Source code for pyscf.dft.gen_grid

#!/usr/bin/env python
# Copyright 2014-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Generate DFT grids and weights, based on the code provided by Gerald Knizia <>

Reference for Lebedev-Laikov grid:
  V. I. Lebedev, and D. N. Laikov "A quadrature formula for the sphere of the
  131st algebraic order of accuracy", Doklady Mathematics, 59, 477-481 (1999)
'''


import sys
import ctypes
import numpy
from pyscf import lib
from pyscf.lib import logger
from pyscf.dft import radi
from pyscf.dft.LebedevGrid import LEBEDEV_ORDER, LEBEDEV_NGRID, MakeAngularGrid
from pyscf import gto
from pyscf.gto.eval_gto import BLKSIZE, NBINS, CUTOFF, make_screen_index
from pyscf import __config__

libdft = lib.load_library('libdft')

GROUP_BOX_SIZE = 1.2
GROUP_BOUNDARY_PENALTY = 4.2
# Padding grids to make the AO value generated by eval_gto aligned in memory
ALIGNMENT_UNIT = 8
NELEC_ERROR_TOL = getattr(__config__, 'dft_rks_prune_error_tol', 0.02)

# SG0
# S. Chien and P. Gill,  J. Comput. Chem. 27 (2006) 730-739.


[docs] def sg1_prune(nuc, rads, n_ang, radii=radi.SG1RADII): '''SG1, CPL, 209, 506 Args: nuc : int Nuclear charge. rads : 1D array Grid coordinates on radical axis. n_ang : int Max number of grids over angular part. Kwargs: radii : 1D array radii (in Bohr) for atoms in periodic table Returns: A list has the same length as rads. The list element is the number of grids over angular part for each radial grid. ''' # In SG1 the ang grids for the five regions # 6 38 86 194 86 leb_ngrid = numpy.array([6, 38, 86, 194, 86]) alphas = numpy.array(( (0.25 , 0.5, 1.0, 4.5), (0.1667, 0.5, 0.9, 3.5), (0.1 , 0.4, 0.8, 2.5))) r_atom = radii[nuc] + 1e-200 if nuc <= 2: # H, He place = ((rads/r_atom).reshape(-1,1) > alphas[0]).sum(axis=1) elif nuc <= 10: # Li - Ne place = ((rads/r_atom).reshape(-1,1) > alphas[1]).sum(axis=1) else: place = ((rads/r_atom).reshape(-1,1) > alphas[2]).sum(axis=1) return leb_ngrid[place]
[docs] def nwchem_prune(nuc, rads, n_ang, radii=radi.BRAGG_RADII): '''NWChem Args: nuc : int Nuclear charge. rads : 1D array Grid coordinates on radical axis. n_ang : int Max number of grids over angular part. Kwargs: radii : 1D array radii (in Bohr) for atoms in periodic table Returns: A list has the same length as rads. The list element is the number of grids over angular part for each radial grid. ''' alphas = numpy.array(( (0.25 , 0.5, 1.0, 4.5), (0.1667, 0.5, 0.9, 3.5), (0.1 , 0.4, 0.8, 2.5))) leb_ngrid = LEBEDEV_NGRID[4:] # [38, 50, 74, 86, ...] if n_ang < 50: return numpy.repeat(n_ang, len(rads)) elif n_ang == 50: leb_l = numpy.array([1, 2, 2, 2, 1]) else: idx = numpy.where(leb_ngrid==n_ang)[0][0] leb_l = numpy.array([1, 3, idx-1, idx, idx-1]) r_atom = radii[nuc] + 1e-200 if nuc <= 2: # H, He place = ((rads/r_atom).reshape(-1,1) > alphas[0]).sum(axis=1) elif nuc <= 10: # Li - Ne place = ((rads/r_atom).reshape(-1,1) > alphas[1]).sum(axis=1) else: place = ((rads/r_atom).reshape(-1,1) > alphas[2]).sum(axis=1) angs = leb_l[place] angs = leb_ngrid[angs] return angs
# Prune scheme JCP 102, 346 (1995); DOI:10.1063/1.469408
[docs] def treutler_prune(nuc, rads, n_ang, radii=None): '''Treutler-Ahlrichs Args: nuc : int Nuclear charge. rads : 1D array Grid coordinates on radical axis. n_ang : int Max number of grids over angular part. Returns: A list has the same length as rads. The list element is the number of grids over angular part for each radial grid. ''' nr = len(rads) leb_ngrid = numpy.empty(nr, dtype=int) leb_ngrid[:nr//3] = 14 # l=5 leb_ngrid[nr//3:nr//2] = 50 # l=11 leb_ngrid[nr//2:] = n_ang return leb_ngrid
########################################################### # Becke partitioning # Stratmann, Scuseria, Frisch. CPL, 257, 213 (1996), eq.11
