Source code for pyscf.tdscf.uhf

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#


import numpy
from pyscf import lib
from pyscf import scf
from pyscf import symm
from pyscf import ao2mo
from pyscf.lib import logger
from pyscf.scf import uhf_symm
from pyscf.tdscf import rhf
from pyscf.tdscf._lr_eig import eigh as lr_eigh, eig as lr_eig
from pyscf.data import nist
from pyscf import __config__

OUTPUT_THRESHOLD = getattr(__config__, 'tdscf_rhf_get_nto_threshold', 0.3)
REAL_EIG_THRESHOLD = getattr(__config__, 'tdscf_rhf_TDDFT_pick_eig_threshold', 1e-4)
MO_BASE = getattr(__config__, 'MO_BASE', 1)


[docs] def gen_tda_operation(mf, fock_ao=None, wfnsym=None): '''A x Kwargs: wfnsym : int or str Point group symmetry irrep symbol or ID for excited CIS wavefunction. ''' mol = mf.mol mo_coeff = mf.mo_coeff assert (mo_coeff[0].dtype == numpy.double) mo_energy = mf.mo_energy mo_occ = mf.mo_occ nao, nmo = mo_coeff[0].shape occidxa = numpy.where(mo_occ[0]>0)[0] occidxb = numpy.where(mo_occ[1]>0)[0] viridxa = numpy.where(mo_occ[0]==0)[0] viridxb = numpy.where(mo_occ[1]==0)[0] nocca = len(occidxa) noccb = len(occidxb) nvira = len(viridxa) nvirb = len(viridxb) orboa = mo_coeff[0][:,occidxa] orbob = mo_coeff[1][:,occidxb] orbva = mo_coeff[0][:,viridxa] orbvb = mo_coeff[1][:,viridxb] if wfnsym is not None and mol.symmetry: if isinstance(wfnsym, str): wfnsym = symm.irrep_name2id(mol.groupname, wfnsym) wfnsym = wfnsym % 10 # convert to D2h subgroup x_sym_a, x_sym_b = _get_x_sym_table(mf) sym_forbid = numpy.append(x_sym_a.ravel(), x_sym_b.ravel()) != wfnsym e_ia_a = mo_energy[0][viridxa] - mo_energy[0][occidxa,None] e_ia_b = mo_energy[1][viridxb] - mo_energy[1][occidxb,None] e_ia = numpy.hstack((e_ia_a.reshape(-1), e_ia_b.reshape(-1))) hdiag = e_ia if wfnsym is not None and mol.symmetry: hdiag[sym_forbid] = 0 mem_now = lib.current_memory()[0] max_memory = max(2000, mf.max_memory*.8-mem_now) vresp = mf.gen_response(hermi=0, max_memory=max_memory) def vind(zs): nz = len(zs) zs = numpy.asarray(zs) if wfnsym is not None and mol.symmetry: zs = numpy.copy(zs) zs[:,sym_forbid] = 0 za = zs[:,:nocca*nvira].reshape(nz,nocca,nvira) zb = zs[:,nocca*nvira:].reshape(nz,noccb,nvirb) dmova = lib.einsum('xov,qv,po->xpq', za, orbva.conj(), orboa) dmovb = lib.einsum('xov,qv,po->xpq', zb, orbvb.conj(), orbob) v1ao = vresp(numpy.asarray((dmova,dmovb))) v1a = lib.einsum('xpq,po,qv->xov', v1ao[0], orboa.conj(), orbva) v1b = lib.einsum('xpq,po,qv->xov', v1ao[1], orbob.conj(), orbvb) v1a += numpy.einsum('xia,ia->xia', za, e_ia_a) v1b += numpy.einsum('xia,ia->xia', zb, e_ia_b) hx = numpy.hstack((v1a.reshape(nz,-1), v1b.reshape(nz,-1))) if wfnsym is not None and mol.symmetry: hx[:,sym_forbid] = 0 return hx return vind, hdiag
gen_tda_hop = gen_tda_operation def _get_x_sym_table(mf): '''Irrep (up to D2h symmetry) of each coefficient in X amplitude''' mol = mf.mol mo_occa, mo_occb = mf.mo_occ orbsyma, orbsymb = uhf_symm.get_orbsym(mol, mf.mo_coeff) orbsyma = orbsyma % 10 orbsymb = orbsymb % 10 x_sym_a = orbsyma[mo_occa>0,None] ^ orbsyma[mo_occa==0] x_sym_b = orbsymb[mo_occb>0,None] ^ orbsymb[mo_occb==0] return x_sym_a, x_sym_b
