Source code for pyscf.tdscf.rhf

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#
# Ref:
# Chem Phys Lett, 256, 454
# J. Mol. Struct. THEOCHEM, 914, 3
# Recent Advances in Density Functional Methods, Chapter 5, M. E. Casida
#


from functools import reduce
import numpy
import scipy.linalg
from pyscf import lib
from pyscf import gto
from pyscf import scf
from pyscf import ao2mo
from pyscf import symm
from pyscf.lib import logger
from pyscf.scf import hf_symm
from pyscf.scf import _response_functions # noqa
from pyscf.data import nist
from pyscf.tdscf._lr_eig import eigh as lr_eigh, eig as lr_eig
from pyscf import __config__

OUTPUT_THRESHOLD = getattr(__config__, 'tdscf_rhf_get_nto_threshold', 0.3)
REAL_EIG_THRESHOLD = getattr(__config__, 'tdscf_rhf_TDDFT_pick_eig_threshold', 1e-4)
MO_BASE = getattr(__config__, 'MO_BASE', 1)


[docs] def gen_tda_operation(mf, fock_ao=None, singlet=True, wfnsym=None): '''Generate function to compute A x Kwargs: wfnsym : int or str Point group symmetry irrep symbol or ID for excited CIS wavefunction. ''' mol = mf.mol mo_coeff = mf.mo_coeff # assert (mo_coeff.dtype == numpy.double) mo_energy = mf.mo_energy mo_occ = mf.mo_occ nao, nmo = mo_coeff.shape occidx = numpy.where(mo_occ==2)[0] viridx = numpy.where(mo_occ==0)[0] nocc = len(occidx) nvir = len(viridx) orbv = mo_coeff[:,viridx] orbo = mo_coeff[:,occidx] if wfnsym is not None and mol.symmetry: if isinstance(wfnsym, str): wfnsym = symm.irrep_name2id(mol.groupname, wfnsym) wfnsym = wfnsym % 10 # convert to D2h subgroup x_sym = _get_x_sym_table(mf) sym_forbid = x_sym != wfnsym if fock_ao is None: e_ia = hdiag = mo_energy[viridx] - mo_energy[occidx,None] else: fock = reduce(numpy.dot, (mo_coeff.conj().T, fock_ao, mo_coeff)) foo = fock[occidx[:,None],occidx] fvv = fock[viridx[:,None],viridx] hdiag = fvv.diagonal() - foo.diagonal()[:,None] if wfnsym is not None and mol.symmetry: hdiag[sym_forbid] = 0 hdiag = hdiag.ravel() mo_coeff = numpy.asarray(numpy.hstack((orbo,orbv)), order='F') vresp = mf.gen_response(singlet=singlet, hermi=0) def vind(zs): zs = numpy.asarray(zs).reshape(-1,nocc,nvir) if wfnsym is not None and mol.symmetry: zs = numpy.copy(zs) zs[:,sym_forbid] = 0 # *2 for double occupancy dmov = lib.einsum('xov,qv,po->xpq', zs*2, orbv.conj(), orbo) v1ao = vresp(dmov) v1ov = lib.einsum('xpq,po,qv->xov', v1ao, orbo.conj(), orbv) if fock_ao is None: v1ov += numpy.einsum('xia,ia->xia', zs, e_ia) else: v1ov += lib.einsum('xqs,sp->xqp', zs, fvv) v1ov -= lib.einsum('xpr,sp->xsr', zs, foo) if wfnsym is not None and mol.symmetry: v1ov[:,sym_forbid] = 0 return v1ov.reshape(v1ov.shape[0],-1) return vind, hdiag
gen_tda_hop = gen_tda_operation def _get_x_sym_table(mf): '''Irrep (up to D2h symmetry) of each coefficient in X[nocc,nvir]''' mol = mf.mol mo_occ = mf.mo_occ orbsym = hf_symm.get_orbsym(mol, mf.mo_coeff) orbsym = orbsym % 10 # convert to D2h irreps return orbsym[mo_occ==2,None] ^ orbsym[mo_occ==0]
[docs] def get_ab(mf, mo_energy=None, mo_coeff=None, mo_occ=None): r'''A and B matrices for TDDFT response function. A[i,a,j,b] = \delta_{ab}\delta_{ij}(E_a - E_i) + (ia||bj) B[i,a,j,b] = (ia||jb) Ref: Chem Phys Lett, 256, 454 ''' if mo_energy is None: mo_energy = mf.mo_energy if mo_coeff is None: mo_coeff = mf.mo_coeff if mo_occ is None: mo_occ = mf.mo_occ # assert (mo_coeff.dtype == numpy.double) mol = mf.mol nao, nmo = mo_coeff.shape occidx = numpy.where(mo_occ==2)[0] viridx = numpy.where(mo_occ==0)[0] orbv = mo_coeff[:,viridx] orbo = mo_coeff[:,occidx] nvir = orbv.shape[1] nocc = orbo.shape[1] mo = numpy.hstack((orbo,orbv)) e_ia = lib.direct_sum('a-i->ia', mo_energy[viridx], mo_energy[occidx]) a = numpy.diag(e_ia.ravel()).reshape(nocc,nvir,nocc,nvir) b = numpy.zeros_like(a) def add_hf_(a, b, hyb=1): eri_mo = ao2mo.general(mol, [orbo,mo,mo,mo], compact=False) eri_mo = eri_mo.reshape(nocc,nmo,nmo,nmo) a += numpy.einsum('iabj->iajb', eri_mo[:nocc,nocc:,nocc:,:nocc]) * 2 a -= numpy.einsum('ijba->iajb', eri_mo[:nocc,:nocc,nocc:,nocc:]) * hyb b += numpy.einsum('iajb->iajb', eri_mo[:nocc,nocc:,:nocc,nocc:]) * 2 b -= numpy.einsum('jaib->iajb', eri_mo[:nocc,nocc:,:nocc,nocc:]) * hyb if isinstance(mf, scf.hf.KohnShamDFT): ni = mf._numint