#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Qiming Sun <osirpt.sun@gmail.com>
# Susi Lehtola <susi.lehtola@gmail.com>
'''
XC functional, the interface to libxc
(http://www.tddft.org/programs/octopus/wiki/index.php/Libxc)
'''
import sys
import warnings
import ctypes
import math
import numpy
from functools import lru_cache
from pyscf import lib
from pyscf.dft.xc.utils import remove_dup, format_xc_code
from pyscf.dft import xc_deriv
from pyscf import __config__
_itrf = lib.load_library('libxc_itrf')
_itrf.LIBXC_is_lda.restype = ctypes.c_int
_itrf.LIBXC_is_gga.restype = ctypes.c_int
_itrf.LIBXC_is_meta_gga.restype = ctypes.c_int
_itrf.LIBXC_needs_laplacian.restype = ctypes.c_int
_itrf.LIBXC_needs_laplacian.argtypes = [ctypes.c_int]
_itrf.LIBXC_is_hybrid.restype = ctypes.c_int
_itrf.LIBXC_is_nlc.restype = ctypes.c_int
_itrf.LIBXC_is_cam_rsh.restype = ctypes.c_int
_itrf.LIBXC_max_deriv_order.restype = ctypes.c_int
_itrf.LIBXC_number_of_functionals.restype = ctypes.c_int
_itrf.LIBXC_functional_numbers.argtypes = (numpy.ctypeslib.ndpointer(dtype=numpy.intc, ndim=1, flags=("W", "C", "A")), )
_itrf.LIBXC_functional_name.argtypes = [ctypes.c_int]
_itrf.LIBXC_functional_name.restype = ctypes.c_char_p
_itrf.LIBXC_hybrid_coeff.argtypes = [ctypes.c_int]
_itrf.LIBXC_hybrid_coeff.restype = ctypes.c_double
_itrf.LIBXC_nlc_coeff.argtypes = [ctypes.c_int,ctypes.POINTER(ctypes.c_double)]
_itrf.LIBXC_rsh_coeff.argtypes = [ctypes.c_int,ctypes.POINTER(ctypes.c_double)]
_itrf.LIBXC_version.restype = ctypes.c_char_p
_itrf.LIBXC_reference.restype = ctypes.c_char_p
_itrf.LIBXC_reference_doi.restype = ctypes.c_char_p
_itrf.LIBXC_xc_reference.argtypes = [ctypes.c_int, (ctypes.c_char_p * 8)]
_itrf.xc_functional_get_number.argtypes = (ctypes.c_char_p, )
_itrf.xc_functional_get_number.restype = ctypes.c_int
[docs]
def libxc_version():
'''Returns the version of libxc'''
return _itrf.LIBXC_version().decode("UTF-8")
[docs]
def libxc_reference():
'''Returns the reference to libxc'''
return _itrf.LIBXC_reference().decode("UTF-8")
[docs]
def libxc_reference_doi():
'''Returns the reference to libxc'''
return _itrf.LIBXC_reference_doi().decode("UTF-8")
__version__ = libxc_version()
__reference__ = libxc_reference()
__reference_doi__ = libxc_reference_doi()
[docs]
def available_libxc_functionals():
# Number of functionals is
nfunc = _itrf.LIBXC_number_of_functionals()
# Get functional numbers
func_ids = numpy.zeros(nfunc, dtype=numpy.intc)
_itrf.LIBXC_functional_numbers(func_ids)
# Returned array
return {_itrf.LIBXC_functional_name(x).decode("UTF-8").upper() : x for x in func_ids}
XC = XC_CODES = available_libxc_functionals()
PROBLEMATIC_XC = {}
[docs]
def print_XC_CODES():
'''
Dump the built-in libxc XC_CODES along with their references in a readable format.
'''
xc_codes = available_libxc_functionals()
print('XC = XC_CODES = {')
for name, func_id in xc_codes.items():
refs = xc_reference(func_id)
key = f"'{name}'"
print(key, func_id)
print(f'{key:<31s}: {func_id:<3d}, # {refs[0]}')
for r in refs[1:]:
print(f" # {r}")
print('}')
def _xc_key_without_underscore(xc_keys):
new_xc = []
for key, xc_id in xc_keys.items():
for delimiter in ('_XC_', '_X_', '_C_', '_K_'):
if delimiter in key:
key0, key1 = key.split(delimiter)
new_key1 = key1.replace('_', '').replace('-', '')
if key1 != new_key1:
new_xc.append((key0+delimiter+new_key1, xc_id))
break
return new_xc
XC_CODES.update(_xc_key_without_underscore(XC_CODES))
del (_xc_key_without_underscore)
#
# alias
#
XC_CODES.update({
'GGA_C_BCGP' : 'GGA_C_ACGGA',
'LDA' : 1 ,
'SLATER' : 1 ,
'VWN3' : 8,
'VWNRPA' : 8,
'VWN5' : 7,
'B88' : 106,
'PBE0' : 406,
'PBE1PBE' : 406,
'OPTXCORR' : '0.7344536875999693*SLATER - 0.6984752285760186*OPTX,',
'B3LYP' : 402,
'B3LYPG' : 402, # used by Gaussian
'B3LYP5' : '.2*HF + .08*SLATER + .72*B88, .81*LYP + .19*VWN', # VWN5 version
'B3P86' : 403,
'B3P86G' : 403, # used by Gaussian
'B3P86V5' : '.2*HF + .08*SLATER + .72*B88, .81*P86 + .19*VWN', # VWN5 version
#'O3LYP5' : '.1161*HF + .9262*SLATER + .8133*OPTXCORR, .81*LYP + .19*VWN5',
#'O3LYPG' : '.1161*HF + .9262*SLATER + .8133*OPTXCORR, .81*LYP + .19*VWNRPA',
'O3LYP' : 404, # in libxc == '.1161*HF + 0.071006917*SLATER + .8133*OPTX, .81*LYP + .19*VWN5', may be erroreous
'MPW3PW' : 'MPW3PW5', # VWN5 version
'MPW3PW5' : '.2*HF + .08*SLATER + .72*MPW91, .81*PW91 + .19*VWN',
'MPW3PWG' : 415, # used by Gaussian
'MPW3LYP' : 'MPW3LYP5', # VWN5 version
'MPW3LYP5' : '.218*HF + .073*SLATER + .709*MPW91, .871*LYP + .129*VWN',
'MPW3LYPG' : 419, # used by Gaussian
'REVB3LYP' : 'REVB3LYP5', # VWN5 version
'REVB3LYP5' : '.2*HF + .13*SLATER + .67*B88, .84*LYP + .16*VWN',
'REVB3LYPG' : 454, # used by Gaussian
'X3LYP' : 411,
'X3LYPG' : 411, # used by Gaussian
'X3LYP5' : '.218*HF + .073*SLATER + .542385*B88 + .166615*PW91, .871*LYP + .129*VWN',
'CAMB3LYP' : 'HYB_GGA_XC_CAM_B3LYP',
'CAMYBLYP' : 'HYB_GGA_XC_CAMY_BLYP',
'CAMYB3LYP' : 'HYB_GGA_XC_CAMY_B3LYP',
'B5050LYP' : '.5*HF + .08*SLATER + .42*B88, .81*LYP + .19*VWN',
'MPW1LYP' : '.25*HF + .75*MPW91, LYP',
'MPW1PBE' : '.25*HF + .75*MPW91, PBE',
'PBE50' : '.5*HF + .5*PBE, PBE',
'REVPBE0' : '.25*HF + .75*PBE_R, PBE',
'B1B95' : 440,
'TPSS0' : '.25*HF + .75*TPSS, TPSS',
}) # noqa: E501
if getattr(__config__, 'B3LYP_WITH_VWN5', False):
XC_CODES['B3P86' ] = 'B3P86V5'
XC_CODES['B3LYP' ] = 'B3LYP5'
XC_CODES['X3LYP' ] = 'X3LYP5'
XC_KEYS = set(XC_CODES.keys())
