Source code for pyscf.dft

# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

'''
Density functional theory
=========================

Simple usage::

    >>> from pyscf import gto, dft
    >>> mol = gto.M(atom='N 0 0 0; N 0 0 1', basis='def2-tzvp')
    >>> mf = dft.RKS(mol)
    >>> mf.xc = 'pbe,pbe'
    >>> mf.run()
'''

try:
    from pyscf.dft import libxc
    XC = {**libxc.XC, **libxc.XC_ALIAS}
except (ImportError, OSError):
    XC = None
try:
    from pyscf.dft import xcfun
    if XC is None:
        XC = {**xcfun.XC, **xcfun.XC_ALIAS}
except (ImportError, OSError):
    pass
from pyscf import gto
#from pyscf.dft import xc
from pyscf.dft import rks
from pyscf.dft import roks
from pyscf.dft import uks
from pyscf.dft import gks
from pyscf.dft import rks_symm
from pyscf.dft import uks_symm
from pyscf.dft import gks_symm
from pyscf.dft import dks
from pyscf.dft import gen_grid as grid
from pyscf.dft import radi
from pyscf.dft import numint
from pyscf.df import density_fit
from pyscf.dft.rks import KohnShamDFT
from pyscf.dft.gen_grid import sg1_prune, nwchem_prune, treutler_prune, \
        stratmann, original_becke, Grids
from pyscf.dft.radi import BRAGG_RADII, COVALENT_RADII, \
        delley, mura_knowles, gauss_chebyshev, treutler, treutler_ahlrichs, \
        treutler_atomic_radii_adjust, becke_atomic_radii_adjust


[docs] def KS(mol, xc='LDA,VWN'): if mol.spin == 0: return RKS(mol, xc) else: return UKS(mol, xc)
KS.__doc__ = ''' A wrap function to create DFT object (RKS or UKS).\n ''' + rks.RKS.__doc__ gto.Mole.KS = gto.Mole.DFT = property(KS) DFT = KS
[docs] def RKS(mol, xc='LDA,VWN'): if mol.spin == 0: if not mol.symmetry or mol.groupname == 'C1': return rks.RKS(mol, xc) else: return rks_symm.RKS(mol, xc) else: return ROKS(mol, xc)
RKS.__doc__ = rks.RKS.__doc__ gto.Mole.RKS = property(RKS)
[docs] def ROKS(mol, xc='LDA,VWN'): if not mol.symmetry or mol.groupname == 'C1': return roks.ROKS(mol, xc) else: return rks_symm.ROKS(mol, xc)
ROKS.__doc__ = roks.ROKS.__doc__ gto.Mole.ROKS = property(ROKS)
[docs] def UKS(mol, xc='LDA,VWN'): if not mol.symmetry or mol.groupname == 'C1': return uks.UKS(mol, xc) else: return uks_symm.UKS(mol, xc)
UKS.__doc__ = uks.UKS.__doc__ gto.Mole.UKS = property(UKS)
[docs] def GKS(mol, xc='LDA,VWN'): if not mol.symmetry or mol.groupname == 'C1': return gks.GKS(mol, xc) else: return gks_symm.GKS(mol, xc)
GKS.__doc__ = gks.GKS.__doc__ gto.Mole.GKS = property(GKS)
[docs] def DKS(mol, xc='LDA,VWN'): from pyscf.scf import dhf if dhf.zquatev and mol.spin == 0: return dks.RDKS(mol, xc=xc) else: return dks.UDKS(mol, xc=xc)
UDKS = dks.UDKS RDKS = dks.RDKS gto.Mole.DKS = property(DKS) gto.Mole.UDKS = property(UDKS) gto.Mole.RDKS = property(RDKS)
[docs] def X2C(mol, *args): '''X2C Kohn-Sham''' from pyscf.scf import dhf from pyscf.x2c import dft if dhf.zquatev and mol.spin == 0: return dft.RKS(mol, *args) else: return dft.UKS(mol, *args)
gto.Mole.X2C_KS = property(X2C)