Source code for pyscf.tdscf.rhf_slow

#  Author: Artem Pulkin
"""
This and other `_slow` modules implement the time-dependent Hartree-Fock procedure. The primary performance drawback is
that, unlike other 'fast' routines with an implicit construction of the eigenvalue problem, these modules construct
TDHF matrices explicitly via an AO-MO transformation, i.e. with a O(N^5) complexity scaling. As a result, regular
`numpy.linalg.eig` can be used to retrieve TDHF roots in a reliable fashion without any issues related to the Davidson
procedure. Several variants of TDHF are available:

 * (this module) `pyscf.tdscf.rhf_slow`: the molecular implementation;
 * `pyscf.pbc.tdscf.rhf_slow`: PBC (periodic boundary condition) implementation for RHF objects of `pyscf.pbc.scf`
   modules;
 * `pyscf.pbc.tdscf.krhf_slow_supercell`: PBC implementation for KRHF objects of `pyscf.pbc.scf` modules. Works with
   an arbitrary number of k-points but has a overhead due to an effective construction of a supercell.
 * `pyscf.pbc.tdscf.krhf_slow_gamma`: A Gamma-point calculation resembling the original `pyscf.pbc.tdscf.krhf`
   module. Despite its name, it accepts KRHF objects with an arbitrary number of k-points but finds only few TDHF roots
   corresponding to collective oscillations without momentum transfer;
 * `pyscf.pbc.tdscf.krhf_slow`: PBC implementation for KRHF objects of `pyscf.pbc.scf` modules. Works with
   an arbitrary number of k-points and employs k-point conservation (diagonalizes matrix blocks separately).
"""

from pyscf import ao2mo
from pyscf.lib import logger
from pyscf.tdscf.common_slow import TDERIMatrixBlocks, MolecularMFMixin, TDBase

import numpy

# Convention for these modules:
# * PhysERI, PhysERI4, PhysERI8 are 2-electron integral routines computed directly (for debug purposes), with a 4-fold
#   symmetry and with an 8-fold symmetry
# * vector_to_amplitudes reshapes and normalizes the solution
# * TDRHF provides a container


[docs] class PhysERI(MolecularMFMixin, TDERIMatrixBlocks): def __init__(self, model, frozen=None): """ The TDHF ERI implementation performing a full AO-MO transformation of integrals. No symmetries are employed in this class. Args: model (RHF): the base model; frozen (int, Iterable): the number of frozen valence orbitals or the list of frozen orbitals; """ TDERIMatrixBlocks.__init__(self) MolecularMFMixin.__init__(self, model, frozen=frozen) self.__full_eri__ = self.ao2mo((self.mo_coeff,) * 4)
[docs] def ao2mo(self, coeff): """ Phys ERI in MO basis. Args: coeff (Iterable): MO orbitals; Returns: ERI in MO basis. """ coeff = (coeff[0], coeff[2], coeff[1], coeff[3]) if "with_df" in dir(self.model): if "kpt" in dir(self.model): result = self.model.with_df.ao2mo(coeff, (self.model.kpt,) * 4, compact=False) else: result = self.model.with_df.ao2mo(coeff, compact=False) else: result = ao2mo.general(self.model.mol, coeff, compact=False) return result.reshape( tuple(i.shape[1] for i in coeff) ).swapaxes(1, 2)
def __get_mo_energies__(self): return self.mo_energy[:self.nocc], self.mo_energy[self.nocc:] def __calc_block__(self, item): slc = tuple(slice(self.nocc) if i == 'o' else slice(self.nocc, None) for i in item) return self.__full_eri__[slc]
[docs] class PhysERI4(PhysERI): symmetries = [ ((0, 1, 2, 3), False), ((1, 0, 3, 2), False), ((2, 3, 0, 1), True), ((3, 2, 1, 0), True), ] def __init__(self, model, frozen=None): """ The TDHF ERI implementation performing a partial AO-MO transformation of integrals of a molecular system. A 4-fold symmetry of complex-valued orbitals is used. Args: model (RHF): the base model; frozen (int, Iterable): the number of frozen valence orbitals or the list of frozen orbitals; """ TDERIMatrixBlocks.__init__(self) MolecularMFMixin.__init__(self, model, frozen=frozen) def __calc_block__(self, item): o = self.mo_coeff[:, :self.nocc] v = self.mo_coeff[:, self.nocc:] logger.info(self.model, "Computing {} ...".format(''.join(item))) return self.ao2mo(tuple(o if i == "o" else v for i in item))
[docs] class PhysERI8(PhysERI4): symmetries = [ ((0, 1, 2, 3), False), ((1, 0, 3, 2), False), ((2, 3, 0, 1), False), ((3, 2, 1, 0), False), ((2, 1, 0, 3), False), ((3, 0, 1, 2), False), ((0, 3, 2, 1), False), ((1, 2, 3, 0), False), ] def __init__(self, model, frozen=None): """ The TDHF ERI implementation performing a partial AO-MO transformation of integrals of a molecular system. An 8-fold symmetry of real-valued orbitals is used. Args: model (RHF): the base model; """ super(PhysERI8, self).__init__(model, frozen=frozen)
[docs] def vector_to_amplitudes(vectors, nocc, nmo): """ Transforms (reshapes) and normalizes vectors into amplitudes. Args: vectors (numpy.ndarray): raw eigenvectors to transform; nocc (int): number of occupied orbitals; nmo (int): the total number of orbitals; Returns: Amplitudes with the following shape: (# of roots, 2 (x or y), # of occupied orbitals, # of virtual orbitals). """ vectors = numpy.asanyarray(vectors) vectors = vectors.reshape(2, nocc, nmo-nocc, vectors.shape[1]) norm = (abs(vectors) ** 2).sum(axis=(1, 2)) norm = 2 * (norm[0] - norm[1]) vectors /= norm ** .5 return vectors.transpose(3, 0, 1, 2)
[docs] class TDRHF(TDBase): eri1 = PhysERI eri4 = PhysERI4 eri8 = PhysERI8 v2a = staticmethod(vector_to_amplitudes)
[docs] def ao2mo(self): """ Picks ERI: either 4-fold or 8-fold symmetric. Returns: A suitable ERI. """ if numpy.iscomplexobj(self._scf.mo_coeff): if self.eri4 is not None: logger.debug1(self._scf, "4-fold symmetry used (complex orbitals)") return self.eri4(self._scf, frozen=self.frozen) elif self.eri1 is not None: logger.debug1(self._scf, "fallback: no symmetry used (complex orbitals)") return self.eri1(self._scf, frozen=self.frozen) else: raise RuntimeError("Failed to pick ERI for complex MOs: both eri1 and eri4 are None") else: if self.eri8 is not None: logger.debug1(self._scf, "8-fold symmetry used (real orbitals)") return self.eri8(self._scf, frozen=self.frozen) elif self.eri1 is not None: logger.debug1(self._scf, "fallback: no symmetry used (real orbitals)") return self.eri1(self._scf, frozen=self.frozen) else: raise RuntimeError("Failed to pick ERI for real MOs: both eri1 and eri8 are None")