# Some XC functionals have conventional name, like M06-L means M06-L for X
# functional and M06-L for C functional, PBE mean PBE-X plus PBE-C. If the
# conventional name was placed in the XC_CODES, it may lead to recursive
# reference when parsing the xc description. These names (as exceptions of
# XC_CODES) are listed in XC_ALIAS below and they should be treated as a
# shortcut for XC functional.
XC_ALIAS = {
# Conventional name : name in XC_CODES
'BLYP' : 'B88,LYP',
'BP86' : 'B88,P86',
'PW91' : 'PW91,PW91',
'PBE' : 'PBE,PBE',
'REVPBE' : 'PBE_R,PBE',
'PBESOL' : 'PBE_SOL,PBE_SOL',
'PKZB' : 'PKZB,PKZB',
'TPSS' : 'TPSS,TPSS',
'REVTPSS' : 'REVTPSS,REVTPSS',
'SCAN' : 'SCAN,SCAN',
'RSCAN' : 'RSCAN,RSCAN',
'R2SCAN' : 'R2SCAN,R2SCAN',
'SCANL' : 'SCANL,SCANL',
'R2SCANL' : 'R2SCANL,R2SCANL',
'SOGGA' : 'SOGGA,PBE',
'BLOC' : 'BLOC,TPSSLOC',
'OLYP' : 'OPTX,LYP',
'OPBE' : 'OPTX,PBE',
'RPBE' : 'RPBE,PBE',
'BPBE' : 'B88,PBE',
'MPW91' : 'MPW91,PW91',
'HFLYP' : 'HF,LYP',
'HFPW92' : 'HF,PW_MOD',
'SPW92' : 'SLATER,PW_MOD',
'SVWN' : 'SLATER,VWN',
'MS0' : 'MS0,REGTPSS',
'MS1' : 'MS1,REGTPSS',
'MS2' : 'MS2,REGTPSS',
'MS2H' : 'MS2H,REGTPSS',
'MVS' : 'MVS,REGTPSS',
'MVSH' : 'MVSH,REGTPSS',
'SOGGA11' : 'SOGGA11,SOGGA11',
'SOGGA11_X' : 'SOGGA11_X,SOGGA11_X',
'KT1' : 'KT1,VWN',
'KT2' : 'GGA_XC_KT2',
'KT3' : 'GGA_XC_KT3',
'DLDF' : 'DLDF,DLDF',
'GAM' : 'GAM,GAM',
'M06_L' : 'M06_L,M06_L',
'M06_SX' : 'M06_SX,M06_SX',
'M11_L' : 'M11_L,M11_L',
'MN12_L' : 'MN12_L,MN12_L',
'MN15_L' : 'MN15_L,MN15_L',
'N12' : 'N12,N12',
'N12_SX' : 'N12_SX,N12_SX',
'MN12_SX' : 'MN12_SX,MN12_SX',
'MN15' : 'MN15,MN15',
'MBEEF' : 'MBEEF,PBE_SOL',
'SCAN0' : 'SCAN0,SCAN',
'PBEOP' : 'PBE,OP_PBE',
'BOP' : 'B88,OP_B88',
# new in libxc-4.2.3
'REVSCAN' : 'MGGA_X_REVSCAN,MGGA_C_REVSCAN',
'REVSCAN_VV10' : 'MGGA_X_REVSCAN,MGGA_C_REVSCAN_VV10',
'SCAN_VV10' : 'MGGA_X_SCAN,MGGA_C_SCAN_VV10',
'SCAN_RVV10' : 'MGGA_X_SCAN,MGGA_C_SCAN_RVV10',
'M05' : 'HYB_MGGA_X_M05,MGGA_C_M05',
'M06' : 'HYB_MGGA_X_M06,MGGA_C_M06',
'M05_2X' : 'HYB_MGGA_X_M05_2X,MGGA_C_M05_2X',
'M06_2X' : 'HYB_MGGA_X_M06_2X,MGGA_C_M06_2X',
# extra aliases
'SOGGA11X' : 'SOGGA11_X',
'M06L' : 'M06_L',
'M11L' : 'M11_L',
'MN12L' : 'MN12_L',
'MN15L' : 'MN15_L',
'N12SX' : 'N12_SX',
'MN12SX' : 'MN12_SX',
'M052X' : 'M05_2X',
'M062X' : 'M06_2X',
} # noqa: E122
XC_ALIAS.update([(key.replace('-',''), XC_ALIAS[key])
for key in XC_ALIAS if '-' in key])
[docs]
def xc_reference(xc_code):
'''Returns the reference to the individual XC functional'''
hyb, fn_facs = parse_xc(xc_code)
refs = []
c_refs = (ctypes.c_char_p * 8)()
for xid, fac in fn_facs:
_itrf.LIBXC_xc_reference(xid, c_refs)
for ref in c_refs:
if ref:
refs.append(ref.decode("UTF-8"))
return refs
[docs]
@lru_cache(100)
def xc_type(xc_code):
if xc_code is None:
return None
elif isinstance(xc_code, str):
if '__VV10' in xc_code:
raise RuntimeError('Deprecated notation for NLC functional.')
