs8_vk_prescreen')): intor = mol._add_suffix('int2e') vklr = jk.get_jk(mol, dms, ['ijkl,jk->il']*len(dms), intor=intor, vhfopt=vhfopt) return numpy.asarray(vklr).reshape(dm.shape)
[docs] def energy_elec(ks, dm=None, h1e=None, vhf=None): r'''Electronic part of RKS energy. Note this function has side effects which cause mf.scf_summary updated. Args: ks : an instance of DFT class dm : 2D ndarray one-particle density matrix h1e : 2D ndarray Core hamiltonian Returns: RKS electronic energy and the 2-electron contribution ''' if dm is None: dm = ks.make_rdm1() if h1e is None: h1e = ks.get_hcore() if vhf is None or getattr(vhf, 'ecoul', None) is None: vhf = ks.get_veff(ks.mol, dm) e1 = numpy.einsum('ij,ji->', h1e, dm).real ecoul = vhf.ecoul.real exc = vhf.exc.real e2 = ecoul + exc ks.scf_summary['e1'] = e1 ks.scf_summary['coul'] = ecoul ks.scf_summary['exc'] = exc logger.debug(ks, 'E1 = %s Ecoul = %s Exc = %s', e1, ecoul, exc) return e1+e2, e2
[docs] def prune_small_rho_grids_(ks, mol, dm, grids): rho = ks._numint.get_rho(mol, dm, grids, ks.max_memory) return grids.prune_by_density_(rho, ks.small_rho_cutoff)
[docs] def define_xc_(ks, description, xctype='LDA', hyb=0, rsh=(0,0,0)): libxc = ks._numint.libxc ks._numint = libxc.define_xc_(ks._numint, description, xctype, hyb, rsh) return ks
def _dft_common_init_(mf, xc='LDA,VWN'): raise DeprecationWarning
[docs] class KohnShamDFT: ''' Attributes for Kohn-Sham DFT: xc : str 'X_name,C_name' for the XC functional. Default is 'lda,vwn' nlc : str 'NLC_name' for the NLC functional. Default is '' (i.e., None) omega : float Omega of the range-separated Coulomb operator e^{-omega r_{12}^2} / r_{12} grids : Grids object grids.level (0 - 9) big number for large mesh grids. Default is 3 radii_adjust | radi.treutler_atomic_radii_adjust (default) | radi.becke_atomic_radii_adjust | None : to switch off atomic radii adjustment grids.atomic_radii | radi.BRAGG_RADII (default) | radi.COVALENT_RADII | None : to switch off atomic radii adjustment grids.radi_method scheme for radial grids | radi.treutler (default) | radi.delley | radi.mura_knowles | radi.gauss_chebyshev grids.becke_scheme weight partition function | gen_grid.original_becke (default) | gen_grid.stratmann grids.prune scheme to reduce number of grids | gen_grid.nwchem_prune (default) | gen_grid.sg1_prune | gen_grid.treutler_prune | None : to switch off grids pruning grids.symmetry True/False to symmetrize mesh grids (TODO) grids.atom_grid Set (radial, angular) grids for particular atoms. Eg, grids.atom_grid = {'H': (20,110)} will generate 20 radial grids and 110 angular grids for H atom. small_rho_cutoff : float Drop grids if their contribution to total electrons smaller than this cutoff value. Default is 1e-7. Examples: >>> mol = gto.M(atom='O 0 0 0; H 0 0 1; H 0 1 0', basis='ccpvdz', verbose=0) >>> mf = dft.RKS(mol) >>> mf.xc = 'b3lyp' >>> mf.kernel() -76.415443079840458 ''' _keys = {'xc', 'nlc', 'grids', 'disp', 'nlcgrids', 'small_rho_cutoff'} def __init__(self, xc='LDA,VWN'): # By default, self.nlc = '' and self.disp = None self.xc = xc self.nlc = '' self.disp = None self.grids = gen_grid.Grids(self.mol) self.grids.level = getattr( __config__, 'dft_rks_RKS_grids_level', self.grids.level) self.nlcgrids = gen_grid.Grids(self.mol) self.nlcgrids.level = getattr( __config__, 'dft_rks_RKS_nlcgrids_level', self.nlcgrids.level) # Use rho to filter grids self.small_rho_cutoff = getattr( __config__, 'dft_rks_RKS_small_rho_cutoff', 1e-7) ################################################## # don't modify the following attributes, they are not input options self._numint = numint.NumInt() @property def omega(self): return self._numint.omega @omega.setter def omega(self, v): self._numint.omega = float(v)
[docs] def dump_flags(self, verbose=None): log = logger.new_logger(self, verbose) log.info('XC library %s version %s\n %s', self._numint.libxc.__name__, self._numint.libxc.__version__, self._numint.libxc.__reference__) if log.verbose >= logger.INFO: log.info('XC functionals = %s', self.xc) if hasattr(self._numint.libxc, 'xc_reference'): log.info(textwrap.indent('\n'.join(self._numint.libxc.xc_reference(self.xc)), ' ')) self.grids.dump_flags(verbose) if self.do_nlc(): log.info('** Following is NLC and NLC Grids **') if self.nlc: log.info('NLC functional = %s', self.nlc) else: log.info('NLC functional = %s', self.xc) self.nlcgrids.dump_flags(verbose) log.info('small_rho_cutoff = %g', self.small_rho_cutoff) return self
define_xc_ = define_xc_