[docs] def get_ab(mf, mo_energy=None, mo_coeff=None, mo_occ=None): r'''A and B matrices for TDDFT response function. A[i,a,j,b] = \delta_{ab}\delta_{ij}(E_a - E_i) + (ia||bj) B[i,a,j,b] = (ia||jb) Spin symmetry is considered in the returned A, B lists. List A has three items: (A_aaaa, A_aabb, A_bbbb). A_bbaa = A_aabb.transpose(2,3,0,1). B has three items: (B_aaaa, B_aabb, B_bbbb). B_bbaa = B_aabb.transpose(2,3,0,1). ''' if mo_energy is None: mo_energy = mf.mo_energy if mo_coeff is None: mo_coeff = mf.mo_coeff if mo_occ is None: mo_occ = mf.mo_occ mol = mf.mol nao = mol.nao_nr() occidx_a = numpy.where(mo_occ[0]==1)[0] viridx_a = numpy.where(mo_occ[0]==0)[0] occidx_b = numpy.where(mo_occ[1]==1)[0] viridx_b = numpy.where(mo_occ[1]==0)[0] orbo_a = mo_coeff[0][:,occidx_a] orbv_a = mo_coeff[0][:,viridx_a] orbo_b = mo_coeff[1][:,occidx_b] orbv_b = mo_coeff[1][:,viridx_b] nocc_a = orbo_a.shape[1] nvir_a = orbv_a.shape[1] nocc_b = orbo_b.shape[1] nvir_b = orbv_b.shape[1] mo_a = numpy.hstack((orbo_a,orbv_a)) mo_b = numpy.hstack((orbo_b,orbv_b)) nmo_a = nocc_a + nvir_a nmo_b = nocc_b + nvir_b e_ia_a = (mo_energy[0][viridx_a,None] - mo_energy[0][occidx_a]).T e_ia_b = (mo_energy[1][viridx_b,None] - mo_energy[1][occidx_b]).T a_aa = numpy.diag(e_ia_a.ravel()).reshape(nocc_a,nvir_a,nocc_a,nvir_a) a_bb = numpy.diag(e_ia_b.ravel()).reshape(nocc_b,nvir_b,nocc_b,nvir_b) a_ab = numpy.zeros((nocc_a,nvir_a,nocc_b,nvir_b)) b_aa = numpy.zeros_like(a_aa) b_ab = numpy.zeros_like(a_ab) b_bb = numpy.zeros_like(a_bb) a = (a_aa, a_ab, a_bb) b = (b_aa, b_ab, b_bb) def add_hf_(a, b, hyb=1): eri_aa = ao2mo.general(mol, [orbo_a,mo_a,mo_a,mo_a], compact=False) eri_ab = ao2mo.general(mol, [orbo_a,mo_a,mo_b,mo_b], compact=False) eri_bb = ao2mo.general(mol, [orbo_b,mo_b,mo_b,mo_b], compact=False) eri_aa = eri_aa.reshape(nocc_a,nmo_a,nmo_a,nmo_a) eri_ab = eri_ab.reshape(nocc_a,nmo_a,nmo_b,nmo_b) eri_bb = eri_bb.reshape(nocc_b,nmo_b,nmo_b,nmo_b) a_aa, a_ab, a_bb = a b_aa, b_ab, b_bb = b a_aa += numpy.einsum('iabj->iajb', eri_aa[:nocc_a,nocc_a:,nocc_a:,:nocc_a]) a_aa -= numpy.einsum('ijba->iajb', eri_aa[:nocc_a,:nocc_a,nocc_a:,nocc_a:]) * hyb b_aa += numpy.einsum('iajb->iajb', eri_aa[:nocc_a,nocc_a:,:nocc_a,nocc_a:]) b_aa -= numpy.einsum('jaib->iajb', eri_aa[:nocc_a,nocc_a:,:nocc_a,nocc_a:]) * hyb a_bb += numpy.einsum('iabj->iajb', eri_bb[:nocc_b,nocc_b:,nocc_b:,:nocc_b]) a_bb -= numpy.einsum('ijba->iajb', eri_bb[:nocc_b,:nocc_b,nocc_b:,nocc_b:]) * hyb b_bb += numpy.einsum('iajb->iajb', eri_bb[:nocc_b,nocc_b:,:nocc_b,nocc_b:]) b_bb -= numpy.einsum('jaib->iajb', eri_bb[:nocc_b,nocc_b:,:nocc_b,nocc_b:]) * hyb a_ab += numpy.einsum('iabj->iajb', eri_ab[:nocc_a,nocc_a:,nocc_b:,:nocc_b]) b_ab += numpy.einsum('iajb->iajb', eri_ab[:nocc_a,nocc_a:,:nocc_b,nocc_b:]) if isinstance(mf, scf.hf.KohnShamDFT): from pyscf.dft import xc_deriv ni = mf._numint ni.libxc.test_deriv_order(mf.xc, 2, raise_error=True) if mf.do_nlc(): logger.warn(mf, 'NLC functional found in DFT object. Its second ' 'derivative is not available. Its contribution is ' 'not included in the response function.') omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, mol.spin) add_hf_(a, b, hyb) if omega != 0: # For RSH with mol.with_range_coulomb(omega): eri_aa = ao2mo.general(mol, [orbo_a,mo_a,mo_a,mo_a], compact=False) eri_bb = ao2mo.general(mol, [orbo_b,mo_b,mo_b,mo_b], compact=False) eri_aa = eri_aa.reshape(nocc_a,nmo_a,nmo_a,nmo_a) eri_bb = eri_bb.reshape(nocc_b,nmo_b,nmo_b,nmo_b) a_aa, a_ab, a_bb = a b_aa, b_ab, b_bb = b k_fac = alpha - hyb a_aa -= numpy.einsum('ijba->iajb', eri_aa[:nocc_a,:nocc_a,nocc_a:,nocc_a:]) * k_fac b_aa -= numpy.einsum('jaib->iajb', eri_aa[:nocc_a,nocc_a:,:nocc_a,nocc_a:]) * k_fac a_bb -= numpy.einsum('ijba->iajb', eri_bb[:nocc_b,:nocc_b,nocc_b:,nocc_b:]) * k_fac b_bb -= numpy.einsum('jaib->iajb', eri_bb[:nocc_b,nocc_b:,:nocc_b,nocc_b:]) * k_fac xctype = ni._xc_type(mf.xc) dm0 = mf.make_rdm1(mo_coeff, mo_occ) make_rho = ni._gen_rho_evaluator(mol, dm0, hermi=1, with_lapl=False)[0] mem_now = lib.current_memory()[0] max_memory = max(2000, mf.max_memory*.8-mem_now) if xctype == 'LDA': ao_deriv = 0 for ao, mask, weight, coords \ in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory): rho0a = make_rho(0, ao, mask, xctype) rho0b = make_rho(1, ao, mask, xctype) rho = (rho0a, rho0b) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = fxc[:,0,:,0] * weight rho_o_a = lib.einsum('rp,pi->ri', ao, orbo_a) rho_v_a = lib.einsum('rp,pi->ri', ao, orbv_a) rho_o_b = lib.einsum('rp,pi->ri', ao, orbo_b) rho_v_b = lib.einsum('rp,pi->ri', ao, orbv_b) rho_ov_a = numpy.einsum('ri,ra->ria', rho_o_a, rho_v_a) rho_ov_b = numpy.einsum('ri,ra->ria', rho_o_b, rho_v_b) w_ov = numpy.einsum('ria,r->ria', rho_ov_a, wfxc[0,0]) iajb = lib.einsum('ria,rjb->iajb', rho_ov_a, w_ov) a_aa += iajb b_aa += iajb w_ov = numpy.einsum('ria,r->ria', rho_ov_b, wfxc[0,1]) iajb = lib.einsum('ria,rjb->iajb', rho_ov_a, w_ov) a_ab += iajb b_ab += iajb w_ov = numpy.einsum('ria,r->ria', rho_ov_b, wfxc[1,1]) iajb = lib.einsum('ria,rjb->iajb', rho_ov_b, w_ov) a_bb += iajb b_bb += iajb elif xctype == 'GGA': ao_deriv = 1 for ao, mask, weight, coords \ in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory): rho0a = make_rho(0, ao, mask, xctype) rho0b = make_rho(1, ao, mask, xctype) rho = (rho0a, rho0b) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = fxc * weight rho_o_a = lib.einsum('xrp,pi->xri', ao, orbo_a) rho_v_a = lib.einsum('xrp,pi->xri', ao, orbv_a) rho_o_b = lib.einsum('xrp,pi->xri', ao, orbo_b) rho_v_b = lib.einsum('xrp,pi->xri', ao, orbv_b) rho_ov_a = numpy.einsum('xri,ra->xria', rho_o_a, rho_v_a[0]) rho_ov_b = numpy.einsum('xri,ra->xria', rho_o_b, rho_v_b[0]) rho_ov_a[1:4] += numpy.einsum('ri,xra->xria', rho_o_a[0], rho_v_a[1:4]) rho_ov_b[1:4] += numpy.einsum('ri,xra->xria', rho_o_b[0], rho_v_b[1:4]) w_ov_aa = numpy.einsum('xyr,xria->yria', wfxc[0,:,0], rho_ov_a) w_ov_ab = numpy.einsum('xyr,xria->yria', wfxc[0,:,1], rho_ov_a) w_ov_bb = numpy.einsum('xyr,xria->yria', wfxc[1,:,1], rho_ov_b) iajb = lib.einsum('xria,xrjb->iajb', w_ov_aa, rho_ov_a) a_aa += iajb b_aa += iajb iajb = lib.einsum('xria,xrjb->iajb', w_ov_bb, rho_ov_b) a_bb += iajb b_bb += iajb iajb = lib.einsum('xria,xrjb->iajb', w_ov_ab, rho_ov_b) a_ab += iajb b_ab += iajb elif xctype == 'HF': pass elif xctype == 'NLC': raise NotImplementedError('NLC') elif xctype == 'MGGA': ao_deriv = 1 for ao, mask, weight, coords \ in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory): rho0a = make_rho(0, ao, mask, xctype) rho0b = make_rho(1, ao, mask, xctype) rho = (rho0a, rho0b) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = fxc * weight rho_oa = lib.einsum('xrp,pi->xri', ao, orbo_a) rho_ob = lib.einsum('xrp,pi->xri', ao, orbo_b) rho_va = lib.einsum('xrp,pi->xri', ao, orbv_a) rho_vb = lib.einsum('xrp,pi->xri', ao, orbv_b) rho_ov_a = numpy.einsum('xri,ra->xria', rho_oa, rho_va[0]) rho_ov_b = numpy.einsum('xri,ra->xria', rho_ob, rho_vb[0]) rho_ov_a[1:4] += numpy.einsum('ri,xra->xria', rho_oa[0], rho_va[1:4]) rho_ov_b[1:4] += numpy.einsum('ri,xra->xria', rho_ob[0], rho_vb[1:4]) tau_ov_a = numpy.einsum('xri,xra->ria', rho_oa[1:4], rho_va[1:4]) * .5 tau_ov_b = numpy.einsum('xri,xra->ria', rho_ob[1:4], rho_vb[1:4]) * .5 rho_ov_a = numpy.vstack([rho_ov_a, tau_ov_a[numpy.newaxis]]) rho_ov_b = numpy.vstack([rho_ov_b, tau_ov_b[numpy.newaxis]]) w_ov_aa = numpy.einsum('xyr,xria->yria', wfxc[0,:,0], rho_ov_a) w_ov_ab = numpy.einsum('xyr,xria->yria', wfxc[0,:,1], rho_ov_a) w_ov_bb = numpy.einsum('xyr,xria->yria', wfxc[1,:,1], rho_ov_b) iajb = lib.einsum('xria,xrjb->iajb', w_ov_aa, rho_ov_a) a_aa += iajb b_aa += iajb iajb = lib.einsum('xria,xrjb->iajb', w_ov_bb, rho_ov_b) a_bb += iajb b_bb += iajb iajb = lib.einsum('xria,xrjb->iajb', w_ov_ab, rho_ov_b) a_ab += iajb b_ab += iajb else: add_hf_(a, b) return a, b