hyb, fn_facs = parse_xc(xc_code)
else:
assert numpy.issubdtype(type(xc_code), numpy.integer)
fn_facs = [(xc_code, 1)] # mimic fn_facs
if not fn_facs:
return 'HF'
elif all(_itrf.LIBXC_is_lda(ctypes.c_int(xid)) for xid, fac in fn_facs):
return 'LDA'
elif any(_itrf.LIBXC_is_meta_gga(ctypes.c_int(xid)) for xid, fac in fn_facs):
return 'MGGA'
else:
# any(_itrf.LIBXC_is_gga(ctypes.c_int(xid)) for xid, fac in fn_facs)
# include hybrid_xc
return 'GGA'
[docs]
def is_lda(xc_code):
return xc_type(xc_code) == 'LDA'
[docs]
@lru_cache(100)
def is_hybrid_xc(xc_code):
if xc_code is None:
return False
elif isinstance(xc_code, str):
if xc_code.isdigit():
return _itrf.LIBXC_is_hybrid(ctypes.c_int(int(xc_code)))
else:
if 'HF' in xc_code:
return True
if hybrid_coeff(xc_code) != 0:
return True
if rsh_coeff(xc_code) != (0, 0, 0):
return True
return False
elif numpy.issubdtype(type(xc_code), numpy.integer):
return _itrf.LIBXC_is_hybrid(ctypes.c_int(xc_code))
else:
return any((is_hybrid_xc(x) for x in xc_code))
[docs]
def is_gga(xc_code):
return xc_type(xc_code) == 'GGA'
[docs]
@lru_cache(100)
def is_nlc(xc_code):
# identify nlc by xc_code itself if enable_nlc is None
if isinstance(xc_code, str):
if xc_code.isdigit():
return _itrf.LIBXC_is_nlc(ctypes.c_int(int(xc_code)))
else:
fn_facs = parse_xc(xc_code)[1]
return any(_itrf.LIBXC_is_nlc(ctypes.c_int(xid)) for xid, fac in fn_facs)
elif numpy.issubdtype(type(xc_code), numpy.integer):
return _itrf.LIBXC_is_nlc(ctypes.c_int(xc_code))
else:
return any((is_nlc(x) for x in xc_code))
[docs]
def needs_laplacian(xc_code):
return _itrf.LIBXC_needs_laplacian(xc_code) != 0
[docs]
@lru_cache(100)
def max_deriv_order(xc_code):
hyb, fn_facs = parse_xc(xc_code)
if fn_facs:
return min(_itrf.LIBXC_max_deriv_order(ctypes.c_int(xid)) for xid, fac in fn_facs)
else:
return 3
[docs]
def test_deriv_order(xc_code, deriv, raise_error=False):
support = deriv <= max_deriv_order(xc_code)
if not support and raise_error:
from pyscf.dft import xcfun
msg = ('libxc library does not support derivative order %d for %s' %
(deriv, xc_code))
try:
if xcfun.test_deriv_order(xc_code, deriv, raise_error=False):
msg += ('''
This functional derivative is supported in the xcfun library.
The following code can be used to change the libxc library to xcfun library:
from pyscf.dft import xcfun
mf._numint.libxc = xcfun
''')
raise NotImplementedError(msg)
except KeyError as e:
sys.stderr.write('\n'+msg+'\n')
sys.stderr.write('%s not found in xcfun library\n\n' % xc_code)
raise e
return support
[docs]
@lru_cache(100)
def hybrid_coeff(xc_code, spin=0):
'''Support recursively defining hybrid functional
'''
hyb, fn_facs = parse_xc(xc_code)
hybs = [fac * _itrf.LIBXC_hybrid_coeff(ctypes.c_int(xid)) for xid, fac in fn_facs]
return hyb[0] + sum(hybs)
[docs]
@lru_cache(100)
def nlc_coeff(xc_code):
'''Get NLC coefficients
'''
hyb, fn_facs = parse_xc(xc_code)
nlc_pars = []
nlc_tmp = (ctypes.c_double*2)()
for xid, fac in fn_facs:
if _itrf.LIBXC_is_nlc(ctypes.c_int(xid)):
_itrf.LIBXC_nlc_coeff(xid, nlc_tmp)
nlc_pars.append((tuple(nlc_tmp), fac))
return tuple(nlc_pars)
[docs]
@lru_cache(100)
def rsh_coeff(xc_code):
'''Range-separated parameter and HF exchange components: omega, alpha, beta
Exc_RSH = c_LR * LR_HFX + c_SR * SR_HFX + (1-c_SR) * Ex_SR + (1-c_LR) * Ex_LR + Ec
= alpha * HFX + beta * SR_HFX + (1-c_SR) * Ex_SR + (1-c_LR) * Ex_LR + Ec
= alpha * LR_HFX + hyb * SR_HFX + (1-c_SR) * Ex_SR + (1-c_LR) * Ex_LR + Ec
SR_HFX = < pi | (1-erf(-omega r_{12}))/r_{12} | iq >
LR_HFX = < pi | erf(-omega r_{12})/r_{12} | iq >
alpha = c_LR
beta = c_SR - c_LR = hyb - alpha
'''
if xc_code is None:
return 0, 0, 0
check_omega = True
if isinstance(xc_code, str) and ',' in xc_code:
# Parse only X part for the RSH coefficients. This is to handle
# exceptions for C functionals such as M11.
xc_code = format_xc_code(xc_code)
xc_code = xc_code.split(',')[0] + ','
if 'SR_HF' in xc_code or 'LR_HF' in xc_code or 'RSH(' in xc_code:
check_omega = False
hyb, fn_facs = parse_xc(xc_code)
hyb, alpha, omega = hyb
beta = hyb - alpha
rsh_pars = [omega, alpha, beta]
rsh_tmp = (ctypes.c_double*3)()
for xid, fac in fn_facs:
_itrf.LIBXC_rsh_coeff(xid, rsh_tmp)
if rsh_pars[0] == 0:
rsh_pars[0] = rsh_tmp[0]
elif check_omega:
# Check functional is actually a CAM functional
if rsh_tmp[0] != 0 and not _itrf.LIBXC_is_cam_rsh(ctypes.c_int(xid)):
raise KeyError('Libxc functional %i employs a range separation '
'kernel that is not supported in PySCF' % xid)
# Check omega
if (rsh_tmp[0] != 0 and rsh_pars[0] != rsh_tmp[0]):
raise ValueError('Different values of omega found for RSH functionals')
rsh_pars[1] += rsh_tmp[1] * fac
rsh_pars[2] += rsh_tmp[2] * fac
return tuple(rsh_pars)
[docs]
def parse_xc_name(xc_name='LDA,VWN'):
'''Convert the XC functional name to libxc library internal ID.
'''
fn_facs = parse_xc(xc_name)[1]
return fn_facs[0][0], fn_facs[1][0]
[docs]
@lru_cache(100)
def parse_xc(description):
r'''Rules to input functional description:
* The given functional description must be a one-line string.
* The functional description is case-insensitive.
* The functional description string has two parts, separated by ",". The
first part describes the exchange functional, the second is the correlation
functional.
- If "," was not in string, the entire string is considered as a
compound XC functional (including both X and C functionals, such as b3lyp).
- To input only X functional (without C functional), leave the second
part blank. E.g. description='slater,' means pure LDA functional.
