Source code for pyscf.x2c.sfx2c1e_grad

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

'''
Analytical nuclear gradients for 1-electron spin-free x2c method

Ref.
JCP 135, 084114 (2011); DOI:10.1063/1.3624397
'''

from functools import reduce
import numpy
import scipy.linalg
from pyscf import lib
from pyscf import gto
from pyscf.x2c import x2c

[docs] def hcore_grad_generator(x2cobj, mol=None): '''nuclear gradients of 1-component X2c hcore Hamiltonian (spin-free part only) ''' if mol is None: mol = x2cobj.mol xmol, contr_coeff = x2cobj.get_xmol(mol) if x2cobj.basis is not None: s22 = xmol.intor_symmetric('int1e_ovlp') s21 = gto.intor_cross('int1e_ovlp', xmol, mol) contr_coeff = lib.cho_solve(s22, s21) get_h1_xmol = gen_sf_hfw(xmol, x2cobj.approx) def hcore_deriv(atm_id): h1 = get_h1_xmol(atm_id) if contr_coeff is not None: h1 = lib.einsum('pi,xpq,qj->xij', contr_coeff, h1, contr_coeff) return numpy.asarray(h1) return hcore_deriv
[docs] def gen_sf_hfw(mol, approx='1E'): approx = approx.upper() c = lib.param.LIGHT_SPEED h0, s0 = _get_h0_s0(mol) e0, c0 = scipy.linalg.eigh(h0, s0) aoslices = mol.aoslice_by_atom() nao = mol.nao_nr() if 'ATOM' in approx: x0 = numpy.zeros((nao,nao)) for ia in range(mol.natm): ish0, ish1, p0, p1 = aoslices[ia] shls_slice = (ish0, ish1, ish0, ish1) t1 = mol.intor('int1e_kin', shls_slice=shls_slice) s1 = mol.intor('int1e_ovlp', shls_slice=shls_slice) with mol.with_rinv_at_nucleus(ia): z = -mol.atom_charge(ia) v1 = z * mol.intor('int1e_rinv', shls_slice=shls_slice) w1 = z * mol.intor('int1e_prinvp', shls_slice=shls_slice) x0[p0:p1,p0:p1] = x2c._x2c1e_xmatrix(t1, v1, w1, s1, c) else: cl0 = c0[:nao,nao:] cs0 = c0[nao:,nao:] x0 = scipy.linalg.solve(cl0.T, cs0.T).T s_nesc0 = s0[:nao,:nao] + reduce(numpy.dot, (x0.T, s0[nao:,nao:], x0)) R0 = x2c._get_r(s0[:nao,:nao], s_nesc0) c_fw0 = numpy.vstack((R0, numpy.dot(x0, R0))) h0_fw_half = numpy.dot(h0, c_fw0) get_h1_etc = _gen_first_order_quantities(mol, e0, c0, x0, approx) def hcore_deriv(ia): h1_ao, s1_ao, e1, c1, x1, s_nesc1, R1, c_fw1 = get_h1_etc(ia) hfw1 = lib.einsum('xpi,pj->xij', c_fw1, h0_fw_half) hfw1 = hfw1 + hfw1.transpose(0,2,1) hfw1+= lib.einsum('pi,xpq,qj->xij', c_fw0, h1_ao, c_fw0) return hfw1 return hcore_deriv
def _get_h0_s0(mol): c = lib.param.LIGHT_SPEED s = mol.intor_symmetric('int1e_ovlp') t = mol.intor_symmetric('int1e_kin') v = mol.intor_symmetric('int1e_nuc') w = mol.intor_symmetric('int1e_pnucp') nao = s.shape[0] n2 = nao * 2 h = numpy.zeros((n2,n2), dtype=v.dtype) m = numpy.zeros((n2,n2), dtype=v.dtype) h[:nao,:nao] = v h[:nao,nao:] = t h[nao:,:nao] = t h[nao:,nao:] = w * (.25/c**2) - t