Source code for pyscf.dft.gks

#!/usr/bin/env python
# Copyright 2014-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Generalized Kohn-Sham
'''


import numpy
import scipy.linalg
from pyscf import lib
from pyscf.lib import logger
from pyscf.scf import ghf
from pyscf.dft import rks
from pyscf.dft.numint2c import NumInt2C


[docs] def get_veff(ks, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1): '''Coulomb + XC functional .. note:: This function will change the ks object. Args: ks : an instance of :class:`RKS` XC functional are controlled by ks.xc attribute. Attribute ks.grids might be initialized. dm : ndarray or list of ndarrays A density matrix or a list of density matrices Kwargs: dm_last : ndarray or a list of ndarrays or 0 The density matrix baseline. If not 0, this function computes the increment of HF potential w.r.t. the reference HF potential matrix. vhf_last : ndarray or a list of ndarrays or 0 The reference Vxc potential matrix. hermi : int Whether J, K matrix is hermitian | 0 : no hermitian or symmetric | 1 : hermitian | 2 : anti-hermitian Returns: matrix Veff = J + Vxc. Veff can be a list matrices, if the input dm is a list of density matrices. ''' if mol is None: mol = ks.mol if dm is None: dm = ks.make_rdm1() ks.initialize_grids(mol, dm) t0 = (logger.process_clock(), logger.perf_counter()) ground_state = isinstance(dm, numpy.ndarray) and dm.ndim == 2 if hermi == 2: # because rho = 0 n, exc, vxc = 0, 0, 0 else: max_memory = ks.max_memory - lib.current_memory()[0] ni = ks._numint n, exc, vxc = ni.get_vxc(mol, ks.grids, ks.xc, dm, hermi=hermi, max_memory=max_memory) logger.debug(ks, 'nelec by numeric integration = %s', n) if ks.do_nlc(): if ni.libxc.is_nlc(ks.xc): xc = ks.xc else: assert ni.libxc.is_nlc(ks.nlc) xc = ks.nlc n, enlc, vnlc = ni.nr_nlc_vxc(mol, ks.nlcgrids, xc, dm, hermi=hermi, max_memory=max_memory) exc += enlc vxc += vnlc logger.debug(ks, 'nelec with nlc grids = %s', n) t0 = logger.timer(ks, 'vxc', *t0) if not ni.libxc.is_hybrid_xc(ks.xc): vk = None if (ks._eri is None and ks.direct_scf and getattr(vhf_last, 'vj', None) is not None): ddm = numpy.asarray(dm) - numpy.asarray(dm_last) vj = ks.get_j(mol, ddm, hermi) vj += vhf_last.vj else: vj = ks.get_j(mol, dm, hermi) vxc += vj else: omega, alpha, hyb = ni.rsh_and_hybrid_coeff(ks.xc, spin=mol.spin) if (ks._eri is None and ks.direct_scf and getattr(vhf_last, 'vk', None) is not None): ddm = numpy.asarray(dm) - numpy.asarray(dm_last) vj, vk = ks.get_jk(mol, ddm, hermi) vk *= hyb if omega != 0: vklr = ks.get_k(mol, ddm, hermi, omega=omega) vklr *= (alpha - hyb) vk += vklr vj += vhf_last.vj vk += vhf_last.vk else: vj, vk = ks.get_jk(mol, dm, hermi) vk *= hyb if omega != 0: vklr = ks.get_k(mol, dm, hermi, omega=omega) vklr *= (alpha - hyb) vk += vklr vxc += vj - vk if ground_state: exc -= numpy.einsum('ij,ji', dm, vk).real * .5 if ground_state: ecoul = numpy.einsum('ij,ji', dm, vj).real * .5 else: ecoul = None vxc = lib.tag_array(vxc, ecoul=ecoul, exc=exc, vj=vj, vk=vk) return vxc
energy_elec = rks.energy_elec
[docs] class GKS(rks.KohnShamDFT, ghf.GHF): '''Generalized Kohn-Sham''' get_veff = get_veff energy_elec = energy_elec def __init__(self, mol, xc='LDA,VWN'): ghf.GHF.__init__(self, mol) rks.KohnShamDFT.__init__(self, xc) self._numint = NumInt2C()
[docs] def dump_flags(self, verbose=None): ghf.GHF.dump_flags(self, verbose) rks.KohnShamDFT.dump_flags(self, verbose) logger.info(self, 'collinear = %s', self._numint.collinear) if self._numint.collinear[0] == 'm': logger.info(self, 'mcfun spin_samples = %s', self._numint.spin_samples) logger.info(self, 'mcfun collinear_thrd = %s', self._numint.collinear_thrd) logger.info(self, 'mcfun collinear_samples = %s', self._numint.collinear_samples) return self
@property def collinear(self): return self._numint.collinear @collinear.setter def collinear(self, val): self._numint.collinear = val @property def spin_samples(self): return self._numint.spin_samples @spin_samples.setter def spin_samples(self, val): self._numint.spin_samples = val
[docs] def nuc_grad_method(self): raise NotImplementedError
[docs] def to_hf(self): '''Convert to GHF object.''' return self._transfer_attrs_(self.mol.GHF())
to_gpu = lib.to_gpu
if __name__ == '__main__': from pyscf import gto mol = gto.Mole() mol.verbose = 3 mol.atom = 'H 0 0 0; H 0 0 1; O .5 .6 .2' mol.basis = 'ccpvdz' mol.build() mf = GKS(mol) mf.xc = 'b3lyp' mf.kernel() dm = mf.init_guess_by_1e(mol) dm = dm + 0j nao = mol.nao_nr() numpy.random.seed(12) dm[:nao,nao:] = numpy.random.random((nao,nao)) * .1j dm[nao:,:nao] = dm[:nao,nao:].T.conj() mf.kernel(dm) mf.canonicalize(mf.mo_coeff, mf.mo_occ) mf.analyze() print(mf.spin_square()) print(mf.e_tot - -76.2760115704274)