- To neglect X functional (just apply C functional), leave the first
part blank. E.g. description=',vwn' means pure VWN functional.
- If compound XC functional is specified, no matter whether it is in the
X part (the string in front of comma) or the C part (the string behind
comma), both X and C functionals of the compound XC functional will be
used.
* The functional name can be placed in arbitrary order. Two name needs to
be separated by operators "+" or "-". Blank spaces are ignored.
NOTE the parser only reads operators "+" "-" "*". / is not in support.
* A functional name can have at most one factor. If the factor is not
given, it is set to 1. Compound functional can be scaled as a unit. For
example '0.5*b3lyp' is equivalent to
'HF*0.1 + .04*LDA + .36*B88, .405*LYP + .095*VWN'
* String "HF" stands for exact exchange (HF K matrix). Putting "HF" in
correlation functional part is the same to putting "HF" in exchange
part.
* String "RSH" means range-separated operator. Its format is
RSH(omega, alpha, beta). Another way to input RSH is to use keywords
SR_HF and LR_HF: "SR_HF(0.1) * alpha_plus_beta" and "LR_HF(0.1) *
alpha" where the number in parenthesis is the value of omega.
* Be careful with the libxc convention on GGA functional, in which the LDA
contribution has been included.
Args:
description : str
A string to describe the linear combination of different XC functionals.
The X and C functional are separated by comma like '.8*LDA+.2*B86,VWN'.
If "HF" was appeared in the string, it stands for the exact exchange.
Returns:
decoded XC description, with the data structure
(hybrid, alpha, omega), ((libxc-Id, fac), (libxc-Id, fac), ...)
''' # noqa: E501
hyb = [0, 0, 0] # hybrid, alpha, omega (== SR_HF, LR_HF, omega)
if description is None:
return tuple(hyb), ()
elif numpy.issubdtype(type(description), numpy.integer):
return tuple(hyb), ((description, 1.),)
elif not isinstance(description, str): #isinstance(description, (tuple,list)):
return parse_xc('%s,%s' % tuple(description))
description = description.upper()
if '-D3' in description or '-D4' in description:
from pyscf.scf.dispersion import parse_dft
description, _, _ = parse_dft(description)
description = description.upper()
if (description in ('B3P86', 'B3LYP', 'X3LYP') and
not getattr(parse_xc, 'b3lyp5_warned', False) and
not hasattr(__config__, 'B3LYP_WITH_VWN5')):
parse_xc.b3lyp5_warned = True
warnings.warn('Since PySCF-2.3, B3LYP (and B3P86) are changed to the VWN-RPA variant, '
'corresponding to the original definition by Stephens et al. (issue 1480) '
'and the same as the B3LYP functional in Gaussian. '
'To restore the VWN5 definition, you can put the setting '
'"B3LYP_WITH_VWN5 = True" in pyscf_conf.py')
def assign_omega(omega, hyb_or_sr, lr=0):
if hyb[2] == omega or omega == 0:
hyb[0] += hyb_or_sr
hyb[1] += lr
elif hyb[2] == 0:
hyb[0] += hyb_or_sr
hyb[1] += lr
hyb[2] = omega
else:
raise ValueError('Different values of omega found for RSH functionals')
fn_facs = []
def parse_token(token, ftype, search_xc_alias=False):
if token:
if token[0] == '-':
sign = -1
token = token[1:]
else:
sign = 1
if '*' in token:
fac, key = token.split('*')
if fac[0].isalpha():
fac, key = key, fac
fac = sign * float(fac.replace('E_', 'E-'))
else:
fac, key = sign, token
if key[:3] == 'RSH':
# RSH(alpha; beta; omega): Range-separated-hybrid functional
# See also utils.format_xc_code
alpha, beta, omega = [float(x) for x in key[4:-1].split(';')]
assign_omega(omega, fac*(alpha+beta), fac*alpha)
elif key == 'HF':
hyb[0] += fac
hyb[1] += fac # also add to LR_HF
elif 'SR_HF' in key:
if '(' in key:
omega = float(key.split('(')[1].split(')')[0])
assign_omega(omega, fac, 0)
else: # Assuming this omega the same to the existing omega
hyb[0] += fac
elif 'LR_HF' in key:
if '(' in key:
omega = float(key.split('(')[1].split(')')[0])
assign_omega(omega, 0, fac)
else:
hyb[1] += fac # == alpha
elif key.isdigit():
fn_facs.append((int(key), fac))
else:
if search_xc_alias and key in XC_ALIAS:
x_id = XC_ALIAS[key]
elif key in XC_CODES:
x_id = XC_CODES[key]
else:
possible_xc_for = fpossible_dic[ftype]
possible_xc = XC_KEYS.intersection(possible_xc_for(key))
if possible_xc:
if len(possible_xc) > 1:
sys.stderr.write('Possible xc_code %s matches %s. '
% (list(possible_xc), key))
for x_id in possible_xc: # Prefer X functional
if '_X_' in x_id:
break
else:
x_id = possible_xc.pop()
sys.stderr.write('XC parser takes %s\n' % x_id)
sys.stderr.write('You can add prefix to %s for a '
'specific functional (e.g. X_%s, '
'HYB_MGGA_X_%s)\n'
% (key, key, key))
else:
x_id = possible_xc.pop()
x_id = XC_CODES[x_id]
else:
# Some libxc functionals may not be listed in the
# XC_CODES table. Query libxc directly
x_id = _itrf.xc_functional_get_number(ctypes.c_char_p(key.encode()))
if x_id == -1:
raise KeyError(f"LibXCFunctional: name '{key}' not found.")