ni.libxc.test_deriv_order(mf.xc, 2, raise_error=True) if mf.do_nlc(): logger.warn(mf, 'NLC functional found in DFT object. Its second ' 'derivative is not available. Its contribution is ' 'not included in the response function.') omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, mol.spin) add_hf_(a, b, hyb) if omega != 0: # For RSH with mol.with_range_coulomb(omega): eri_mo = ao2mo.general(mol, [orbo,mo,mo,mo], compact=False) eri_mo = eri_mo.reshape(nocc,nmo,nmo,nmo) k_fac = alpha - hyb a -= numpy.einsum('ijba->iajb', eri_mo[:nocc,:nocc,nocc:,nocc:]) * k_fac b -= numpy.einsum('jaib->iajb', eri_mo[:nocc,nocc:,:nocc,nocc:]) * k_fac xctype = ni._xc_type(mf.xc) dm0 = mf.make_rdm1(mo_coeff, mo_occ) make_rho = ni._gen_rho_evaluator(mol, dm0, hermi=1, with_lapl=False)[0] mem_now = lib.current_memory()[0] max_memory = max(2000, mf.max_memory*.8-mem_now) if xctype == 'LDA': ao_deriv = 0 for ao, mask, weight, coords \ in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory): rho = make_rho(0, ao, mask, xctype) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = fxc[0,0] * weight rho_o = lib.einsum('rp,pi->ri', ao, orbo) rho_v = lib.einsum('rp,pi->ri', ao, orbv) rho_ov = numpy.einsum('ri,ra->ria', rho_o, rho_v) w_ov = numpy.einsum('ria,r->ria', rho_ov, wfxc) iajb = lib.einsum('ria,rjb->iajb', rho_ov, w_ov) * 2 a += iajb b += iajb elif xctype == 'GGA': ao_deriv = 1 for ao, mask, weight, coords \ in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory): rho = make_rho(0, ao, mask, xctype) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = fxc * weight rho_o = lib.einsum('xrp,pi->xri', ao, orbo) rho_v = lib.einsum('xrp,pi->xri', ao, orbv) rho_ov = numpy.einsum('xri,ra->xria', rho_o, rho_v[0]) rho_ov[1:4] += numpy.einsum('ri,xra->xria', rho_o[0], rho_v[1:4]) w_ov = numpy.einsum('xyr,xria->yria', wfxc, rho_ov) iajb = lib.einsum('xria,xrjb->iajb', w_ov, rho_ov) * 2 a += iajb b += iajb elif xctype == 'HF': pass elif xctype == 'NLC': raise NotImplementedError('NLC') elif xctype == 'MGGA': ao_deriv = 1 for ao, mask, weight, coords \ in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory): rho = make_rho(0, ao, mask, xctype) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = fxc * weight rho_o = lib.einsum('xrp,pi->xri', ao, orbo) rho_v = lib.einsum('xrp,pi->xri', ao, orbv) rho_ov = numpy.einsum('xri,ra->xria', rho_o, rho_v[0]) rho_ov[1:4] += numpy.einsum('ri,xra->xria', rho_o[0], rho_v[1:4]) tau_ov = numpy.einsum('xri,xra->ria', rho_o[1:4], rho_v[1:4]) * .5 rho_ov = numpy.vstack([rho_ov, tau_ov[numpy.newaxis]]) w_ov = numpy.einsum('xyr,xria->yria', wfxc, rho_ov) iajb = lib.einsum('xria,xrjb->iajb', w_ov, rho_ov) * 2 a += iajb b += iajb else: add_hf_(a, b) return a, b
[docs] def get_nto(tdobj, state=1, threshold=OUTPUT_THRESHOLD, verbose=None): r''' Natural transition orbital analysis. The natural transition density matrix between ground state and excited state :math:`Tia = \langle \Psi_{ex} | i a^\dagger | \Psi_0 \rangle` can be transformed to diagonal form through SVD :math:`T = O \sqrt{\lambda} V^\dagger`. O and V are occupied and virtual natural transition orbitals. The diagonal elements :math:`\lambda` are the weights of the occupied-virtual orbital pair in the excitation. Ref: Martin, R. L., JCP, 118, 4775-4777 Note in the TDHF/TDDFT calculations, the excitation part (X) is interpreted as the CIS coefficients and normalized to 1. The de-excitation part (Y) is ignored. Args: tdobj : TDA, or TDHF, or TDDFT object state : int Excited state ID. state = 1 means the first excited state. If state < 0, state ID is counted from the last excited state. Kwargs: threshold : float Above which the NTO coefficients will be printed in the output. Returns: A list (weights, NTOs). NTOs are natural orbitals represented in AO basis. The first N_occ NTOs are occupied NTOs and the rest are virtual NTOs. ''' if state == 0: logger.warn(tdobj, 'Excited state starts from 1. ' 'Set state=1 for first excited state.') state_id = state elif state < 0: state_id = state else: state_id = state - 1 mol = tdobj.mol mo_coeff = tdobj._scf.mo_coeff mo_occ = tdobj._scf.mo_occ orbo = mo_coeff[:,mo_occ==2] orbv = mo_coeff[:,mo_occ==0] nocc = orbo.shape[1] nvir = orbv.shape[1] cis_t1 = tdobj.xy[state_id][0] # TDDFT (X,Y) has X^2-Y^2=1. # Renormalizing X (X^2=1) to map it to CIS coefficients cis_t1 *= 1. / numpy.linalg.norm(cis_t1) # TODO: Comparing to the NTOs defined in JCP, 142, 244103. JCP, 142, 244103 # provides a method to incorporate the Y matrix in the transition density # matrix. However, it may break the point group symmetry of the NTO orbitals # when the system has degenerated irreducible representations. if mol.symmetry: orbsym = hf_symm.get_orbsym(mol, mo_coeff) orbsym_in_d2h = numpy.asarray(orbsym) % 10 # convert to D2h irreps o_sym = orbsym_in_d2h[mo_occ==2] v_sym = orbsym_in_d2h[mo_occ==0] nto_o = numpy.eye(nocc) nto_v = numpy.eye(nvir) weights_o = numpy.zeros(nocc) weights_v = numpy.zeros(nvir) for ir in set(orbsym_in_d2h): idx = numpy.where(o_sym == ir)[0] if idx.size > 0: dm_oo = numpy.dot(cis_t1[idx], cis_t1[idx].T) weights_o[idx], nto_o[idx[:,None],idx] = numpy.linalg.eigh(dm_oo) idx = numpy.where(v_sym == ir)[0] if idx.size > 0: dm_vv = numpy.dot(cis_t1[:,idx].T, cis_t1[:,idx]) weights_v[idx], nto_v[idx[:,None],idx] = numpy.linalg.eigh(dm_vv) # weights in descending order idx = numpy.argsort(-weights_o) weights_o = weights_o[idx] nto_o = nto_o[:,idx] o_sym = o_sym[idx] idx = numpy.argsort(-weights_v) weights_v = weights_v[idx] nto_v = nto_v[:,idx] v_sym = v_sym[idx] nto_orbsym = numpy.hstack((o_sym, v_sym)) if nocc < nvir: weights = weights_o else: weights = weights_v else: nto_o, w, nto_vT = numpy.linalg.svd(cis_t1) nto_v = nto_vT.conj().T weights = w**2 nto_orbsym = None idx = numpy.argmax(abs(nto_o.real), axis=0) nto_o[:,nto_o[idx,numpy.arange(nocc)].real<0] *= -1 idx = numpy.argmax(abs(nto_v.real), axis=0) nto_v[:,nto_v[idx,numpy.arange(nvir)].real<0] *= -1 occupied_nto = numpy.dot(orbo, nto_o) virtual_nto = numpy.dot(orbv, nto_v) nto_coeff = numpy.hstack((occupied_nto, virtual_nto)) if mol.symmetry: nto_coeff = lib.tag_array(nto_coeff, orbsym=nto_orbsym) log = logger.new_logger(tdobj, verbose) if log.verbose >= logger.INFO: log.info('State %d: %g eV NTO largest component %s', state_id+1, tdobj.e[state_id]*nist.HARTREE2EV, weights[0]) o_idx = numpy.where(abs(nto_o[:,0]) > threshold)[0] v_idx = numpy.where(abs(nto_v[:,0]) > threshold)[0] fmt = '%' + str(lib.param.OUTPUT_DIGITS) + 'f (MO #%d)' log.info(' occ-NTO: ' + ' + '.join([(fmt % (nto_o[i,0], i+MO_BASE)) for i in o_idx])) log.info(' vir-NTO: ' + ' + '.join([(fmt % (nto_v[i,0], i+MO_BASE+nocc)) for i in v_idx])) return weights, nto_coeff
[docs] def analyze(tdobj, verbose=None): log = logger.new_logger(tdobj, verbose) mol = tdobj.mol mo_coeff = tdobj._scf.mo_coeff mo_occ = tdobj._scf.mo_occ nocc = numpy.count_nonzero(mo_occ == 2) e_ev = numpy.asarray(tdobj.e) * nist.HARTREE2EV e_wn = numpy.asarray(tdobj.e) * nist.HARTREE2WAVENUMBER wave_length = 1e7/e_wn if tdobj.singlet: log.note('\n** Singlet excitation energies and oscillator strengths **') else: log.note('\n** Triplet excitation energies and oscillator strengths **') if mol.symmetry: orbsym = hf_symm.get_orbsym(mol, mo_coeff) x_sym = symm.direct_prod(orbsym[mo_occ==2], orbsym[mo_occ==0], mol.groupname) else: x_sym = None f_oscillator = tdobj.oscillator_strength() for i, ei in enumerate(tdobj.e): x, y = tdobj.xy[i] if x_sym is None: log.note('Excited State %3d: %12.5f eV %9.2f nm f=%.4f', i+1, e_ev[i], wave_length[i], f_oscillator[i]) else: wfnsym = _analyze_wfnsym(tdobj, x_sym, x) log.note('Excited State %3d: %4s %12.5f eV %9.2f nm f=%.4f', i+1, wfnsym, e_ev[i], wave_length[i], f_oscillator[i]) if log.verbose >= logger.INFO: o_idx, v_idx = numpy.where(abs(x) > 0.1) for o, v in zip(o_idx, v_idx): log.info(' %4d -> %-4d %12.5f', o+MO_BASE, v+MO_BASE+nocc, x[o,v]) if log.verbose >= logger.INFO: log.info('\n** Transition electric dipole moments (AU) **') log.info('state X Y Z Dip. S. Osc.') trans_dip = tdobj.transition_dipole() for i, ei in enumerate(tdobj.e): dip = trans_dip[i] log.info('%3d %11.4f %11.4f %11.4f %11.4f %11.4f', i+1, dip[0], dip[1], dip[2], numpy.dot(dip, dip), f_oscillator[i]) log.info('\n** Transition velocity dipole moments (imaginary part, AU) **') log.info('state X Y Z Dip. S. Osc.') trans_v = tdobj.transition_velocity_dipole() f_v = tdobj.oscillator_strength(gauge='velocity', order=0) for i, ei in enumerate(tdobj.e): v = trans_v[i] log.info('%3d %11.4f %11.4f %11.4f %11.4f %11.4f', i+1, v[0], v[1], v[2], numpy.dot(v, v), f_v[i]) log.info('\n** Transition magnetic dipole moments (imaginary part, AU) **') log.info('state X Y Z') trans_m = tdobj.transition_magnetic_dipole() for i, ei in enumerate(tdobj.e): m = trans_m[i] log.info('%3d %11.4f %11.4f %11.4f', i+1, m[0], m[1], m[2]) return tdobj