[docs] def stratmann(g): '''Stratmann, Scuseria, Frisch. CPL, 257, 213 (1996); DOI:10.1016/0009-2614(96)00600-8''' a = .64 # for eq. 14 g = numpy.asarray(g) ma = g/a ma2 = ma * ma g1 = numpy.asarray((1/16.)*(ma*(35 + ma2*(-35 + ma2*(21 - 5 *ma2))))) g1[g<=-a] = -1 g1[g>= a] = 1 return g1
[docs] def original_becke(g): '''Becke, JCP 88, 2547 (1988); DOI:10.1063/1.454033''' # This function has been optimized in the C code VXCgen_grid # g = (3 - g**2) * g * .5 # g = (3 - g**2) * g * .5 # g = (3 - g**2) * g * .5 # return g pass
[docs] def gen_atomic_grids(mol, atom_grid={}, radi_method=radi.gauss_chebyshev, level=3, prune=nwchem_prune, **kwargs): '''Generate number of radial grids and angular grids for the given molecule. Returns: A dict, with the atom symbol for the dict key. For each atom type, the dict value has two items: one is the meshgrid coordinates wrt the atom center; the second is the volume of that grid. ''' if isinstance(atom_grid, (list, tuple)): atom_grid = {mol.atom_symbol(ia): atom_grid for ia in range(mol.natm)} atom_grids_tab = {} for ia in range(mol.natm): symb = mol.atom_symbol(ia) if symb not in atom_grids_tab: chg = gto.charge(symb) if symb in atom_grid: n_rad, n_ang = atom_grid[symb] if n_ang not in LEBEDEV_NGRID: if n_ang in LEBEDEV_ORDER: logger.warn(mol, 'n_ang %d for atom %d %s is not ' 'the supported Lebedev angular grids. ' 'Set n_ang to %d', n_ang, ia, symb, LEBEDEV_ORDER[n_ang]) n_ang = LEBEDEV_ORDER[n_ang] else: raise ValueError('Unsupported angular grids %d' % n_ang) else: n_rad = _default_rad(chg, level) n_ang = _default_ang(chg, level) rad, dr = radi_method(n_rad, chg, ia, **kwargs) rad_weight = 4*numpy.pi * rad**2 * dr if callable(prune): angs = prune(chg, rad, n_ang) else: angs = [n_ang] * n_rad logger.debug(mol, 'atom %s rad-grids = %d, ang-grids = %s', symb, n_rad, angs) angs = numpy.array(angs) coords = [] vol = [] for n in sorted(set(angs)): grid = MakeAngularGrid(n) idx = numpy.where(angs==n)[0] #coords.append(numpy.einsum('i,jk->jik', rad[idx], grid[:,:3]).reshape(-1,3)) #vol.append(numpy.einsum('i,j->ji', rad_weight[idx], grid[:,3]).ravel()) for i0, i1 in lib.prange(0, len(idx), 12): # 12 radi-grids as a group coords.append(numpy.einsum('i,jk->jik',rad[idx[i0:i1]], grid[:,:3]).reshape(-1,3)) vol.append(numpy.einsum('i,j->ji', rad_weight[idx[i0:i1]], grid[:,3]).ravel()) atom_grids_tab[symb] = (numpy.vstack(coords), numpy.hstack(vol)) return atom_grids_tab
[docs] def get_partition(mol, atom_grids_tab, radii_adjust=None, atomic_radii=radi.BRAGG_RADII, becke_scheme=original_becke, concat=True): '''Generate the mesh grid coordinates and weights for DFT numerical integration. We can change radii_adjust, becke_scheme functions to generate different meshgrid. Kwargs: concat: bool Whether to concatenate grids and weights in return Returns: grid_coord and grid_weight arrays. grid_coord array has shape (N,3); weight 1D array has N elements. ''' if callable(radii_adjust) and atomic_radii is not None: f_radii_adjust = radii_adjust(mol, atomic_radii) else: f_radii_adjust = None atm_coords = numpy.asarray(mol.atom_coords() , order='C') atm_dist = gto.inter_distance(mol) if (becke_scheme is original_becke and (radii_adjust is radi.treutler_atomic_radii_adjust or radii_adjust is radi.becke_atomic_radii_adjust or f_radii_adjust is None)): if f_radii_adjust is None: p_radii_table = lib.c_null_ptr() else: f_radii_table = numpy.asarray([f_radii_adjust(i, j, 0) for i in range(mol.natm) for j in range(mol.natm)]) p_radii_table = f_radii_table.ctypes.data_as(ctypes.c_void_p) def gen_grid_partition(coords): coords = numpy.asarray(coords, order='F') ngrids = coords.shape[0] pbecke = numpy.empty((mol.natm,ngrids)) libdft.VXCgen_grid(pbecke.ctypes.data_as(ctypes.c_void_p), coords.ctypes.data_as(ctypes.c_void_p), atm_coords.ctypes.data_as(ctypes.c_void_p), p_radii_table, ctypes.c_int(mol.natm), ctypes.c_int(ngrids)) return pbecke else: def gen_grid_partition(coords): ngrids = coords.shape[0] grid_dist = numpy.empty((mol.natm,ngrids)) for ia in range(mol.natm): dc = coords - atm_coords[ia] grid_dist[ia] = numpy.sqrt(numpy.einsum('ij,ij->i',dc,dc)) pbecke = numpy.ones((mol.natm,ngrids)) for i in range(mol.natm): for j in range(i): g = 1/atm_dist[i,j] * (grid_dist[i]-grid_dist[j]) if f_radii_adjust is not None: g = f_radii_adjust(i, j, g) g = becke_scheme(g) pbecke[i] *= .5 * (1-g) pbecke[j] *= .5 * (1+g) return pbecke coords_all = [] weights_all = [] for ia in range(mol.natm): coords, vol = atom_grids_tab[mol.atom_symbol(ia)] coords = coords + atm_coords[ia] pbecke = gen_grid_partition(coords) weights = vol * pbecke[ia] * (1./pbecke.sum(axis=0)) coords_all.append(coords) weights_all.append(weights) if concat: coords_all = numpy.vstack(coords_all) weights_all = numpy.hstack(weights_all) return coords_all, weights_all
gen_partition = get_partition
[docs] def make_mask(mol, coords, relativity=0, shls_slice=None, cutoff=CUTOFF, verbose=None): '''Mask to indicate whether a shell is ignorable on grids. See also the function gto.eval_gto.make_screen_index Args: mol : an instance of :class:`Mole` coords : 2D array, shape (N,3) The coordinates of grids. Kwargs: relativity : bool No effects. shls_slice : 2-element list (shl_start, shl_end). If given, only part of AOs (shl_start <= shell_id < shl_end) are evaluated. By default, all shells defined in mol will be evaluated. verbose : int or object of :class:`Logger` No effects. Returns: 2D mask array of shape (N,nbas), where N is the number of grids, nbas is the number of shells. ''' return make_screen_index(mol, coords, shls_slice, cutoff)
[docs] def arg_group_grids(mol, coords, box_size=GROUP_BOX_SIZE): ''' Partition the entire space into small boxes according to the input box_size. Group the grids against these boxes. ''' atom_coords = mol.atom_coords() boundary = [atom_coords.min(axis=0) - GROUP_BOUNDARY_PENALTY, atom_coords.max(axis=0) + GROUP_BOUNDARY_PENALTY] # how many boxes inside the boundary boxes = ((boundary[1] - boundary[0]) * (1./box_size)).round().astype(int) tot_boxes = numpy.prod(boxes + 2) logger.debug(mol, 'tot_boxes %d, boxes in each direction %s', tot_boxes, boxes) # box_size is the length of each edge of the box box_size = (boundary[1] - boundary[0]) / boxes frac_coords = (coords - boundary[0]) * (1./box_size) box_ids = numpy.floor(frac_coords).astype(int) box_ids[box_ids<-1] = -1 box_ids[box_ids[:,0] > boxes[0], 0] = boxes[0] box_ids[box_ids[:,1] > boxes[1], 1] = boxes[1] box_ids[box_ids[:,2] > boxes[2], 2] = boxes[2] rev_idx, counts = numpy.unique(box_ids, axis=0, return_inverse=True, return_counts=True)[1:3] return rev_idx.ravel().argsort(kind='stable')
def _load_conf(mod, name, default): var = getattr(__config__, name, None) if var is None: var = default elif isinstance(var): if mod is None: mod = sys.modules[__name__] var = getattr(mod, var) if callable(var): return staticmethod(var) else: return var