[docs] def get_nto(tdobj, state=1, threshold=OUTPUT_THRESHOLD, verbose=None): r''' Natural transition orbital analysis. The natural transition density matrix between ground state and excited state :math:`Tia = \langle \Psi_{ex} | i a^\dagger | \Psi_0 \rangle` can be transformed to diagonal form through SVD :math:`T = O \sqrt{\lambda} V^\dagger`. O and V are occupied and virtual natural transition orbitals. The diagonal elements :math:`\lambda` are the weights of the occupied-virtual orbital pair in the excitation. Ref: Martin, R. L., JCP, 118, 4775-4777 Note in the TDHF/TDDFT calculations, the excitation part (X) is interpreted as the CIS coefficients and normalized to 1. The de-excitation part (Y) is ignored. Args: state : int Excited state ID. state = 1 means the first excited state. If state < 0, state ID is counted from the last excited state. Kwargs: threshold : float Above which the NTO coefficients will be printed in the output. Returns: A list (weights, NTOs). NTOs are natural orbitals represented in AO basis. The first N_occ NTOs are occupied NTOs and the rest are virtual NTOs. ''' if state == 0: logger.warn(tdobj, 'Excited state starts from 1. ' 'Set state=1 for first excited state.') state_id = state elif state < 0: state_id = state else: state_id = state - 1 mol = tdobj.mol mo_coeff = tdobj._scf.mo_coeff mo_occ = tdobj._scf.mo_occ orbo_a = mo_coeff[0][:,mo_occ[0]==1] orbv_a = mo_coeff[0][:,mo_occ[0]==0] orbo_b = mo_coeff[1][:,mo_occ[1]==1] orbv_b = mo_coeff[1][:,mo_occ[1]==0] nocc_a = orbo_a.shape[1] nvir_a = orbv_a.shape[1] nocc_b = orbo_b.shape[1] nvir_b = orbv_b.shape[1] cis_t1a, cis_t1b = tdobj.xy[state_id][0] norm = numpy.linalg.norm(cis_t1a)**2 + numpy.linalg.norm(cis_t1b)**2 cis_t1a *= 1. / norm cis_t1b *= 1. / norm if mol.symmetry: orbsyma, orbsymb = uhf_symm.get_orbsym(mol, mo_coeff) o_sym_a = orbsyma[mo_occ[0]==1] v_sym_a = orbsyma[mo_occ[0]==0] o_sym_b = orbsymb[mo_occ[1]==1] v_sym_b = orbsymb[mo_occ[1]==0] nto_o_a = numpy.eye(nocc_a) nto_v_a = numpy.eye(nvir_a) nto_o_b = numpy.eye(nocc_b) nto_v_b = numpy.eye(nvir_b) weights_o_a = numpy.zeros(nocc_a) weights_v_a = numpy.zeros(nvir_a) weights_o_b = numpy.zeros(nocc_b) weights_v_b = numpy.zeros(nvir_b) for ir in set(orbsyma): idx = numpy.where(o_sym_a == ir)[0] if idx.size > 0: dm_oo = numpy.dot(cis_t1a[idx], cis_t1a[idx].T) weights_o_a[idx], nto_o_a[idx[:,None],idx] = numpy.linalg.eigh(dm_oo) idx = numpy.where(v_sym_a == ir)[0] if idx.size > 0: dm_vv = numpy.dot(cis_t1a[:,idx].T, cis_t1a[:,idx]) weights_v_a[idx], nto_v_a[idx[:,None],idx] = numpy.linalg.eigh(dm_vv) for ir in set(orbsymb): idx = numpy.where(o_sym_b == ir)[0] if idx.size > 0: dm_oo = numpy.dot(cis_t1b[idx], cis_t1b[idx].T) weights_o_b[idx], nto_o_b[idx[:,None],idx] = numpy.linalg.eigh(dm_oo) idx = numpy.where(v_sym_b == ir)[0] if idx.size > 0: dm_vv = numpy.dot(cis_t1b[:,idx].T, cis_t1b[:,idx]) weights_v_b[idx], nto_v_b[idx[:,None],idx] = numpy.linalg.eigh(dm_vv) def sort(weights, nto, sym): # weights in descending order idx = numpy.argsort(-weights) weights = weights[idx] nto = nto[:,idx] sym = sym[idx] return weights, nto, sym weights_o_a, nto_o_a, o_sym_a = sort(weights_o_a, nto_o_a, o_sym_a) weights_v_a, nto_v_a, v_sym_a = sort(weights_v_a, nto_v_a, v_sym_a) weights_o_b, nto_o_b, o_sym_b = sort(weights_o_b, nto_o_b, o_sym_b) weights_v_b, nto_v_b, v_sym_b = sort(weights_v_b, nto_v_b, v_sym_b) nto_orbsyma = numpy.hstack((o_sym_a, v_sym_a)) nto_orbsymb = numpy.hstack((o_sym_b, v_sym_b)) if nocc_a < nvir_a: weights_a = weights_o_a else: weights_a = weights_v_a if nocc_b < nvir_b: weights_b = weights_o_b else: weights_b = weights_v_b else: nto_o_a, w_a, nto_v_aT = numpy.linalg.svd(cis_t1a) nto_o_b, w_b, nto_v_bT = numpy.linalg.svd(cis_t1b) nto_v_a = nto_v_aT.conj().T nto_v_b = nto_v_bT.conj().T weights_a = w_a**2 weights_b = w_b**2 nto_orbsyma = nto_orbsymb = None def _set_phase_(c): idx = numpy.argmax(abs(c.real), axis=0) c[:,c[idx,numpy.arange(c.shape[1])].real<0] *= -1 _set_phase_(nto_o_a) _set_phase_(nto_o_b) _set_phase_(nto_v_a) _set_phase_(nto_v_b) occupied_nto_a = numpy.dot(orbo_a, nto_o_a) occupied_nto_b = numpy.dot(orbo_b, nto_o_b) virtual_nto_a = numpy.dot(orbv_a, nto_v_a) virtual_nto_b = numpy.dot(orbv_b, nto_v_b) nto_coeff = (numpy.hstack((occupied_nto_a, virtual_nto_a)), numpy.hstack((occupied_nto_b, virtual_nto_b))) if mol.symmetry: nto_coeff = (lib.tag_array(nto_coeff[0], orbsym=nto_orbsyma), lib.tag_array(nto_coeff[1], orbsym=nto_orbsymb)) log = logger.new_logger(tdobj, verbose) if log.verbose >= logger.INFO: log.info('State %d: %g eV NTO largest component %s', state_id+1, tdobj.e[state_id]*nist.HARTREE2EV, weights_a[0]+weights_b[0]) fmt = '%' + str(lib.param.OUTPUT_DIGITS) + 'f (MO #%d)' o_idx_a = numpy.where(abs(nto_o_a[:,0]) > threshold)[0] v_idx_a = numpy.where(abs(nto_v_a[:,0]) > threshold)[0] o_idx_b = numpy.where(abs(nto_o_b[:,0]) > threshold)[0] v_idx_b = numpy.where(abs(nto_v_b[:,0]) > threshold)[0] log.info(' alpha occ-NTO: ' + ' + '.join([(fmt % (nto_o_a[i,0], i+MO_BASE)) for i in o_idx_a])) log.info(' alpha vir-NTO: ' + ' + '.join([(fmt % (nto_v_a[i,0], i+MO_BASE+nocc_a)) for i in v_idx_a])) log.info(' beta occ-NTO: ' + ' + '.join([(fmt % (nto_o_b[i,0], i+MO_BASE)) for i in o_idx_b])) log.info(' beta vir-NTO: ' + ' + '.join([(fmt % (nto_v_b[i,0], i+MO_BASE+nocc_b)) for i in v_idx_b])) return (weights_a, weights_b), nto_coeff
[docs] def analyze(tdobj, verbose=None): log = logger.new_logger(tdobj, verbose) mol = tdobj.mol mo_coeff = tdobj._scf.mo_coeff mo_occ = tdobj._scf.mo_occ nocc_a = numpy.count_nonzero(mo_occ[0] == 1) nocc_b = numpy.count_nonzero(mo_occ[1] == 1) e_ev = numpy.asarray(tdobj.e) * nist.HARTREE2EV e_wn = numpy.asarray(tdobj.e) * nist.HARTREE2WAVENUMBER wave_length = 1e7/e_wn log.note('\n** Excitation energies and oscillator strengths **') if mol.symmetry: orbsyma, orbsymb = uhf_symm.get_orbsym(mol, mo_coeff) x_syma = symm.direct_prod(orbsyma[mo_occ[0]==1], orbsyma[mo_occ[0]==0], mol.groupname) x_symb = symm.direct_prod(orbsymb[mo_occ[1]==1], orbsymb[mo_occ[1]==0], mol.groupname) else: x_syma = None f_oscillator = tdobj.oscillator_strength() for i, ei in enumerate(tdobj.e): x, y = tdobj.xy[i] if x_syma is None: log.note('Excited State %3d: %12.5f eV %9.2f nm f=%.4f', i+1, e_ev[i], wave_length[i], f_oscillator[i]) else: wfnsyma = rhf._analyze_wfnsym(tdobj, x_syma, x[0]) wfnsymb = rhf._analyze_wfnsym(tdobj, x_symb, x[1]) if wfnsyma == wfnsymb: wfnsym = wfnsyma else: wfnsym = '???' log.note('Excited State %3d: %4s %12.5f eV %9.2f nm f=%.4f', i+1, wfnsym, e_ev[i], wave_length[i], f_oscillator[i]) if log.verbose >= logger.INFO: for o, v in zip(* numpy.where(abs(x[0]) > 0.1)): log.info(' %4da -> %4da %12.5f', o+MO_BASE, v+MO_BASE+nocc_a, x[0][o,v]) for o, v in zip(* numpy.where(abs(x[1]) > 0.1)): log.info(' %4db -> %4db %12.5f', o+MO_BASE, v+MO_BASE+nocc_b, x[1][o,v]) if log.verbose >= logger.INFO: log.info('\n** Transition electric dipole moments (AU) **') log.info('state X Y Z Dip. S. Osc.') trans_dip = tdobj.transition_dipole() for