def _analyze_wfnsym(tdobj, x_sym, x): '''Guess the wfn symmetry of TDDFT X amplitude. Return a label''' wfnsym = _guess_wfnsym_id(tdobj, x_sym, x) if wfnsym == symm.MULTI_IRREPS: wfnsym = '???' else: wfnsym = symm.irrep_id2name(tdobj.mol.groupname, wfnsym) return wfnsym def _guess_wfnsym_id(tdobj, x_sym, x): '''Guess the wfn symmetry of TDDFT X amplitude. Return an ID''' possible_sym = x_sym[(x > 1e-7) | (x < -1e-7)] wfnsym = symm.MULTI_IRREPS ids = possible_sym[possible_sym != symm.MULTI_IRREPS] if len(ids) > 0 and all(ids == ids[0]): wfnsym = ids[0] return wfnsym
[docs] def transition_dipole(tdobj, xy=None): '''Transition dipole moments in the length gauge''' mol = tdobj.mol with mol.with_common_orig(_charge_center(mol)): ints = mol.intor_symmetric('int1e_r', comp=3) return tdobj._contract_multipole(ints, hermi=True, xy=xy)
[docs] def transition_velocity_dipole(tdobj, xy=None): '''Transition dipole moments in the velocity gauge (imaginary part only) ''' ints = tdobj.mol.intor('int1e_ipovlp', comp=3, hermi=2) v = tdobj._contract_multipole(ints, hermi=False, xy=xy) return -v
[docs] def transition_magnetic_dipole(tdobj, xy=None): '''Transition magnetic dipole moments (imaginary part only)''' mol = tdobj.mol with mol.with_common_orig(_charge_center(mol)): ints = mol.intor('int1e_cg_irxp', comp=3, hermi=2) m_pol = tdobj._contract_multipole(ints, hermi=False, xy=xy) return -m_pol
[docs] def transition_quadrupole(tdobj, xy=None): '''Transition quadrupole moments in the length gauge''' mol = tdobj.mol nao = mol.nao_nr() with mol.with_common_orig(_charge_center(mol)): ints = mol.intor('int1e_rr', comp=9, hermi=0).reshape(3,3,nao,nao) quad = tdobj._contract_multipole(ints, hermi=True, xy=xy) return quad
[docs] def transition_velocity_quadrupole(tdobj, xy=None): '''Transition quadrupole moments in the velocity gauge (imaginary part only) ''' mol = tdobj.mol nao = mol.nao_nr() with mol.with_common_orig(_charge_center(mol)): ints = mol.intor('int1e_irp', comp=9, hermi=0).reshape(3,3,nao,nao) ints = ints + ints.transpose(1,0,3,2) quad = tdobj._contract_multipole(ints, hermi=True, xy=xy) return -quad
[docs] def transition_magnetic_quadrupole(tdobj, xy=None): '''Transition magnetic quadrupole moments (imaginary part only)''' XX, XY, XZ, YX, YY, YZ, ZX, ZY, ZZ = range(9) mol = tdobj.mol nao = mol.nao_nr() with mol.with_common_orig(_charge_center(mol)): ints = mol.intor('int1e_irrp', comp=27, hermi=0).reshape(3,9,nao,nao) m_ints = (ints[:,[YZ,ZX,XY]] - ints[:,[ZY,XZ,YX]]).transpose(1,0,2,3) with mol.with_common_orig(_charge_center(mol)): ints = mol.intor('int1e_irpr', comp=27, hermi=0).reshape(9,3,nao,nao) m_ints += ints[[YZ,ZX,XY]] - ints[[ZY,XZ,YX]] m_quad = tdobj._contract_multipole(m_ints, hermi=True, xy=xy) return -m_quad
[docs] def transition_octupole(tdobj, xy=None): '''Transition octupole moments in the length gauge''' mol = tdobj.mol nao = mol.nao_nr() with mol.with_common_orig(_charge_center(mol)): ints = mol.intor('int1e_rrr', comp=27, hermi=0).reshape(3,3,3,nao,nao) o_pol = tdobj._contract_multipole(ints, hermi=True, xy=xy) return o_pol
[docs] def transition_velocity_octupole(tdobj, xy=None): '''Transition octupole moments in the velocity gauge (imaginary part only) ''' mol = tdobj.mol nao = mol.nao_nr() with mol.with_common_orig(_charge_center(mol)): ints = mol.intor('int1e_irrp', comp=27, hermi=0).reshape(3,3,3,nao,nao) ints = ints + ints.transpose(2,1,0,4,3) with mol.with_common_orig(_charge_center(mol)): ints += mol.intor('int1e_irpr', comp=27, hermi=0).reshape(3,3,3,nao,nao) o_pol = tdobj._contract_multipole(ints, hermi=True, xy=xy) return -o_pol