if isinstance(x_id, str):
hyb1, fn_facs1 = parse_xc(x_id)
# Recursively scale the composed functional, to support e.g. '0.5*b3lyp'
if hyb1[0] != 0 or hyb1[1] != 0:
assign_omega(hyb1[2], hyb1[0]*fac, hyb1[1]*fac)
fn_facs.extend([(xid, c*fac) for xid, c in fn_facs1])
elif x_id is None:
raise NotImplementedError('%s functional %s' % (ftype, key))
else:
fn_facs.append((x_id, fac))
def possible_x_for(key):
return {key,
'LDA_X_'+key, 'GGA_X_'+key, 'MGGA_X_'+key,
'HYB_GGA_X_'+key, 'HYB_MGGA_X_'+key}
def possible_xc_for(key):
return {key, 'LDA_XC_'+key, 'GGA_XC_'+key, 'MGGA_XC_'+key,
'HYB_LDA_XC_'+key, 'HYB_GGA_XC_'+key, 'HYB_MGGA_XC_'+key}
def possible_k_for(key):
return {key,
'LDA_K_'+key, 'GGA_K_'+key,}
def possible_x_k_for(key):
return possible_x_for(key).union(possible_k_for(key))
def possible_c_for(key):
return {key,
'LDA_C_'+key, 'GGA_C_'+key, 'MGGA_C_'+key}
fpossible_dic = {'X': possible_x_for,
'C': possible_c_for,
'compound XC': possible_xc_for,
'K': possible_k_for,
'X or K': possible_x_k_for}
description = format_xc_code(description)
if '-' in description: # To handle e.g. M06-L
for key in _NAME_WITH_DASH:
if key in description:
description = description.replace(key, _NAME_WITH_DASH[key])
if ',' in description:
x_code, c_code = description.split(',')
for token in x_code.replace('-', '+-').replace(';+', ';').split('+'):
parse_token(token, 'X or K')
for token in c_code.replace('-', '+-').replace(';+', ';').split('+'):
parse_token(token, 'C')
else:
for token in description.replace('-', '+-').replace(';+', ';').split('+'):
# dftd3 cannot be used in a custom xc description
assert '-d3' not in token
parse_token(token, 'compound XC', search_xc_alias=True)
if hyb[2] == 0: # No omega is assigned. LR_HF is 0 for normal Coulomb operator
hyb[1] = 0
return tuple(hyb), tuple(remove_dup(fn_facs))
_NAME_WITH_DASH = {'SR-HF' : 'SR_HF',
'LR-HF' : 'LR_HF',
'OTPSS-D' : 'OTPSS_D',
'B97-1' : 'B97_1',
'B97-2' : 'B97_2',
'B97-3' : 'B97_3',
'B97-K' : 'B97_K',
'B97-D' : 'B97_D',
'HCTH-93' : 'HCTH_93',
'HCTH-120' : 'HCTH_120',
'HCTH-147' : 'HCTH_147',
'HCTH-407' : 'HCTH_407',
'WB97X-D' : 'WB97X_D',
'WB97X-V' : 'WB97X_V',
'WB97M-V' : 'WB97M_V',
'WB97X-D3' : 'WB97X_D3',
'B97M-V' : 'B97M_V',
'M05-2X' : 'M05_2X',
'M06-L' : 'M06_L',
'M06-HF' : 'M06_HF',
'M06-2X' : 'M06_2X',
'M08-HX' : 'M08_HX',
'M08-SO' : 'M08_SO',
'M11-L' : 'M11_L',
'MN12-L' : 'MN12_L',
'MN15-L' : 'MN15_L',
'MN12-SX' : 'MN12_SX',
'N12-SX' : 'N12_SX',
'LRC-WPBE' : 'LRC_WPBE',
'LRC-WPBEH': 'LRC_WPBEH',
'LC-VV10' : 'LC_VV10',
'CAM-B3LYP': 'CAM_B3LYP',
'E-' : 'E_'} # For scientific notation
[docs]
def eval_xc(xc_code, rho, spin=0, relativity=0, deriv=1, omega=None, verbose=None):
r'''Interface to call libxc library to evaluate XC functional, potential
and functional derivatives.
* The given functional xc_code must be a one-line string.
* The functional xc_code is case-insensitive.
* The functional xc_code string has two parts, separated by ",". The
first part describes the exchange functional, the second part sets the
correlation functional.
- If "," not appeared in string, the entire string is treated as the
name of a compound functional (containing both the exchange and
the correlation functional) which was declared in the functional
aliases list. The full list of functional aliases can be obtained by
calling the function pyscf.dft.xcfun.XC_ALIAS.keys() .
If the string was not found in the aliased functional list, it is
treated as X functional.
- To input only X functional (without C functional), leave the second
part blank. E.g. description='slater,' means a functional with LDA
contribution only.
- To neglect the contribution of X functional (just apply C functional),
leave blank in the first part, e.g. description=',vwn' means a
functional with VWN only.
- If compound XC functional is specified, no matter whether it is in the
X part (the string in front of comma) or the C part (the string behind
comma), both X and C functionals of the compound XC functional will be
used.
* The functional name can be placed in arbitrary order. Two names need to
be separated by operators "+" or "-". Blank spaces are ignored.
NOTE the parser only reads operators "+" "-" "*". / is not supported.
* A functional name can have at most one factor. If the factor is not
given, it is set to 1. Compound functional can be scaled as a unit. For
example '0.5*b3lyp' is equivalent to
'HF*0.1 + .04*LDA + .36*B88, .405*LYP + .095*VWN'
* String "HF" stands for exact exchange (HF K matrix). "HF" can be put in
the correlation functional part (after comma). Putting "HF" in the
correlation part is the same to putting "HF" in the exchange part.
* String "RSH" means range-separated operator. Its format is
RSH(omega, alpha, beta). Another way to input RSH is to use keywords
SR_HF and LR_HF: "SR_HF(0.1) * alpha_plus_beta" and "LR_HF(0.1) *
alpha" where the number in parenthesis is the value of omega.
* Be careful with the libxc convention of GGA functional, in which the LDA
contribution is included.
Args:
xc_code : str
A string to describe the linear combination of different XC functionals.
The X and C functional are separated by comma like '.8*LDA+.2*B86,VWN'.
If "HF" (exact exchange) is appeared in the string, the HF part will
be skipped. If an empty string "" is given, the returns exc, vxc,...
will be vectors of zeros.
rho : ndarray
Shape of ((*,N)) for electron density (and derivatives) if spin = 0;
Shape of ((*,N),(*,N)) for alpha/beta electron density (and derivatives) if spin > 0;
where N is number of grids.
rho (*,N) are ordered as (den,grad_x,grad_y,grad_z,laplacian,tau)
where grad_x = d/dx den, laplacian = \nabla^2 den, tau = 1/2(\nabla f)^2
In spin unrestricted case,
rho is ((den_u,grad_xu,grad_yu,grad_zu,laplacian_u,tau_u)
(den_d,grad_xd,grad_yd,grad_zd,laplacian_d,tau_d))
Kwargs:
spin : int
spin polarized if spin > 0
relativity : int
No effects.
verbose : int or object of :class:`Logger`
No effects.