i, ei in enumerate(tdobj.e): dip = trans_dip[i] log.info('%3d %11.4f %11.4f %11.4f %11.4f %11.4f', i+1, dip[0], dip[1], dip[2], numpy.dot(dip, dip), f_oscillator[i]) log.info('\n** Transition velocity dipole moments (imaginary part, AU) **') log.info('state X Y Z Dip. S. Osc.') trans_v = tdobj.transition_velocity_dipole() f_v = tdobj.oscillator_strength(gauge='velocity', order=0) for i, ei in enumerate(tdobj.e): v = trans_v[i] log.info('%3d %11.4f %11.4f %11.4f %11.4f %11.4f', i+1, v[0], v[1], v[2], numpy.dot(v, v), f_v[i]) log.info('\n** Transition magnetic dipole moments (imaginary part, AU) **') log.info('state X Y Z') trans_m = tdobj.transition_magnetic_dipole() for i, ei in enumerate(tdobj.e): m = trans_m[i] log.info('%3d %11.4f %11.4f %11.4f', i+1, m[0], m[1], m[2]) return tdobj
def _contract_multipole(tdobj, ints, hermi=True, xy=None): if xy is None: xy = tdobj.xy mo_coeff = tdobj._scf.mo_coeff mo_occ = tdobj._scf.mo_occ orbo_a = mo_coeff[0][:,mo_occ[0]==1] orbv_a = mo_coeff[0][:,mo_occ[0]==0] orbo_b = mo_coeff[1][:,mo_occ[1]==1] orbv_b = mo_coeff[1][:,mo_occ[1]==0] ints_a = numpy.einsum('...pq,pi,qj->...ij', ints, orbo_a.conj(), orbv_a) ints_b = numpy.einsum('...pq,pi,qj->...ij', ints, orbo_b.conj(), orbv_b) pol = [(numpy.einsum('...ij,ij->...', ints_a, x[0]) + numpy.einsum('...ij,ij->...', ints_b, x[1])) for x,y in xy] pol = numpy.array(pol) y = xy[0][1] if isinstance(y[0], numpy.ndarray): pol_y = [(numpy.einsum('...ij,ij->...', ints_a, y[0]) + numpy.einsum('...ij,ij->...', ints_b, y[1])) for x,y in xy] if hermi: pol += pol_y else: # anti-Hermitian pol -= pol_y return pol
[docs] class TDBase(rhf.TDBase):
[docs] @lib.with_doc(get_ab.__doc__) def get_ab(self, mf=None): if mf is None: mf = self._scf return get_ab(mf)
analyze = analyze get_nto = get_nto _contract_multipole = _contract_multipole # needed by transition dipoles
[docs] def nuc_grad_method(self): from pyscf.grad import tduhf return tduhf.Gradients(self)
[docs] @lib.with_doc(rhf.TDA.__doc__) class TDA(TDBase): singlet = None
[docs] def gen_vind(self, mf=None): '''Generate function to compute Ax''' if mf is None: mf = self._scf return gen_tda_hop(mf, wfnsym=self.wfnsym)
[docs] def init_guess(self, mf, nstates=None, wfnsym=None, return_symmetry=False): if nstates is None: nstates = self.nstates if wfnsym is None: wfnsym = self.wfnsym mol = mf.mol mo_energy = mf.mo_energy mo_occ = mf.mo_occ occidxa = numpy.where(mo_occ[0]>0)[0] occidxb = numpy.where(mo_occ[1]>0)[0] viridxa = numpy.where(mo_occ[0]==0)[0] viridxb = numpy.where(mo_occ[1]==0)[0] e_ia_a = mo_energy[0][viridxa] - mo_energy[0][occidxa,None] e_ia_b = mo_energy[1][viridxb] - mo_energy[1][occidxb,None] nov = e_ia_a.size + e_ia_b.size nstates = min(nstates, nov) if (wfnsym is not None or return_symmetry) and mf.mol.symmetry: x_sym_a, x_sym_b = _get_x_sym_table(mf) if wfnsym is not None: if isinstance(wfnsym, str): wfnsym = symm.irrep_name2id(mol.groupname, wfnsym) wfnsym = wfnsym % 10 # convert to D2h subgroup e_ia_a[x_sym_a != wfnsym] = 1e99 e_ia_b[x_sym_b != wfnsym] = 1e99 nov_allowed = (numpy.count_nonzero(x_sym_a == wfnsym) + numpy.count_nonzero(x_sym_b == wfnsym)) nstates = min(nstates, nov_allowed) e_ia = numpy.append(e_ia_a.ravel(), e_ia_b.ravel()) # Find the nstates-th lowest energy gap e_threshold = numpy.partition(e_ia, nstates-1)[nstates-1] e_threshold += self.deg_eia_thresh idx = numpy.where(e_ia <= e_threshold)[0] x0 = numpy.zeros((idx.size, nov)) for i, j in enumerate(idx): x0[i, j] = 1 # Koopmans' excitations if return_symmetry: if mf.mol.symmetry: x_sym = numpy.append(x_sym_a.ravel(), x_sym_b.ravel()) x0sym = x_sym[idx] else: x0sym = None return x0, x0sym else: return x0