def _charge_center(mol): charges = mol.atom_charges() coords = mol.atom_coords() return numpy.einsum('z,zr->r', charges, coords)/charges.sum() def _contract_multipole(tdobj, ints, hermi=True, xy=None): '''ints is the integral tensor of a spin-independent operator''' if xy is None: xy = tdobj.xy nstates = len(xy) pol_shape = ints.shape[:-2] nao = ints.shape[-1] if not tdobj.singlet: return numpy.zeros((nstates,) + pol_shape) mo_coeff = tdobj._scf.mo_coeff mo_occ = tdobj._scf.mo_occ orbo = mo_coeff[:,mo_occ==2] orbv = mo_coeff[:,mo_occ==0] #Incompatible to old numpy version #ints = numpy.einsum('...pq,pi,qj->...ij', ints, orbo.conj(), orbv) ints = lib.einsum('xpq,pi,qj->xij', ints.reshape(-1,nao,nao), orbo.conj(), orbv) pol = numpy.array([numpy.einsum('xij,ij->x', ints, x) * 2 for x,y in xy]) if isinstance(xy[0][1], numpy.ndarray): if hermi: pol += [numpy.einsum('xij,ij->x', ints, y) * 2 for x,y in xy] else: # anti-Hermitian pol -= [numpy.einsum('xij,ij->x', ints, y) * 2 for x,y in xy] pol = pol.reshape((nstates,)+pol_shape) return pol
[docs] def oscillator_strength(tdobj, e=None, xy=None, gauge='length', order=0): if e is None: e = tdobj.e if gauge == 'length': trans_dip = transition_dipole(tdobj, xy) f = 2./3. * numpy.einsum('s,sx,sx->s', e, trans_dip, trans_dip) return f else: # velocity gauge # Ref. JCP, 143, 234103 trans_dip = transition_velocity_dipole(tdobj, xy) f = 2./3. * numpy.einsum('s,sx,sx->s', 1./e, trans_dip, trans_dip) if order > 0: m_dip = .5 * transition_magnetic_dipole(tdobj, xy) f_m = numpy.einsum('s,sx,sx->s', e, m_dip, m_dip) f_m = nist.ALPHA**2/6 * f_m.real f += f_m quad = .5 * transition_velocity_quadrupole(tdobj, xy) f_quad = numpy.einsum('s,sxy,sxy->s', e, quad, quad) f_quad-= 1./3 * numpy.einsum('s,sxx,sxx->s', e, quad, quad) f_quad = nist.ALPHA**2/20 * f_quad.real f += f_quad logger.debug(tdobj, ' First order correction to oscillator ' 'strength (velocity gague)') logger.debug(tdobj, ' %s', f_m+f_quad) if order > 1: m_quad = -1./6 * 1j*transition_magnetic_quadrupole(tdobj, xy) f_m = numpy.einsum('s,sy,szx,xyz->s', e, trans_dip*1j, m_quad, lib.LeviCivita) f_m = nist.ALPHA**3/9 * f_m.real f += f_m o_pol = -1./6 * 1j*transition_velocity_octupole(tdobj, xy) f_o = numpy.einsum('s,sy,sxxy->s', e, trans_dip*1j, o_pol) f_o = -2*nist.ALPHA**2/45 * f_o.real f += f_o logger.debug(tdobj, ' Second order correction to oscillator ' 'strength (velocity gague)') logger.debug(tdobj, ' %s', f_m+f_o) return f
[docs] def as_scanner(td): '''Generating a scanner/solver for TDA/TDHF/TDDFT PES. The returned solver is a function. This function requires one argument "mol" as input and returns total TDA/TDHF/TDDFT energy. The solver will automatically use the results of last calculation as the initial guess of the new calculation. All parameters assigned in the TDA/TDDFT and the underlying SCF objects (conv_tol, max_memory etc) are automatically applied in the solver. Note scanner has side effects. It may change many underlying objects (_scf, with_df, with_x2c, ...) during calculation. Examples:: >>> from pyscf import gto, scf, tdscf >>> mol = gto.M(atom='H 0 0 0; F 0 0 1') >>> td_scanner = tdscf.TDHF(scf.RHF(mol)).as_scanner() >>> de = td_scanner(gto.M(atom='H 0 0 0; F 0 0 1.1')) [ 0.34460866 0.34460866 0.7131453 ] >>> de = td_scanner(gto.M(atom='H 0 0 0; F 0 0 1.5')) [ 0.14844013 0.14844013 0.47641829] ''' if isinstance(td, lib.SinglePointScanner): return td logger.info(td, 'Set %s as a scanner', td.__class__) name = td.__class__.__name__ + TD_Scanner.__name_mixin__ return lib.set_class(TD_Scanner(td), (TD_Scanner, td.__class__), name)
[docs] class TD_Scanner(lib.SinglePointScanner): def __init__(self, td): self.__dict__.update(td.__dict__) self._scf = td._scf.as_scanner() def __call__(self, mol_or_geom, **kwargs): if isinstance(mol_or_geom, gto.MoleBase): mol = mol_or_geom else: mol = self.mol.set_geom_(mol_or_geom, inplace=False) self.reset(mol) mf_scanner = self._scf mf_e = mf_scanner(mol) self.kernel(**kwargs) return mf_e + self.e