Returns:
ex, vxc, fxc, kxc
where
* vxc = (vrho, vsigma, vlapl, vtau) for restricted case
* vxc for unrestricted case
| vrho[:,2] = (u, d)
| vsigma[:,3] = (uu, ud, dd)
| vlapl[:,2] = (u, d)
| vtau[:,2] = (u, d)
* fxc for restricted case:
(v2rho2, v2rhosigma, v2sigma2, v2lapl2, vtau2, v2rholapl, v2rhotau, v2lapltau, v2sigmalapl, v2sigmatau)
* fxc for unrestricted case:
| v2rho2[:,3] = (u_u, u_d, d_d)
| v2rhosigma[:,6] = (u_uu, u_ud, u_dd, d_uu, d_ud, d_dd)
| v2sigma2[:,6] = (uu_uu, uu_ud, uu_dd, ud_ud, ud_dd, dd_dd)
| v2lapl2[:,3]
| v2tau2[:,3] = (u_u, u_d, d_d)
| v2rholapl[:,4]
| v2rhotau[:,4] = (u_u, u_d, d_u, d_d)
| v2lapltau[:,4]
| v2sigmalapl[:,6]
| v2sigmatau[:,6] = (uu_u, uu_d, ud_u, ud_d, dd_u, dd_d)
* kxc for restricted case:
(v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3,
v3rho2lapl, v3rho2tau,
v3rhosigmalapl, v3rhosigmatau,
v3rholapl2, v3rholapltau, v3rhotau2,
v3sigma2lapl, v3sigma2tau,
v3sigmalapl2, v3sigmalapltau, v3sigmatau2,
v3lapl3, v3lapl2tau, v3lapltau2, v3tau3)
* kxc for unrestricted case:
| v3rho3[:,4] = (u_u_u, u_u_d, u_d_d, d_d_d)
| v3rho2sigma[:,9] = (u_u_uu, u_u_ud, u_u_dd, u_d_uu, u_d_ud, u_d_dd, d_d_uu, d_d_ud, d_d_dd)
| v3rhosigma2[:,12] = (u_uu_uu, u_uu_ud, u_uu_dd, u_ud_ud, u_ud_dd, u_dd_dd, d_uu_uu, d_uu_ud, d_uu_dd, d_ud_ud, d_ud_dd, d_dd_dd)
| v3sigma3[:,10] = (uu_uu_uu, uu_uu_ud, uu_uu_dd, uu_ud_ud, uu_ud_dd, uu_dd_dd, ud_ud_ud, ud_ud_dd, ud_dd_dd, dd_dd_dd)
| v3rho2lapl[:,6]
| v3rho2tau[:,6] = (u_u_u, u_u_d, u_d_u, u_d_d, d_d_u, d_d_d)
| v3rhosigmalapl[:,12]
| v3rhosigmatau[:,12] = (u_uu_u, u_uu_d, u_ud_u, u_ud_d, u_dd_u, u_dd_d,
d_uu_u, d_uu_d, d_ud_u, d_ud_d, d_dd_u, d_dd_d)
| v3rholapl2[:,6]
| v3rholapltau[:,8]
| v3rhotau2[:,6] = (u_u_u, u_u_d, u_d_d, d_u_u, d_u_d, d_d_d)
| v3sigma2lapl[:,12]
| v3sigma2tau[:,12] = (uu_uu_u, uu_uu_d, uu_ud_u, uu_ud_d, uu_dd_u, uu_dd_d,
ud_ud_u, ud_ud_d, ud_dd_u, ud_dd_d, dd_dd_u, dd_dd_d)
| v3sigmalapl2[:,9]
| v3sigmalapltau[:,12]
| v3sigmatau2[:,9] = (uu_u_u, uu_u_d, uu_d_d, ud_u_u, ud_u_d, ud_d_d, dd_u_u, dd_u_d, dd_d_d)
| v3lapl3[:,4]
| v3lapl2tau[:,6]
| v3lapltau2[:,6]
| v3tau3[:,4] = (u_u_u, u_u_d, u_d_d, d_d_d)
see also libxc_itrf.c
''' # noqa: E501
outbuf = _eval_xc(xc_code, rho, spin, deriv, omega)
exc = outbuf[0]
vxc = fxc = kxc = None
xctype = xc_type(xc_code)
if xctype == 'LDA' and spin == 0:
if deriv > 0:
vxc = [outbuf[1]]
if deriv > 1:
fxc = [outbuf[2]]
if deriv > 2:
kxc = [outbuf[3]]
elif xctype == 'GGA' and spin == 0:
if deriv > 0:
vxc = [outbuf[1], outbuf[2]]
if deriv > 1:
fxc = [outbuf[3], outbuf[4], outbuf[5]]
if deriv > 2:
kxc = [outbuf[6], outbuf[7], outbuf[8], outbuf[9]]
elif xctype == 'LDA' and spin == 1:
if deriv > 0:
vxc = [outbuf[1:3].T]
if deriv > 1:
fxc = [outbuf[3:6].T]
if deriv > 2:
kxc = [outbuf[6:10].T]
elif xctype == 'GGA' and spin == 1:
if deriv > 0:
vxc = [outbuf[1:3].T, outbuf[3:6].T]
if deriv > 1:
fxc = [outbuf[6:9].T, outbuf[9:15].T, outbuf[15:21].T]
if deriv > 2:
kxc = [outbuf[21:25].T, outbuf[25:34].T, outbuf[34:46].T, outbuf[46:56].T]
elif xctype == 'MGGA' and spin == 0:
if deriv > 0:
vxc = [outbuf[1], outbuf[2], None, outbuf[3]]
if deriv > 1:
fxc = [
# v2rho2, v2rhosigma, v2sigma2,
outbuf[4], outbuf[5], outbuf[6],
# v2lapl2, v2tau2,
None, outbuf[9],
# v2rholapl, v2rhotau,
None, outbuf[7],
# v2lapltau, v2sigmalapl, v2sigmatau,
None, None, outbuf[8]]
if deriv > 2:
# v3lapltau2 might not be strictly 0
# outbuf[18] = 0
kxc = [
# v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3,
outbuf[10], outbuf[11], outbuf[12], outbuf[13],
# v3rho2lapl, v3rho2tau,
None, outbuf[14],
# v3rhosigmalapl, v3rhosigmatau,
None, outbuf[15],
# v3rholapl2, v3rholapltau, v3rhotau2,
None, None, outbuf[16],
# v3sigma2lapl, v3sigma2tau,
None, outbuf[17],
# v3sigmalapl2, v3sigmalapltau, v3sigmatau2,
None, None, outbuf[18],
# v3lapl3, v3lapl2tau, v3lapltau2, v3tau3)
None, None, None, outbuf[19]]
elif xctype == 'MGGA' and spin == 1:
if deriv > 0:
