pyscf.prop.gtensor package

Submodules

pyscf.prop.gtensor.dhf module

Dirac Hartree-Fock g-tensor (In testing)

Refs: TCA, 129, 715

class pyscf.prop.gtensor.dhf.GTensor(mf)[source]

Bases: pyscf.lib.misc.StreamObject

dump_flags(verbose=None)[source]
kernel(gauge_orig=None, mb='RKB', with_gaunt=False, verbose=None)

Kernel function is the main driver of a method. Every method should define the kernel function as the entry of the calculation. Note the return value of kernel function is not strictly defined. It can be anything related to the method (such as the energy, the wave-function, the DFT mesh grids etc.).

pyscf.prop.gtensor.dhf.kernel(gobj, gauge_orig=None, mb='RKB', with_gaunt=False, verbose=None)[source]

pyscf.prop.gtensor.uhf module

Non-relativistic unrestricted Hartree-Fock g-tensor

Refs:

JPCA 101, 3388 (1997); DOI:10.1021/jp963060t JCP 115, 11080 (2001); DOI:10.1063/1.1419058 JCP 119, 10489 (2003); DOI:10.1063/1.1620497

Note g-tensor = 1/muB d^2 E/ dB dS In some literature, muB is not explicitly presented in the perturbation formula.

class pyscf.prop.gtensor.uhf.GTensor(mf)[source]

Bases: pyscf.lib.misc.StreamObject

dE = B dot gtensor dot s

Attributes:
dia_soc2estr or bool

2-electron spin-orbit coupling for diamagnetic term. Its value can be ‘SSO’, ‘SOO’, ‘SSO+SOO’, None/False or True (=’SSO+SOO’). Default is False.

para_soc2estr or bool

2-electron spin-orbit coupling for paramagnetic term. Its value can be ‘SSO’, ‘SOO’, ‘SSO+SOO’, None/False, True (=’SSO+SOO’) ‘SOMF’, ‘AMFI’ (=’AMFI+SSO+SOO’), ‘SOMF+AMFI’, ‘AMFI+SSO’, ‘AMFI+SOO’, ‘AMFI+SSO+SOO’. Default is ‘SSO+SOO’.

koseki_chargebool

Whether to use Koseki effective SOC charge in 1-electron diamagnetic term and paramagnetic term. Default is False.

align(gtensor)[source]
dia(dm0=None, gauge_orig=None)[source]
dump_flags(verbose=None)[source]
get_fock(dm0=None, gauge_orig=None)

First order partial derivatives of Fock matrix wrt external magnetic field. frac{partial F}{partial B}

get_ovlp(mol=None, gauge_orig=None)[source]
kernel(mo1=None)[source]

Kernel function is the main driver of a method. Every method should define the kernel function as the entry of the calculation. Note the return value of kernel function is not strictly defined. It can be anything related to the method (such as the energy, the wave-function, the DFT mesh grids etc.).

make_dia_gc2e(dm0, gauge_orig, sso_qed_fac=1)

Note the side effects of set_common_origin

make_para_soc2e(dm0, dm10, sso_qed_fac=1)
para(mo10=None, mo_coeff=None, mo_occ=None)[source]
solve_mo1(mo_energy=None, mo_coeff=None, mo_occ=None, h1=None, s1=None, with_cphf=None)

Solve the first order equation

Kwargs:
with_cphfboolean or function(dm_mo) => v1_mo

If a boolean value is given, the value determines whether CPHF equation will be solved or not. The induced potential will be generated by the function gen_vind. If a function is given, CPHF equation will be solved, and the given function is used to compute induced potential

pyscf.prop.gtensor.uhf.align(gtensor)[source]

Transform the orientation of g-tensor. The new orientations are the eigenvector of G matrix (G=g.gT)

pyscf.prop.gtensor.uhf.dia(gobj, dm0, gauge_orig=None)[source]

Note the side effects of set_common_origin

pyscf.prop.gtensor.uhf.get_j(mol, dm0)[source]
pyscf.prop.gtensor.uhf.get_j_amfi(mol, dm0)[source]

Atomic-mean-field approximation

pyscf.prop.gtensor.uhf.get_jk(mol, dm0)[source]
pyscf.prop.gtensor.uhf.get_jk_amfi(mol, dm0)[source]

Atomic-mean-field approximation

pyscf.prop.gtensor.uhf.make_dia_gc2e(gobj, dm0, gauge_orig, sso_qed_fac=1)[source]

Note the side effects of set_common_origin

pyscf.prop.gtensor.uhf.make_h01_soc1e(gobj, mo_coeff, mo_occ, qed_fac=1)[source]
pyscf.prop.gtensor.uhf.make_h01_soc2e(gobj, mo_coeff, mo_occ, sso_qed_fac=1)[source]
pyscf.prop.gtensor.uhf.make_para_soc2e(gobj, dm0, dm10, sso_qed_fac=1)[source]
pyscf.prop.gtensor.uhf.para(gobj, mo10, mo_coeff, mo_occ, qed_fac=1)[source]
pyscf.prop.gtensor.uhf.para_for_debug(gobj, mo10, mo_coeff, mo_occ, qed_fac=1)[source]

pyscf.prop.gtensor.uks module

Non-relativistic unrestricted Kohn-Sham g-tensor (In testing)

Refs:

JPC, 101, 3388 JCP, 115, 11080 JCP, 119, 10489

class pyscf.prop.gtensor.uks.GTensor(scf_method)[source]

Bases: pyscf.prop.gtensor.uhf.GTensor

dE = B dot gtensor dot s

get_fock(dm0=None, gauge_orig=None)

First order Fock matrix wrt external magnetic field

make_para_soc2e(dm0, dm10, sso_qed_fac=1)
para(mo10=None, mo_coeff=None, mo_occ=None)[source]
pyscf.prop.gtensor.uks.get_vxc_soc(ni, mol, grids, xc_code, dms, max_memory=2000, verbose=None)[source]
pyscf.prop.gtensor.uks.make_para_soc2e(gobj, dm0, dm10, sso_qed_fac=1)[source]
pyscf.prop.gtensor.uks.para(gobj, mo10, mo_coeff, mo_occ, qed_fac=1)[source]

Module contents