[docs] class TDBase(lib.StreamObject): conv_tol = getattr(__config__, 'tdscf_rhf_TDA_conv_tol', 1e-5) nstates = getattr(__config__, 'tdscf_rhf_TDA_nstates', 3) singlet = getattr(__config__, 'tdscf_rhf_TDA_singlet', True) lindep = getattr(__config__, 'tdscf_rhf_TDA_lindep', 1e-12) level_shift = getattr(__config__, 'tdscf_rhf_TDA_level_shift', 0) max_cycle = getattr(__config__, 'tdscf_rhf_TDA_max_cycle', 100) # Low excitation filter to avoid numerical instability positive_eig_threshold = getattr(__config__, 'tdscf_rhf_TDDFT_positive_eig_threshold', 1e-3) # Threshold to handle degeneracy in init guess deg_eia_thresh = getattr(__config__, 'tdscf_rhf_TDDFT_deg_eia_thresh', 1e-3) _keys = { 'conv_tol', 'nstates', 'singlet', 'lindep', 'level_shift', 'max_cycle', 'mol', 'chkfile', 'wfnsym', 'converged', 'e', 'xy', } def __init__(self, mf): self.verbose = mf.verbose self.stdout = mf.stdout self.mol = mf.mol self._scf = mf self.max_memory = mf.max_memory self.chkfile = mf.chkfile self.wfnsym = None # xy = (X,Y), normalized to 1/2: 2(XX-YY) = 1 # In TDA, Y = 0 self.converged = None self.e = None self.xy = None @property def nroots(self): return self.nstates @nroots.setter def nroots(self, x): self.nstates = x @property def e_tot(self): '''Excited state energies''' return self._scf.e_tot + self.e
[docs] def dump_flags(self, verbose=None): log = logger.new_logger(self, verbose) log.info('\n') log.info('******** %s for %s ********', self.__class__, self._scf.__class__) if self.singlet is None: log.info('nstates = %d', self.nstates) elif self.singlet: log.info('nstates = %d singlet', self.nstates) else: log.info('nstates = %d triplet', self.nstates) log.info('deg_eia_thresh = %.3e', self.deg_eia_thresh) log.info('wfnsym = %s', self.wfnsym) log.info('conv_tol = %g', self.conv_tol) log.info('eigh lindep = %g', self.lindep) log.info('eigh level_shift = %g', self.level_shift) log.info('eigh max_cycle = %d', self.max_cycle) log.info('chkfile = %s', self.chkfile) log.info('max_memory %d MB (current use %d MB)', self.max_memory, lib.current_memory()[0]) if not self._scf.converged: log.warn('Ground state SCF is not converged') log.info('\n')
[docs] def check_sanity(self): if self._scf.mo_coeff is None: raise RuntimeError('SCF object is not initialized') lib.StreamObject.check_sanity(self)
[docs] def reset(self, mol=None): if mol is not None: self.mol = mol self._scf.reset(mol) return self
[docs] def gen_vind(self, mf=None): raise NotImplementedError
[docs] @lib.with_doc(get_ab.__doc__) def get_ab(self, mf=None): if mf is None: mf = self._scf return get_ab(mf)
[docs] def get_precond(self, hdiag): def precond(x, e, *args): diagd = hdiag - (e-self.level_shift) diagd[abs(diagd)<1e-8] = 1e-8 return x/diagd return precond
analyze = analyze get_nto = get_nto oscillator_strength = oscillator_strength _contract_multipole = _contract_multipole # needed by following methods transition_dipole = transition_dipole transition_quadrupole = transition_quadrupole transition_octupole = transition_octupole transition_velocity_dipole = transition_velocity_dipole transition_velocity_quadrupole = transition_velocity_quadrupole transition_velocity_octupole = transition_velocity_octupole transition_magnetic_dipole = transition_magnetic_dipole transition_magnetic_quadrupole = transition_magnetic_quadrupole as_scanner = as_scanner
[docs] def nuc_grad_method(self): from pyscf.grad import tdrhf return tdrhf.Gradients(self)
def _finalize(self): '''Hook for dumping results and clearing up the object.''' if not all(self.converged): logger.note(self, 'TD-SCF states %s not converged.', [i for i, x in enumerate(self.converged) if not x]) logger.note(self, 'Excited State energies (eV)\n%s', self.e * nist.HARTREE2EV) return self
[docs] def to_gpu(self): raise NotImplementedError
[docs] class TDA(TDBase): '''Tamm-Dancoff approximation Attributes: conv_tol : float Diagonalization convergence tolerance. Default is 1e-9. nstates : int Number of TD states to be computed. Default is 3. Saved results: converged : bool Diagonalization converged or not e : 1D array excitation energy for each excited state. xy : A list of two 2D arrays The two 2D arrays are Excitation coefficients X (shape [nocc,nvir]) and de-excitation coefficients Y (shape [nocc,nvir]) for each excited state. (X,Y) are normalized to 1/2 in RHF/RKS methods and normalized to 1 for UHF/UKS methods. In the TDA calculation, Y = 0. '''
[docs] def gen_vind(self, mf=None): '''Generate function to compute Ax''' if mf is None: mf = self._scf return gen_tda_hop(mf, singlet=self.singlet, wfnsym=self.wfnsym)