[docs] class Grids(lib.StreamObject): '''DFT mesh grids Attributes for Grids: level : int To control the number of radial and angular grids. Large number leads to large mesh grids. The default level 3 corresponds to (50,302) for H, He; (75,302) for second row; (80~105,434) for rest. Grids settings at other levels can be found in pyscf.dft.gen_grid.RAD_GRIDS and pyscf.dft.gen_grid.ANG_ORDER atomic_radii : 1D array | radi.BRAGG_RADII (default) | radi.COVALENT_RADII | None : to switch off atomic radii adjustment radii_adjust : function(mol, atomic_radii) => (function(atom_id, atom_id, g) => array_like_g) Function to adjust atomic radii, can be one of | radi.treutler_atomic_radii_adjust | radi.becke_atomic_radii_adjust | None : to switch off atomic radii adjustment radi_method : function(n) => (rad_grids, rad_weights) scheme for radial grids, can be one of | radi.treutler (default) | radi.delley | radi.mura_knowles | radi.gauss_chebyshev becke_scheme : function(v) => array_like_v weight partition function, can be one of | gen_grid.original_becke (default) | gen_grid.stratmann prune : function(nuc, rad_grids, n_ang) => list_n_ang_for_each_rad_grid scheme to reduce number of grids, can be one of | gen_grid.nwchem_prune (default) | gen_grid.sg1_prune | gen_grid.treutler_prune | None : to switch off grid pruning symmetry : bool whether to symmetrize mesh grids (TODO) atom_grid : dict Set (radial, angular) grids for particular atoms. Eg, grids.atom_grid = {'H': (20,110)} will generate 20 radial grids and 110 angular grids for H atom. Examples: >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1') >>> grids = dft.gen_grid.Grids(mol) >>> grids.level = 4 >>> grids.build() ''' atomic_radii = _load_conf(radi, 'dft_gen_grid_Grids_atomic_radii', radi.BRAGG_RADII) radii_adjust = _load_conf(radi, 'dft_gen_grid_Grids_radii_adjust', radi.treutler_atomic_radii_adjust) radi_method = _load_conf(radi, 'dft_gen_grid_Grids_radi_method', radi.treutler) becke_scheme = _load_conf(None, 'dft_gen_grid_Grids_becke_scheme', original_becke) prune = _load_conf(None, 'dft_gen_grid_Grids_prune', nwchem_prune) level = getattr(__config__, 'dft_gen_grid_Grids_level', 3) alignment = ALIGNMENT_UNIT cutoff = CUTOFF _keys = { 'atomic_radii', 'radii_adjust', 'radi_method', 'becke_scheme', 'prune', 'level', 'alignment', 'cutoff', 'mol', 'symmetry', 'atom_grid', 'non0tab', 'screen_index', 'coords', 'weights', } def __init__(self, mol): self.mol = mol self.stdout = mol.stdout self.verbose = mol.verbose self.symmetry = mol.symmetry self.atom_grid = {} ################################################## # don't modify the following attributes, they are not input options self.non0tab = None # Integral screen index ~= NBINS + log(ao). # screen_index > 0 for non-zero AOs self.screen_index = None self.coords = None self.weights = None @property def size(self): return getattr(self.weights, 'size', 0) def __setattr__(self, key, val): if key in ('atom_grid', 'atomic_radii', 'radii_adjust', 'radi_method', 'becke_scheme', 'prune', 'level'): self.reset() super().__setattr__(key, val)
[docs] def dump_flags(self, verbose=None): logger.info(self, 'radial grids: %s', self.radi_method.__doc__) logger.info(self, 'becke partition: %s', self.becke_scheme.__doc__) logger.info(self, 'pruning grids: %s', self.prune) logger.info(self, 'grids dens level: %d', self.level) logger.info(self, 'symmetrized grids: %s', self.symmetry) if self.radii_adjust is not None: logger.info(self, 'atomic radii adjust function: %s', self.radii_adjust) logger.debug2(self, 'atomic_radii : %s', self.atomic_radii) if self.atom_grid: logger.info(self, 'User specified grid scheme %s', str(self.atom_grid)) return self
[docs] def build(self, mol=None, with_non0tab=False, sort_grids=True, **kwargs): if mol is None: mol = self.mol if self.verbose >= logger.WARN: self.check_sanity() atom_grids_tab = self.gen_atomic_grids( mol, self.atom_grid, self.radi_method, self.level, self.prune, **kwargs) self.coords, self.weights = self.get_partition( mol, atom_grids_tab, self.radii_adjust, self.atomic_radii, self.becke_scheme) if sort_grids: idx = arg_group_grids(mol, self.coords) self.coords = self.coords[idx] self.weights = self.weights[idx] if self.alignment > 1: padding = _padding_size(self.size, self.alignment) logger.debug(self, 'Padding %d grids', padding) if padding > 0: self.coords = numpy.vstack( [self.coords, numpy.repeat([[1e-4]*3], padding, axis=0)]) self.weights = numpy.hstack([self.weights, numpy.zeros(padding)]) if with_non0tab: self.non0tab = self.make_mask(mol, self.coords) self.screen_index = self.non0tab else: self.screen_index = self.non0tab = None logger.info(self, 'tot grids = %d', len(self.weights)) return self