[docs] def kernel(self, x0=None, nstates=None): '''TDA diagonalization solver ''' cpu0 = (logger.process_clock(), logger.perf_counter()) self.check_sanity() self.dump_flags() if nstates is None: nstates = self.nstates else: self.nstates = nstates log = logger.Logger(self.stdout, self.verbose) mol = self.mol vind, hdiag = self.gen_vind(self._scf) precond = self.get_precond(hdiag) def pickeig(w, v, nroots, envs): idx = numpy.where(w > self.positive_eig_threshold)[0] return w[idx], v[:,idx], idx x0sym = None if x0 is None: x0, x0sym = self.init_guess( self._scf, self.nstates, return_symmetry=True) elif mol.symmetry: x_sym_a, x_sym_b = _get_x_sym_table(self._scf) x_sym = numpy.append(x_sym_a.ravel(), x_sym_b.ravel()) x0sym = [rhf._guess_wfnsym_id(self, x_sym, x) for x in x0] self.converged, self.e, x1 = lr_eigh( vind, x0, precond, tol_residual=self.conv_tol, lindep=self.lindep, nroots=nstates, x0sym=x0sym, pick=pickeig, max_cycle=self.max_cycle, max_memory=self.max_memory, verbose=log) nmo = self._scf.mo_occ[0].size nocca = (self._scf.mo_occ[0]>0).sum() noccb = (self._scf.mo_occ[1]>0).sum() nvira = nmo - nocca nvirb = nmo - noccb self.xy = [((xi[:nocca*nvira].reshape(nocca,nvira), # X_alpha xi[nocca*nvira:].reshape(noccb,nvirb)), # X_beta (0, 0)) # (Y_alpha, Y_beta) for xi in x1] if self.chkfile: lib.chkfile.save(self.chkfile, 'tddft/e', self.e) lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy) log.timer('TDA', *cpu0) self._finalize() return self.e, self.xy
to_gpu = lib.to_gpu
CIS = TDA
[docs] def gen_tdhf_operation(mf, fock_ao=None, singlet=True, wfnsym=None): '''Generate function to compute [ A B ][X] [-B* -A*][Y] ''' mol = mf.mol mo_coeff = mf.mo_coeff mo_energy = mf.mo_energy mo_occ = mf.mo_occ nao, nmo = mo_coeff[0].shape occidxa = numpy.where(mo_occ[0]>0)[0] occidxb = numpy.where(mo_occ[1]>0)[0] viridxa = numpy.where(mo_occ[0]==0)[0] viridxb = numpy.where(mo_occ[1]==0)[0] nocca = len(occidxa) noccb = len(occidxb) nvira = len(viridxa) nvirb = len(viridxb) orboa = mo_coeff[0][:,occidxa] orbob = mo_coeff[1][:,occidxb] orbva = mo_coeff[0][:,viridxa] orbvb = mo_coeff[1][:,viridxb] if wfnsym is not None and mol.symmetry: if isinstance(wfnsym, str): wfnsym = symm.irrep_name2id(mol.groupname, wfnsym) wfnsym = wfnsym % 10 # convert to D2h subgroup x_sym_a, x_sym_b = _get_x_sym_table(mf) sym_forbid = numpy.append(x_sym_a.ravel(), x_sym_b.ravel()) != wfnsym e_ia_a = mo_energy[0][viridxa] - mo_energy[0][occidxa,None] e_ia_b = mo_energy[1][viridxb] - mo_energy[1][occidxb,None] e_ia = hdiag = numpy.hstack((e_ia_a.ravel(), e_ia_b.ravel())) if wfnsym is not None and mol.symmetry: hdiag[sym_forbid] = 0 hdiag = numpy.hstack((hdiag, -hdiag)) mem_now = lib.current_memory()[0] max_memory = max(2000, mf.max_memory*.8-mem_now) vresp = mf.gen_response(hermi=0, max_memory=max_memory) def vind(xys): nz = len(xys) xys = numpy.asarray(xys).reshape(nz,2,-1) if wfnsym is not None and mol.symmetry: # shape(nz,2,-1): 2 ~ X,Y xys = numpy.copy(xys) xys[:,:,sym_forbid] = 0 xs, ys = xys.transpose(1,0,2) xa = xs[:,:nocca*nvira].reshape(nz,nocca,nvira) xb = xs[:,nocca*nvira:].reshape(nz,noccb,nvirb) ya = ys[:,:nocca*nvira].reshape(nz,nocca,nvira) yb = ys[:,nocca*nvira:].reshape(nz,noccb,nvirb) dmsa = lib.einsum('xov,qv,po->xpq', xa, orbva.conj(), orboa) dmsb = lib.einsum('xov,qv,po->xpq', xb, orbvb.conj(), orbob) dmsa += lib.einsum('xov,pv,qo->xpq', ya, orbva, orboa.conj()) dmsb += lib.einsum('xov,pv,qo->xpq', yb, orbvb, orbob.conj()) v1ao = vresp(numpy.asarray((dmsa,dmsb))) v1aov = lib.einsum('xpq,po,qv->xov', v1ao[0], orboa.conj(), orbva) v1bov = lib.einsum('xpq,po,qv->xov', v1ao[1], orbob.conj(), orbvb) v1avo = lib.einsum('xpq,qo,pv->xov', v1ao[0], orboa, orbva.conj()) v1bvo = lib.einsum('xpq,qo,pv->xov', v1ao[1], orbob, orbvb.conj()) v1ov = xs * e_ia # AX v1vo = ys * e_ia # AY v1ov[:,:nocca*nvira] += v1aov.reshape(nz,-1) v1vo[:,:nocca*nvira] += v1avo.reshape(nz,-1) v1ov[:,nocca*nvira:] += v1bov.reshape(nz,-1) v1vo[:,nocca*nvira:] += v1bvo.reshape(nz,-1) if wfnsym is not None and mol.symmetry: v1ov[:,sym_forbid] = 0 v1vo[:,sym_forbid] = 0 hx = numpy.hstack((v1ov, -v1vo)) return hx return vind, hdiag
[docs] class TDHF(TDBase): singlet = None
[docs] @lib.with_doc(gen_tdhf_operation.__doc__) def gen_vind(self, mf=None): if mf is None: mf = self._scf return gen_tdhf_operation(mf, singlet=self.singlet, wfnsym=self.wfnsym)
[docs] def init_guess(self, mf, nstates=None, wfnsym=None, return_symmetry=False): if return_symmetry: x0, x0sym = TDA.init_guess(self, mf, nstates, wfnsym, return_symmetry) y0 = numpy.zeros_like(x0) return numpy.hstack([x0, y0]), x0sym else: x0 = TDA.init_guess(self, mf, nstates, wfnsym, return_symmetry) y0 = numpy.zeros_like(x0) return numpy.hstack([x0, y0])
get_precond = rhf.TDHF.get_precond
[docs] def kernel(self, x0=None, nstates=None): '''TDHF diagonalization with non-Hermitian eigenvalue solver ''' cpu0 = (logger.process_clock(), logger.perf_counter()) self.check_sanity() self.dump_flags() if nstates is None: nstates = self.nstates else: self.nstates = nstates mol = self.mol log = logger.Logger(self.stdout, self.verbose) vind, hdiag = self.gen_vind(self._scf) precond = self.get_precond(hdiag) # handle single kpt PBC SCF if getattr(self._scf, 'kpt', None) is not None: from pyscf.pbc.lib.kpts_helper import gamma_point real_system = (gamma_point(self._scf.kpt) and self._scf.mo_coeff[0].dtype == numpy.double) else: real_system = True # We only need positive eigenvalues def pickeig(w, v, nroots, envs): realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD) & (w.real > self.positive_eig_threshold))[0] return lib.linalg_helper._eigs_cmplx2real(w, v, realidx, real_system) x0sym = None if x0 is None: x0, x0sym = self.init_guess( self._scf, self.nstates, return_symmetry=True) elif mol.symmetry: x_sym_a, x_sym_b = _get_x_sym_table(self._scf) x_sym = y_sym = numpy.append(x_sym_a.ravel(), x_sym_b.ravel()) x_sym = numpy.append(x_sym, y_sym) x0sym = [rhf._guess_wfnsym_id(self, x_sym, x) for x in x0] self.converged, w, x1 = lr_eig( vind, x0, precond, tol_residual=self.conv_tol, lindep=self.lindep, nroots=nstates, x0sym=x0sym, pick=pickeig, max_cycle=self.max_cycle, max_memory=self.max_memory, verbose=log) nmo = self._scf.mo_occ[0].size nocca = (self._scf.mo_occ[0]>0).sum() noccb = (self._scf.mo_occ[1]>0).sum() nvira = nmo - nocca nvirb = nmo - noccb e = [] xy = [] for i, z in enumerate(x1): x, y = z.reshape(2,-1) norm = lib.norm(x)**2 - lib.norm(y)**2 if norm > 0: norm = 1/numpy.sqrt(norm) e.append(w[i]) xy.append(((x[:nocca*nvira].reshape(nocca,nvira) * norm, # X_alpha x[nocca*nvira:].reshape(noccb,nvirb) * norm), # X_beta (y[:nocca*nvira].reshape(nocca,nvira) * norm, # Y_alpha y[nocca*nvira:].reshape(noccb,nvirb) * norm)))# Y_beta self.e = numpy.array(e) self.xy = xy if self.chkfile: lib.chkfile.save(self.chkfile, 'tddft/e', self.e) lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy) log.timer('TDDFT', *cpu0) self._finalize() return self.e, self.xy
to_gpu = lib.to_gpu
RPA = TDUHF = TDHF scf.uhf.UHF.TDA = lib.class_as_method(TDA) scf.uhf.UHF.TDHF = lib.class_as_method(TDHF) del (OUTPUT_THRESHOLD)