vxc = [outbuf[1:3].T, outbuf[3:6].T, None, outbuf[6:8].T]
if deriv > 1:
# v2lapltau might not be strictly 0
# outbuf[39:43] = 0
fxc = [
# v2rho2, v2rhosigma, v2sigma2,
outbuf[8:11].T, outbuf[11:17].T, outbuf[17:23].T,
# v2lapl2, v2tau2,
None, outbuf[33:36].T,
# v2rholapl, v2rhotau,
None, outbuf[23:27].T,
# v2lapltau, v2sigmalapl, v2sigmatau,
None, None, outbuf[27:33].T]
if deriv > 2:
# v3lapltau2 might not be strictly 0
# outbuf[204:216] = 0
kxc = [
# v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3,
outbuf[36:40].T, outbuf[40:49].T, outbuf[49:61].T, outbuf[61:71].T,
# v3rho2lapl, v3rho2tau,
None, outbuf[71:77].T,
# v3rhosigmalapl, v3rhosigmatau,
None, outbuf[77:89].T,
# v3rholapl2, v3rholapltau, v3rhotau2,
None, None, outbuf[89:95].T,
# v3sigma2lapl, v3sigma2tau,
None, outbuf[95:107].T,
# v3sigmalapl2, v3sigmalapltau, v3sigmatau2,
None, None, outbuf[107:116].T,
# v3lapl3, v3lapl2tau, v3lapltau2, v3tau3)
None, None, None, outbuf[116:120].T]
return exc, vxc, fxc, kxc
_GGA_SORT = {
(1, 2): numpy.array([
6, 7, 9, 10, 11, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20,
]),
(1, 3): numpy.array([
21, 22, 25, 26, 27, 23, 28, 29, 30, 34, 35, 36, 37, 38, 39, 24, 31, 32,
33, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
]),
(1, 4): numpy.array([
56, 57, 61, 62, 63, 58, 64, 65, 66, 73, 74, 75, 76, 77, 78, 59, 67, 68,
69, 79, 80, 81, 82, 83, 84, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 60,
70, 71, 72, 85, 86, 87, 88, 89, 90, 101, 102, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125,
])
}
_MGGA_SORT = {
(0, 2): numpy.array([
0, # v2rho2
1, # v2rhosigma
3, # v2rhotau
2, # v2sigma2
4, # v2sigmatau
5, # v2tau2
]) + 4,
(0, 3): numpy.array([
0, # v3rho3
1, # v3rho2sigma
4, # v3rho2tau
2, # v3rhosigma2
5, # v3rhosigmatau
6, # v3rhotau2
3, # v3sigma3
7, # v3sigma2tau
8, # v3sigmatau2
9, # v3tau3
]) + 10,
(0, 4): numpy.array([
0, # v4rho4
1, # v4rho3sigma
5, # v4rho3tau
2, # v4rho2sigma2
6, # v4rho2sigmatau
7, # v4rho2tau2
3, # v4rhosigma3
8, # v4rhosigma2tau
9, # v4rhosigmatau2
10, # v4rhotau3
4, # v4sigma4
11, # v4sigma3tau
12, # v4sigma2tau2
13, # v4sigmatau3
14, # v4tau4
]) + 20,
(1, 2): numpy.array([
8, 9, 11, 12, 13, 23, 24, 10, 14, 15, 16, 25, 26, 17, 18, 19, 27, 28,
20, 21, 29, 30, 22, 31, 32, 33, 34, 35,
]),
(1, 3): numpy.array([
36, 37, 40, 41, 42, 71, 72, 38, 43, 44, 45, 73, 74, 49, 50, 51, 77, 78,
52, 53, 79, 80, 54, 81, 82, 89, 90, 91, 39, 46, 47, 48, 75, 76, 55, 56,
57, 83, 84, 58, 59, 85, 86, 60, 87, 88, 92, 93, 94, 61, 62, 63, 95, 96,
64, 65, 97, 98, 66, 99, 100, 107, 108, 109, 67, 68, 101, 102, 69, 103,
104, 110, 111, 112, 70, 105, 106, 113, 114, 115, 116, 117, 118, 119,
]),
(1, 4): numpy.array([
120, 121, 125, 126, 127, 190, 191, 122, 128, 129, 130, 192, 193, 137,
138, 139, 198, 199, 140, 141, 200, 201, 142, 202, 203, 216, 217, 218,
123, 131, 132, 133, 194, 195, 143, 144, 145, 204, 205, 146, 147, 206,
207, 148, 208, 209, 219, 220, 221, 155, 156, 157, 225, 226, 158, 159,
227, 228, 160, 229, 230, 249, 250, 251, 161, 162, 231, 232, 163, 233,
234, 252, 253, 254, 164, 235, 236, 255, 256, 257, 267, 268, 269, 270,
124, 134, 135, 136, 196, 197, 149, 150, 151, 210, 211, 152, 153, 212,
213, 154, 214, 215, 222, 223, 224, 165, 166, 167, 237, 238, 168, 169,
239, 240, 170, 241, 242, 258, 259, 260, 171, 172, 243, 244, 173, 245,
246, 261, 262, 263, 174, 247, 248, 264, 265, 266, 271, 272, 273, 274,
175, 176, 177, 275, 276, 178, 179, 277, 278, 180, 279, 280, 295, 296,
297, 181, 182, 281, 282, 183, 283, 284, 298, 299, 300, 184, 285, 286,
301, 302, 303, 313, 314, 315, 316, 185, 186, 287, 288, 187, 289, 290,
304, 305, 306, 188, 291, 292, 307, 308, 309, 317, 318, 319, 320, 189,
293, 294, 310, 311, 312, 321, 322, 323, 324, 325, 326, 327, 328, 329,
])
}
[docs]
def eval_xc1(xc_code, rho, spin=0, deriv=1, omega=None):
'''Similar to eval_xc.
Returns an array with the order of derivatives following xcfun convention.