[docs] def kernel(self, mol=None, with_non0tab=False): self.dump_flags() return self.build(mol, with_non0tab=with_non0tab)
[docs] def reset(self, mol=None): '''Reset mol and clean up relevant attributes for scanner mode''' if mol is not None: self.mol = mol self.coords = None self.weights = None self.non0tab = None self.screen_index = None return self
gen_atomic_grids = lib.module_method( gen_atomic_grids, ['atom_grid', 'radi_method', 'level', 'prune'])
[docs] @lib.with_doc(get_partition.__doc__) def get_partition(self, mol, atom_grids_tab=None, radii_adjust=None, atomic_radii=radi.BRAGG_RADII, becke_scheme=original_becke, concat=True): if atom_grids_tab is None: atom_grids_tab = self.gen_atomic_grids(mol) return get_partition(mol, atom_grids_tab, radii_adjust, atomic_radii, becke_scheme, concat=concat)
gen_partition = get_partition make_mask = lib.module_method(make_mask, absences=['cutoff'])
[docs] def prune_by_density_(self, rho, threshold=0): '''Prune grids if the electron density on the grid is small''' if threshold == 0: return self mol = self.mol n = numpy.dot(rho, self.weights) if abs(n-mol.nelectron) < NELEC_ERROR_TOL*n: rho *= self.weights idx = abs(rho) > threshold / self.weights.size logger.debug(self, 'Drop grids %d', self.weights.size - numpy.count_nonzero(idx)) self.coords = numpy.asarray(self.coords [idx], order='C') self.weights = numpy.asarray(self.weights[idx], order='C') if self.alignment > 1: padding = _padding_size(self.size, self.alignment) logger.debug(self, 'prune_by_density_: %d padding grids', padding) if padding > 0: self.coords = numpy.vstack( [self.coords, numpy.repeat([[1e-4]*3], padding, axis=0)]) self.weights = numpy.hstack([self.weights, numpy.zeros(padding)]) self.non0tab = self.make_mask(mol, self.coords) self.screen_index = self.non0tab return self
to_gpu = lib.to_gpu
def _default_rad(nuc, level=3): '''Number of radial grids ''' tab = numpy.array( (2 , 10, 18, 36, 54, 86, 118)) period = (nuc > tab).sum() return RAD_GRIDS[level,period] # Period 1 2 3 4 5 6 7 # level RAD_GRIDS = numpy.array((( 10, 15, 20, 30, 35, 40, 50), # 0 ( 30, 40, 50, 60, 65, 70, 75), # 1 ( 40, 60, 65, 75, 80, 85, 90), # 2 ( 50, 75, 80, 90, 95,100,105), # 3 ( 60, 90, 95,105,110,115,120), # 4 ( 70,105,110,120,125,130,135), # 5 ( 80,120,125,135,140,145,150), # 6 ( 90,135,140,150,155,160,165), # 7 (100,150,155,165,170,175,180), # 8 (200,200,200,200,200,200,200),)) # 9 def _default_ang(nuc, level=3): '''Order of angular grids. See LEBEDEV_ORDER for the mapping of the order and the number of angular grids''' tab = numpy.array( (2 , 10, 18, 36, 54, 86, 118)) period = (nuc > tab).sum() return LEBEDEV_ORDER[ANG_ORDER[level,period]] # Period 1 2 3 4 5 6 7 # level ANG_ORDER = numpy.array(((11, 15, 17, 17, 17, 17, 17 ), # 0 (17, 23, 23, 23, 23, 23, 23 ), # 1 (23, 29, 29, 29, 29, 29, 29 ), # 2 (29, 29, 35, 35, 35, 35, 35 ), # 3 (35, 41, 41, 41, 41, 41, 41 ), # 4 (41, 47, 47, 47, 47, 47, 47 ), # 5 (47, 53, 53, 53, 53, 53, 53 ), # 6 (53, 59, 59, 59, 59, 59, 59 ), # 7 (59, 59, 59, 59, 59, 59, 59 ), # 8 (65, 65, 65, 65, 65, 65, 65 ),)) # 9 def _padding_size(ngrids, alignment): if alignment <= 1: return 0 return (ngrids + alignment - 1) // alignment * alignment - ngrids