[docs] def init_guess(self, mf, nstates=None, wfnsym=None, return_symmetry=False): ''' Generate initial guess for TDA Kwargs: nstates : int The number of initial guess vectors. wfnsym : int or str The irrep label or ID of the wavefunction. return_symmetry : bool Whether to return symmetry labels for initial guess vectors. ''' if nstates is None: nstates = self.nstates if wfnsym is None: wfnsym = self.wfnsym mo_energy = mf.mo_energy mo_occ = mf.mo_occ occidx = numpy.where(mo_occ==2)[0] viridx = numpy.where(mo_occ==0)[0] e_ia = (mo_energy[viridx] - mo_energy[occidx,None]).ravel() nov = e_ia.size nstates = min(nstates, nov) if (wfnsym is not None or return_symmetry) and mf.mol.symmetry: x_sym = _get_x_sym_table(mf).ravel() if wfnsym is not None: if isinstance(wfnsym, str): wfnsym = symm.irrep_name2id(mf.mol.groupname, wfnsym) wfnsym = wfnsym % 10 # convert to D2h subgroup e_ia[x_sym != wfnsym] = 1e99 nov_allowed = numpy.count_nonzero(x_sym == wfnsym) nstates = min(nstates, nov_allowed) # Find the nstates-th lowest energy gap e_threshold = numpy.partition(e_ia, nstates-1)[nstates-1] e_threshold += self.deg_eia_thresh idx = numpy.where(e_ia <= e_threshold)[0] x0 = numpy.zeros((idx.size, nov)) for i, j in enumerate(idx): x0[i, j] = 1 # Koopmans' excitations if return_symmetry: if mf.mol.symmetry: x0sym = x_sym[idx] else: x0sym = None return x0, x0sym else: return x0
[docs] def kernel(self, x0=None, nstates=None): '''TDA diagonalization solver ''' cpu0 = (logger.process_clock(), logger.perf_counter()) self.check_sanity() self.dump_flags() if nstates is None: nstates = self.nstates else: self.nstates = nstates mol = self.mol log = logger.Logger(self.stdout, self.verbose) vind, hdiag = self.gen_vind(self._scf) precond = self.get_precond(hdiag) def pickeig(w, v, nroots, envs): idx = numpy.where(w > self.positive_eig_threshold)[0] return w[idx], v[:,idx], idx x0sym = None if x0 is None: x0, x0sym = self.init_guess( self._scf, self.nstates, return_symmetry=True) elif mol.symmetry: x_sym = _get_x_sym_table(self._scf).ravel() x0sym = [_guess_wfnsym_id(self, x_sym, x) for x in x0] self.converged, self.e, x1 = lr_eigh( vind, x0, precond, tol_residual=self.conv_tol, lindep=self.lindep, nroots=nstates, x0sym=x0sym, pick=pickeig, max_cycle=self.max_cycle, max_memory=self.max_memory, verbose=log) nocc = (self._scf.mo_occ>0).sum() nmo = self._scf.mo_occ.size nvir = nmo - nocc # 1/sqrt(2) because self.x is for alpha excitation and 2(X^+*X) = 1 self.xy = [(xi.reshape(nocc,nvir)*numpy.sqrt(.5),0) for xi in x1] if self.chkfile: lib.chkfile.save(self.chkfile, 'tddft/e', self.e) lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy) log.timer('TDA', *cpu0) self._finalize() return self.e, self.xy
to_gpu = lib.to_gpu
CIS = TDA
[docs] def gen_tdhf_operation(mf, fock_ao=None, singlet=True, wfnsym=None): '''Generate function to compute [ A B ][X] [-B* -A*][Y] ''' mol = mf.mol mo_coeff = mf.mo_coeff # assert (mo_coeff.dtype == numpy.double) mo_energy = mf.mo_energy mo_occ = mf.mo_occ nao, nmo = mo_coeff.shape occidx = numpy.where(mo_occ==2)[0] viridx = numpy.where(mo_occ==0)[0] nocc = len(occidx) nvir = len(viridx) orbv = mo_coeff[:,viridx] orbo = mo_coeff[:,occidx] if wfnsym is not None and mol.symmetry: if isinstance(wfnsym, str): wfnsym = symm.irrep_name2id(mol.groupname, wfnsym) wfnsym = wfnsym % 10 # convert to D2h subgroup sym_forbid = _get_x_sym_table(mf) != wfnsym assert fock_ao is None e_ia = hdiag = mo_energy[viridx] - mo_energy[occidx,None] if wfnsym is not None and mol.symmetry: hdiag[sym_forbid] = 0 hdiag = numpy.hstack((hdiag.ravel(), -hdiag.ravel())) mo_coeff = numpy.asarray(numpy.hstack((orbo,orbv)), order='F') vresp = mf.gen_response(singlet=singlet, hermi=0) def vind(xys): xys = numpy.asarray(xys).reshape(-1,2,nocc,nvir) if wfnsym is not None and mol.symmetry: # shape(nz,2,nocc,nvir): 2 ~ X,Y xys = numpy.copy(xys) xys[:,:,sym_forbid] = 0 xs, ys = xys.transpose(1,0,2,3) # *2 for double occupancy dms = lib.einsum('xov,qv,po->xpq', xs*2, orbv.conj(), orbo) dms += lib.einsum('xov,pv,qo->xpq', ys*2, orbv, orbo.conj()) v1ao = vresp(dms) # = <mb||nj> Xjb + <mj||nb> Yjb # A ~= <ib||aj>, B = <ij||ab> # AX + BY # = <ib||aj> Xjb + <ij||ab> Yjb # = (<mb||nj> Xjb + <mj||nb> Yjb) Cmi* Cna v1ov = lib.einsum('xpq,po,qv->xov', v1ao, orbo.conj(), orbv) # (B*)X + (A*)Y # = <ab||ij> Xjb + <aj||ib> Yjb # = (<mb||nj> Xjb + <mj||nb> Yjb) Cma* Cni v1vo = lib.einsum('xpq,qo,pv->xov', v1ao, orbo, orbv.conj()) v1ov += numpy.einsum('xia,ia->xia', xs, e_ia) # AX v1vo += numpy.einsum('xia,ia->xia', ys, e_ia.conj()) # (A*)Y if wfnsym is not None and mol.symmetry: v1ov[:,sym_forbid] = 0 v1vo[:,sym_forbid] = 0 # (AX, -AY) nz = xys.shape[0] hx = numpy.hstack((v1ov.reshape(nz,-1), -v1vo.reshape(nz,-1))) return hx return vind, hdiag
[docs] class TDHF(TDBase): '''Time-dependent Hartree-Fock Attributes: conv_tol : float Diagonalization convergence tolerance. Default is 1e-4. nstates : int Number of TD states to be computed. Default is 3. Saved results: converged : bool Diagonalization converged or not e : 1D array excitation energy for each excited state. xy : A list of two 2D arrays The two 2D arrays are Excitation coefficients X (shape [nocc,nvir]) and de-excitation coefficients Y (shape [nocc,nvir]) for each excited state. (X,Y) are normalized to 1/2 in RHF/RKS methods and normalized to 1 for UHF/UKS methods. In the TDA calculation, Y = 0. '''
[docs] @lib.with_doc(gen_tdhf_operation.__doc__) def gen_vind(self, mf=None): if mf is None: mf = self._scf return gen_tdhf_operation(mf, singlet=self.singlet, wfnsym=self.wfnsym)
[docs] def init_guess(self, mf, nstates=None, wfnsym=None, return_symmetry=False): if return_symmetry: x0, x0sym = TDA.init_guess(self, mf, nstates, wfnsym, return_symmetry) y0 = numpy.zeros_like(x0) return numpy.hstack([x0, y0]), x0sym else: x0 = TDA.init_guess(self, mf, nstates, wfnsym, return_symmetry) y0 = numpy.zeros_like(x0) return numpy.hstack([x0, y0])
[docs] def kernel(self, x0=None, nstates=None): '''TDHF diagonalization with non-Hermitian eigenvalue solver ''' cpu0 = (logger.process_clock(), logger.perf_counter()) self.check_sanity() self.dump_flags() if nstates is None: nstates = self.nstates else: self.nstates = nstates mol = self.mol log = logger.Logger(self.stdout, self.verbose) vind, hdiag = self.gen_vind(self._scf) precond = self.get_precond(hdiag) # handle single kpt PBC SCF if getattr(self._scf, 'kpt', None) is not None: from pyscf.pbc.lib.kpts_helper import gamma_point real_system = (gamma_point(self._scf.kpt) and self._scf.mo_coeff[0].dtype == numpy.double) else: real_system = True # We only need positive eigenvalues def pickeig(w, v, nroots, envs): realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD) & (w.real > self.positive_eig_threshold))[0] # If the complex eigenvalue has small imaginary part, both the # real part and the imaginary part of the eigenvector can # approximately be used as the "real" eigen solutions. return lib.linalg_helper._eigs_cmplx2real(w, v, realidx, real_system) x0sym = None if x0 is None: x0, x0sym = self.init_guess( self._scf, self.nstates, return_symmetry=True) elif mol.symmetry: x_sym = y_sym = _get_x_sym_table(self._scf).ravel() x_sym = numpy.append(x_sym, y_sym) x0sym = [_guess_wfnsym_id(self, x_sym, x) for x in x0] self.converged, w, x1 = lr_eig( vind, x0, precond, tol_residual=self.conv_tol, lindep=self.lindep, nroots=nstates, x0sym=x0sym, pick=pickeig, max_cycle=self.max_cycle, max_memory=self.max_memory, verbose=log) nocc = (self._scf.mo_occ>0).sum() nmo = self._scf.mo_occ.size nvir = nmo - nocc self.e = w def norm_xy(z): x, y = z.reshape(2,nocc,nvir) norm = lib.norm(x)**2 - lib.norm(y)**2 norm = numpy.sqrt(.5/norm) # normalize to 0.5 for alpha spin return x*norm, y*norm self.xy = [norm_xy(z) for z in x1] if self.chkfile: lib.chkfile.save(self.chkfile, 'tddft/e', self.e) lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy) log.timer('TDDFT', *cpu0) self._finalize() return self.e, self.xy
[docs] def nuc_grad_method(self): from pyscf.grad import tdrhf return tdrhf.Gradients(self)
to_gpu = lib.to_gpu
RPA = TDRHF = TDHF scf.hf.RHF.TDA = lib.class_as_method(TDA) scf.hf.RHF.TDHF = lib.class_as_method(TDHF) scf.rohf.ROHF.TDA = None scf.rohf.ROHF.TDHF = None scf.hf_symm.ROHF.TDA = None scf.hf_symm.ROHF.TDHF = None del (OUTPUT_THRESHOLD)