'''
out = _eval_xc(xc_code, rho, spin, deriv=deriv, omega=omega)
xctype = xc_type(xc_code)
idx = _libxc_to_xcfun_indices(xctype, spin, deriv)
return out[idx]
def _libxc_to_xcfun_indices(xctype, spin=0, deriv=1):
if deriv <= 1:
return slice(None)
elif xctype == 'LDA' or xctype == 'HF':
return slice(None)
elif xctype == 'GGA':
if spin == 0:
return slice(None)
else:
idx = [numpy.arange(6)] # up to deriv=1
for i in range(2, deriv+1):
idx.append(_GGA_SORT[(spin, i)])
else: # MGGA
if spin == 0:
idx = [numpy.arange(4)] # up to deriv=1
else:
idx = [numpy.arange(8)] # up to deriv=1
for i in range(2, deriv+1):
idx.append(_MGGA_SORT[(spin, i)])
return numpy.hstack(idx)
def _eval_xc(xc_code, rho, spin=0, deriv=1, omega=None):
assert deriv <= max_deriv_order(xc_code)
xctype = xc_type(xc_code)
assert xctype in ('HF', 'LDA', 'GGA', 'MGGA')
rho = numpy.asarray(rho, order='C', dtype=numpy.double)
if xctype == 'MGGA' and rho.shape[-2] == 6:
rho = numpy.asarray(rho[...,[0,1,2,3,5],:], order='C')
hyb, fn_facs = parse_xc(xc_code)
if omega is not None:
hyb = hyb[:2] + (float(omega),)
fn_ids = [x[0] for x in fn_facs]
facs = [x[1] for x in fn_facs]
if hyb[2] != 0:
# Current implementation does not support different omegas for
# different RSH functionals if there are multiple RSHs
omega = [hyb[2]] * len(facs)
else:
omega = [0] * len(facs)
fn_ids_set = set(fn_ids)
if fn_ids_set.intersection(PROBLEMATIC_XC):
problem_xc = [PROBLEMATIC_XC[k]
for k in fn_ids_set.intersection(PROBLEMATIC_XC)]
warnings.warn('Libxc functionals %s may have discrepancy to xcfun '
'library.\n' % problem_xc)
if any(needs_laplacian(fid) for fid in fn_ids):
raise NotImplementedError('laplacian in meta-GGA method')
nvar, xlen = xc_deriv._XC_NVAR[xctype, spin]
ngrids = rho.shape[-1]
rho = rho.reshape(spin+1,nvar,ngrids)
outlen = lib.comb(xlen+deriv, deriv)
out = numpy.zeros((outlen,ngrids))
n = len(fn_ids)
if n > 0:
density_threshold = 0
_itrf.LIBXC_eval_xc(ctypes.c_int(n),
(ctypes.c_int*n)(*fn_ids),
(ctypes.c_double*n)(*facs),
(ctypes.c_double*n)(*omega),
ctypes.c_int(spin), ctypes.c_int(deriv),
ctypes.c_int(nvar), ctypes.c_int(ngrids),
ctypes.c_int(outlen),
rho.ctypes.data_as(ctypes.c_void_p),
out.ctypes.data_as(ctypes.c_void_p),
ctypes.c_double(density_threshold))
return out
[docs]
def eval_xc_eff(xc_code, rho, deriv=1, omega=None):
r'''Returns the derivative tensor against the density parameters
[density_a, (nabla_x)_a, (nabla_y)_a, (nabla_z)_a, tau_a]
or spin-polarized density parameters
[[density_a, (nabla_x)_a, (nabla_y)_a, (nabla_z)_a, tau_a],
[density_b, (nabla_x)_b, (nabla_y)_b, (nabla_z)_b, tau_b]].
It differs from the eval_xc method in the derivatives of non-local part.
The eval_xc method returns the XC functional derivatives to sigma
(|\nabla \rho|^2)
Args:
rho: 2-dimensional or 3-dimensional array
Total density or (spin-up, spin-down) densities (and their
derivatives if GGA or MGGA functionals) on grids
Kwargs:
deriv: int
derivative orders
omega: float
define the exponent in the attenuated Coulomb for RSH functional
'''
xctype = xc_type(xc_code)
rho = numpy.asarray(rho, order='C', dtype=numpy.double)
if xctype == 'MGGA' and rho.shape[-2] == 6:
rho = numpy.asarray(rho[...,[0,1,2,3,5],:], order='C')
spin_polarized = rho.ndim >= 2 and rho.shape[0] == 2
if spin_polarized:
spin = 1
else:
spin = 0
out = eval_xc1(xc_code, rho, spin, deriv, omega)
return xc_deriv.transform_xc(rho, out, xctype, spin, deriv)
[docs]
def define_xc_(ni, description, xctype='LDA', hyb=0, rsh=(0,0,0)):
'''Define XC functional. See also :func:`eval_xc` for the rules of input description.
Args:
ni : an instance of :class:`NumInt`
description : str
A string to describe the linear combination of different XC functionals.
The X and C functional are separated by comma like '.8*LDA+.2*B86,VWN'.
If "HF" was appeared in the string, it stands for the exact exchange.
Kwargs:
xctype : str
'LDA' or 'GGA' or 'MGGA'
hyb : float
hybrid functional coefficient
rsh : a list of three floats
coefficients (omega, alpha, beta) for range-separated hybrid functional.
omega is the exponent factor in attenuated Coulomb operator e^{-omega r_{12}}/r_{12}
alpha is the coefficient for long-range part, hybrid coefficient
can be obtained by alpha + beta
Examples:
>>> mol = gto.M(atom='O 0 0 0; H 0 0 1; H 0 1 0', basis='ccpvdz')
>>> mf = dft.RKS(mol)
>>> define_xc_(mf._numint, '.2*HF + .08*LDA + .72*B88, .81*LYP + .19*VWN')
>>> mf.kernel()
-76.3783361189611
>>> define_xc_(mf._numint, 'LDA*.08 + .72*B88 + .2*HF, .81*LYP + .19*VWN')
>>> mf.kernel()
-76.3783361189611
>>> def eval_xc(xc_code, rho, *args, **kwargs):
... exc = 0.01 * rho**2
... vrho = 0.01 * 3 * rho**2
... vxc = (vrho, None, None, None)
... fxc = None # 2nd order functional derivative
... kxc = None # 3rd order functional derivative
... return exc, vxc, fxc, kxc
>>> define_xc_(mf._numint, eval_xc, xctype='LDA')
>>> mf.kernel()
48.8525211046668
'''
if isinstance(description, str):
def _eval_xc(xc_code, rho, *args, **kwargs):
return eval_xc(description, rho, *args, **kwargs)
ni.eval_xc = _eval_xc
ni.hybrid_coeff = lambda *args, **kwargs: hybrid_coeff(description)
ni.rsh_coeff = lambda *args: rsh_coeff(description)
ni._xc_type = lambda *args: xc_type(description)
elif callable(description):
ni.eval_xc = _eval_xc = description
ni.hybrid_coeff = lambda *args, **kwargs: hyb
ni.rsh_coeff = lambda *args, **kwargs: rsh
ni._xc_type = lambda *args: xctype
else:
raise ValueError('Unknown description %s' % description)
def _eval_xc1(xc_code, rho, spin=0, deriv=1, omega=None):
libxc_out = _eval_xc(xc_code, rho, spin, deriv=deriv, omega=omega)
nvar, xlen = xc_deriv._XC_NVAR[xctype, spin]
outlen = lib.comb(xlen+deriv, deriv)
exc, vxc, fxc, kxc = libxc_out[:4]
out = [exc]
if vxc is not None:
out.extend([x for x in vxc if x is not None])
if fxc is not None:
out.extend([fxc[i] for i in [0, 1, 2, 6, 4, 9]])
if kxc is not None:
out.extend([x for x in kxc if x is not None])
if spin == 1:
# Returns of eval_xc are structured as [grid_id,deriv_component]
# for each term in libxc_out. Change the shape to [deriv_comp, grid_id]
out = [x.T for x in out]
out = numpy.vstack(out)[:outlen]
assert len(out) == outlen
idx = _libxc_to_xcfun_indices(xctype, spin, deriv)
return out[idx]
ni.eval_xc1 = _eval_xc1
return ni
[docs]
def define_xc(ni, description, xctype='LDA', hyb=0, rsh=(0,0,0)):
return define_xc_(ni.copy(), description, xctype, hyb, rsh)
define_xc.__doc__ = define_xc_.__doc__