Source code for pyscf.dft.dks

#!/usr/bin/env python
# Copyright 2014-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
4-component Dirac-Kohn-Sham
'''


import numpy
from pyscf import lib
from pyscf.lib import logger
from pyscf.scf import dhf
from pyscf.dft import rks
from pyscf.dft import gks
from pyscf.dft import r_numint


[docs] @lib.with_doc(gks.get_veff.__doc__) def get_veff(ks, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1): if ks.nlc or ks._numint.libxc.is_nlc(ks.xc): raise NotImplementedError(f'NLC functional {ks.xc} + {ks.nlc}') return gks.get_veff(ks, mol, dm, dm_last, vhf_last, hermi)
[docs] def energy_elec(ks, dm=None, h1e=None, vhf=None): r'''Electronic part of DKS energy. Note this function has side effects which cause mf.scf_summary updated. Args: ks : an instance of DFT class dm : 2D ndarray one-partical density matrix h1e : 2D ndarray Core hamiltonian Returns: DKS electronic energy and the 2-electron contribution ''' e1, e2 = rks.energy_elec(ks, dm, h1e, vhf) if not ks.with_ssss and ks.ssss_approx == 'Visscher': e2 += dhf._vischer_ssss_correction(ks, dm) ks.scf_summary['e2'] = e2 return e1, e2
[docs] class KohnShamDFT(rks.KohnShamDFT): def __init__(self, xc='LDA,VWN'): rks.KohnShamDFT.__init__(self, xc) self._numint = r_numint.RNumInt()
[docs] def dump_flags(self, verbose=None): rks.KohnShamDFT.dump_flags(self, verbose) logger.info(self, 'collinear = %s', self._numint.collinear) if self._numint.collinear[0] == 'm': logger.info(self, 'mcfun spin_samples = %s', self._numint.spin_samples) logger.info(self, 'mcfun collinear_thrd = %s', self._numint.collinear_thrd) logger.info(self, 'mcfun collinear_samples = %s', self._numint.collinear_samples) return self
get_veff = gks.get_veff energy_elec = gks.energy_elec @property def collinear(self): return self._numint.collinear @collinear.setter def collinear(self, val): self._numint.collinear = val
[docs] def to_rhf(self): raise RuntimeError
[docs] def to_uhf(self): raise RuntimeError
[docs] def to_ghf(self): raise RuntimeError
[docs] def to_rks(self, xc=None): raise RuntimeError
[docs] def to_uks(self, xc=None): raise RuntimeError
[docs] def to_gks(self, xc=None): raise RuntimeError
[docs] def to_dhf(self): '''Convert the input mean-field object to a DHF object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' mf = self.view(dhf.DHF) mf.converged = False return mf
to_hf = to_dhf
[docs] def to_dks(self, xc=None): if xc is not None and xc != self.xc: mf = self.copy() mf.xc = xc mf.converged = False return self
to_ks = to_dks
[docs] class DKS(KohnShamDFT, dhf.DHF): '''Kramers unrestricted Dirac-Kohn-Sham''' def __init__(self, mol, xc='LDA,VWN'): dhf.DHF.__init__(self, mol) KohnShamDFT.__init__(self, xc)
[docs] def dump_flags(self, verbose=None): dhf.DHF.dump_flags(self, verbose) KohnShamDFT.dump_flags(self, verbose) return self
[docs] def x2c1e(self): from pyscf.x2c import dft x2chf = dft.UKS(self.mol) x2chf.__dict__.update(self.__dict__) return x2chf
x2c = x2c1e
UKS = UDKS = DKS
[docs] class RDKS(DKS, dhf.RDHF): '''Kramers restricted Dirac-Kohn-Sham''' def __init__(self, mol, xc='LDA,VWN'): dhf.RDHF.__init__(self, mol) KohnShamDFT.__init__(self, xc)
[docs] def x2c1e(self): from pyscf.x2c import dft x2chf = dft.RKS(self.mol) x2chf.__dict__.update(self.__dict__) return x2chf
x2c = x2c1e
[docs] def to_dhf(self): '''Convert the input mean-field object to a DHF object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' mf = self.view(dhf.RDHF) mf.converged = False return mf
RKS = RDKS