m[:nao,:nao] = s m[nao:,nao:] = t * (.5/c**2) return h, m def _gen_h1_s1(mol): c = lib.param.LIGHT_SPEED s1 = mol.intor('int1e_ipovlp', comp=3) t1 = mol.intor('int1e_ipkin', comp=3) v1 = mol.intor('int1e_ipnuc', comp=3) w1 = mol.intor('int1e_ippnucp', comp=3) aoslices = mol.aoslice_by_atom() nao = s1.shape[1] n2 = nao * 2 def get_h1_s1(ia): h1 = numpy.zeros((3,n2,n2), dtype=v1.dtype) m1 = numpy.zeros((3,n2,n2), dtype=v1.dtype) ish0, ish1, i0, i1 = aoslices[ia] with mol.with_rinv_origin(mol.atom_coord(ia)): z = mol.atom_charge(ia) rinv1 = -z*mol.intor('int1e_iprinv', comp=3) prinvp1 = -z*mol.intor('int1e_ipprinvp', comp=3) rinv1 [:,i0:i1,:] -= v1[:,i0:i1] prinvp1[:,i0:i1,:] -= w1[:,i0:i1] for i in range(3): s1cc = numpy.zeros((nao,nao)) t1cc = numpy.zeros((nao,nao)) s1cc[i0:i1,:] =-s1[i,i0:i1] s1cc[:,i0:i1]-= s1[i,i0:i1].T t1cc[i0:i1,:] =-t1[i,i0:i1] t1cc[:,i0:i1]-= t1[i,i0:i1].T v1cc = rinv1[i] + rinv1[i].T w1cc = prinvp1[i] + prinvp1[i].T h1[i,:nao,:nao] = v1cc h1[i,:nao,nao:] = t1cc h1[i,nao:,:nao] = t1cc h1[i,nao:,nao:] = w1cc * (.25/c**2) - t1cc m1[i,:nao,:nao] = s1cc m1[i,nao:,nao:] = t1cc * (.5/c**2) return h1, m1 return get_h1_s1 def _gen_first_order_quantities(mol, e0, c0, x0, approx='1E'): c = lib.param.LIGHT_SPEED nao = e0.size // 2 n2 = nao * 2 epq = e0[:,None] - e0 degen_mask = abs(epq) < 1e-7 epq[degen_mask] = 1e200 cl0 = c0[:nao,nao:] # cs0 = c0[nao:,nao:] s0 = mol.intor('int1e_ovlp') t0 = mol.intor('int1e_kin') t0x0 = numpy.dot(t0, x0) * (.5/c**2) s_nesc0 = s0[:nao,:nao] + numpy.dot(x0.T, t0x0) w_s, v_s = scipy.linalg.eigh(s0) w_sqrt = numpy.sqrt(w_s) s_nesc0_vbas = reduce(numpy.dot, (v_s.T, s_nesc0, v_s)) R0_mid = numpy.einsum('i,ij,j->ij', 1./w_sqrt, s_nesc0_vbas, 1./w_sqrt) wr0, vr0 = scipy.linalg.eigh(R0_mid) wr0_sqrt = numpy.sqrt(wr0) # R0 in v_s basis R0 = numpy.dot(vr0/wr0_sqrt, vr0.T) R0 *= w_sqrt R0 /= w_sqrt[:,None] # Transform R0 back R0 = reduce(numpy.dot, (v_s, R0, v_s.T)) get_h1_s1 = _gen_h1_s1(mol) def get_first_order(ia): h1ao, s1ao = get_h1_s1(ia) h1mo = lib.einsum('pi,xpq,qj->xij', c0.conj(), h1ao, c0) s1mo = lib.einsum('pi,xpq,qj->xij', c0.conj(), s1ao, c0) if 'ATOM' in approx: e1 = c1_ao = x1 = None s_nesc1 = lib.einsum('pi,xpq,qj->xij', x0, s1ao[:,nao:,nao:], x0) s_nesc1+= s1ao[:,:nao,:nao] else: f1 = h1mo[:,:,nao:] - s1mo[:,:,nao:] * e0[nao:] c1 = f1 / -epq[:,nao:] e1 = f1[:,nao:] e1[:,~degen_mask[nao:,nao:]] = 0 c1_ao = lib.einsum('pq,xqi->xpi', c0, c1) cl1 = c1_ao[:,:nao] cs1 = c1_ao[:,nao:] tmp = cs1 - lib.einsum('pq,xqi->xpi', x0, cl1) x1 = scipy.linalg.solve(cl0.T, tmp.reshape(-1,nao).T) x1 = x1.T.reshape(3,nao,nao) s_nesc1 = lib.einsum('xpi,pj->xij', x1, t0x0) s_nesc1 = s_nesc1 + s_nesc1.transpose(0,2,1) s_nesc1+= lib.einsum('pi,xpq,qj->xij', x0, s1ao[:,nao:,nao:], x0) s_nesc1+= s1ao[:,:nao,:nao] R1 = numpy.empty((3,nao,nao)) c_fw1 = numpy.empty((3,n2,nao)) for i in range(3): R1[i] = _get_r1((w_sqrt,v_s), s_nesc0_vbas, s1ao[i,:nao,:nao], s_nesc1[i], (wr0_sqrt,vr0)) c_fw1[i,:nao] = R1[i] c_fw1[i,nao:] = numpy.dot(x0, R1[i]) if 'ATOM' not in approx: c_fw1[i,nao:] += numpy.dot(x1[i], R0) return h1ao, s1ao, e1, c1_ao, x1, s_nesc1, R1, c_fw1 return get_first_order def _get_r1(s0_roots, s_nesc0, s1, s_nesc1, r0_roots): # See JCP 135, 084114 (2011); DOI:10.1063/1.3624397, Eq (34) w_sqrt, v_s = s0_roots w_invsqrt = 1. / w_sqrt wr0_sqrt, vr0 = r0_roots wr0_invsqrt = 1. / wr0_sqrt s1 = reduce(numpy.dot, (v_s.T, s1, v_s)) s_nesc1 = reduce(numpy.dot, (v_s.T, s_nesc1, v_s)) s1_sqrt = s1 / (w_sqrt[:,None] + w_sqrt) s1_invsqrt = (numpy.einsum('i,ij,j->ij', w_invsqrt**2, s1, w_invsqrt**2) / -(w_invsqrt[:,None] + w_invsqrt)) R1_mid = numpy.dot(s1_invsqrt, s_nesc0) * w_invsqrt R1_mid = R1_mid + R1_mid.T R1_mid += numpy.einsum('i,ij,j->ij', w_invsqrt, s_nesc1, w_invsqrt) R1_mid = reduce(numpy.dot, (vr0.T, R1_mid, vr0)) R1_mid /= -(wr0_invsqrt[:,None] + wr0_invsqrt) R1_mid = numpy.einsum('i,ij,j->ij', wr0_invsqrt**2, R1_mid, wr0_invsqrt**2) vr0_wr0_sqrt = vr0 * wr0_invsqrt vr0_s0_sqrt = vr0.T * w_sqrt vr0_s0_invsqrt = vr0.T * w_invsqrt R1 = reduce(numpy.dot, (vr0_s0_invsqrt.T, R1_mid, vr0_s0_sqrt)) R1 += reduce(numpy.dot, (s1_invsqrt, vr0_wr0_sqrt, vr0_s0_sqrt)) R1 += reduce(numpy.dot, (vr0_s0_invsqrt.T, vr0_wr0_sqrt.T, s1_sqrt)) R1 = reduce(numpy.dot, (v_s, R1, v_s.T)) return R1 if __name__ == '__main__': bak = lib.param.LIGHT_SPEED lib.param.LIGHT_SPEED = 10 def get_h(mol): c = lib.param.LIGHT_SPEED t = mol.intor_symmetric('int1e_kin') v = mol.intor_symmetric('int1e_nuc') s = mol.intor_symmetric('int1e_ovlp') w = mol.intor_symmetric('int1e_pnucp') return x2c._x2c1e_get_hcore(t, v, w, s, c) mol = gto.M( verbose = 0, atom = [["O" , (0. , 0. , 0.0001)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) h_1 = get_h(mol) mol = gto.M( verbose = 0, atom = [["O" , (0. , 0. ,-0.0001)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) h_2 = get_h(mol) h_ref = (h_1 - h_2) / 0.0002 * lib.param.BOHR mol = gto.M( verbose = 0, atom = [["O" , (0. , 0. , 0. )], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) hcore_deriv = gen_sf_hfw(mol) h1 = hcore_deriv(0) print(abs(h1[2]-h_ref).max()) lib.param.LIGHT_SPEED = bak print(lib.finger(h1) - -1.4618392662849411) hcore_deriv = gen_sf_hfw(mol, approx='atom1e') h1 = hcore_deriv(0) print(lib.finger(h1) - -1.3596826558976405)