[docs] def do_nlc(self): '''Check if the object needs to do nlc calculations if self.nlc == False (or 0), nlc is disabled regardless the value of self.xc if self.nlc == 'vv10', do nlc (vv10) regardless the value of self.xc if self.nlc == '', determined by self.xc, certain xc allows the nlc part ''' xc, nlc, _ = parse_dft(self.xc) # If nlc is disabled via self.xc if nlc == 0: if self.nlc == '' or self.nlc == 0: return False else: raise RuntimeError('Conflict found between dispersion and xc.') # If nlc is disabled via self.nlc if self.nlc == 0: return False xc_has_nlc = self._numint.libxc.is_nlc(xc) return self.nlc == 'vv10' or xc_has_nlc
[docs] def to_rhf(self): '''Convert the input mean-field object to a RHF/ROHF object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' return self.to_rks().to_hf()
[docs] def to_uhf(self): '''Convert the input mean-field object to a UHF object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' return self.to_uks().to_hf()
[docs] def to_ghf(self): '''Convert the input mean-field object to a GHF object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' return self.to_gks().to_hf()
[docs] def to_hf(self): '''Convert the input KS object to the associated HF object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' raise NotImplementedError
[docs] def to_rks(self, xc=None): '''Convert the input mean-field object to a RKS/ROKS object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' mf = scf.addons.convert_to_rhf(self) if xc is not None: mf.xc = xc mf.converged = xc == self.xc and mf.converged return mf
[docs] def to_uks(self, xc=None): '''Convert the input mean-field object to a UKS object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' mf = scf.addons.convert_to_uhf(self) if xc is not None: mf.xc = xc mf.converged = xc == self.xc and mf.converged return mf
[docs] def to_gks(self, xc=None): '''Convert the input mean-field object to a GKS object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' from pyscf.dft import numint2c mf = scf.addons.convert_to_ghf(self) if xc is not None: mf.xc = xc mf.converged = xc == self.xc and mf.converged if not isinstance(mf._numint, numint2c.NumInt2C): mf._numint = numint2c.NumInt2C() return mf
[docs] def reset(self, mol=None): hf.SCF.reset(self, mol) self.grids.reset(mol) self.nlcgrids.reset(mol) return self
[docs] def check_sanity(self): out = super().check_sanity() if self.do_nlc() and self.do_disp() and self._numint.libxc.is_nlc(self.xc): import warnings warnings.warn( f'nlc-type xc {self.xc} and disp {self.disp} may lead to' 'double counting in NLC.') return out
[docs] def initialize_grids(self, mol=None, dm=None): '''Initialize self.grids the first time call get_veff''' if mol is None: mol = self.mol ground_state = getattr(dm, 'ndim', 0) == 2 if self.grids.coords is None: t0 = (logger.process_clock(), logger.perf_counter()) self.grids.build(with_non0tab=True) if self.small_rho_cutoff > 1e-20 and ground_state: # Filter grids the first time setup grids self.grids = prune_small_rho_grids_(self, self.mol, dm, self.grids) t0 = logger.timer(self, 'setting up grids', *t0) is_nlc = self.do_nlc() if is_nlc and self.nlcgrids.coords is None: t0 = (logger.process_clock(), logger.perf_counter()) self.nlcgrids.build(with_non0tab=True) if self.small_rho_cutoff > 1e-20 and ground_state: # Filter grids the first time setup grids self.nlcgrids = prune_small_rho_grids_(self, self.mol, dm, self.nlcgrids) t0 = logger.timer(self, 'setting up nlc grids', *t0) return self
[docs] def to_gpu(self): raise NotImplementedError
# Update the KohnShamDFT label in scf.hf module hf.KohnShamDFT = KohnShamDFT
[docs] def init_guess_by_vsap(mf, mol=None): '''Form SAP guess''' if mol is None: mol = mf.mol vsap = mf.get_vsap() t = mol.intor_symmetric('int1e_kin') s = mf.get_ovlp(mol) hsap = t + vsap # Form guess orbitals mo_energy, mo_coeff = mf.eig(hsap, s) logger.debug(mf, 'VSAP mo energies\n{}'.format(mo_energy)) # and guess density mo_occ = mf.get_occ(mo_energy, mo_coeff) return mf.make_rdm1(mo_coeff, mo_occ)
[docs] class RKS(KohnShamDFT, hf.RHF): __doc__ = '''Restricted Kohn-Sham\n''' + hf.SCF.__doc__ + KohnShamDFT.__doc__ def __init__(self, mol, xc='LDA,VWN'): hf.RHF.__init__(self, mol) KohnShamDFT.__init__(self, xc)
[docs] def dump_flags(self, verbose=None): hf.RHF.dump_flags(self, verbose) return KohnShamDFT.dump_flags(self, verbose)
get_veff = get_veff get_vsap = get_vsap energy_elec = energy_elec init_guess_by_vsap = init_guess_by_vsap
[docs] def nuc_grad_method(self): from pyscf.grad import rks as rks_grad return rks_grad.Gradients(self)
[docs] def to_hf(self): '''Convert to RHF object.''' return self._transfer_attrs_(self.mol.RHF())
to_gpu = lib.to_gpu