Source code for pyscf.tdscf.gks

#!/usr/bin/env python
# Copyright 2021-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#


import numpy
from pyscf import lib
from pyscf import symm
from pyscf.tdscf import ghf, rhf
from pyscf.tdscf._lr_eig import eigh as lr_eigh
from pyscf.dft.rks import KohnShamDFT
from pyscf import __config__


[docs] class TDA(ghf.TDA): pass
[docs] class TDDFT(ghf.TDHF): pass
RPA = TDGKS = TDDFT
[docs] class CasidaTDDFT(TDDFT, TDA): '''Solve the Casida TDDFT formula (A-B)(A+B)(X+Y) = (X+Y)w^2 ''' init_guess = TDA.init_guess
[docs] def gen_vind(self, mf=None): if mf is None: mf = self._scf wfnsym = self.wfnsym mol = mf.mol mo_coeff = mf.mo_coeff assert mo_coeff.dtype == numpy.double mo_energy = mf.mo_energy mo_occ = mf.mo_occ nao, nmo = mo_coeff.shape occidx = numpy.where(mo_occ==1)[0] viridx = numpy.where(mo_occ==0)[0] nocc = len(occidx) nvir = len(viridx) orbv = mo_coeff[:,viridx] orbo = mo_coeff[:,occidx] if wfnsym is not None and mol.symmetry: if isinstance(wfnsym, str): wfnsym = symm.irrep_name2id(mol.groupname, wfnsym) wfnsym = wfnsym % 10 # convert to D2h subgroup sym_forbid = ghf._get_x_sym_table(mf) != wfnsym e_ia = (mo_energy[viridx].reshape(-1,1) - mo_energy[occidx]).T if wfnsym is not None and mol.symmetry: e_ia[sym_forbid] = 0 d_ia = numpy.sqrt(e_ia) ed_ia = e_ia * d_ia hdiag = e_ia.ravel() ** 2 vresp = mf.gen_response(mo_coeff, mo_occ, hermi=1) def vind(zs): zs = numpy.asarray(zs).reshape(-1,nocc,nvir) if wfnsym is not None and mol.symmetry: zs = numpy.copy(zs) zs[:,sym_forbid] = 0 dmov = lib.einsum('xov,qv,po->xpq', zs*d_ia, orbv, orbo) # +cc for A+B because K_{ai,jb} in A == K_{ai,bj} in B dmov = dmov + dmov.transpose(0,2,1) v1ao = vresp(dmov) v1ov = lib.einsum('xpq,po,qv->xov', v1ao, orbo, orbv) # numpy.sqrt(e_ia) * (e_ia*d_ia*z + v1ov) v1ov += numpy.einsum('xov,ov->xov', zs, ed_ia) v1ov *= d_ia if wfnsym is not None and mol.symmetry: v1ov[:,sym_forbid] = 0 return v1ov.reshape(v1ov.shape[0],-1) return vind, hdiag
[docs] def kernel(self, x0=None, nstates=None): '''TDDFT diagonalization solver ''' cpu0 = (lib.logger.process_clock(), lib.logger.perf_counter()) mol = self.mol mf = self._scf if mf._numint.libxc.is_hybrid_xc(mf.xc): raise RuntimeError('%s cannot be used with hybrid functional' % self.__class__) self.check_sanity() self.dump_flags() if nstates is None: nstates = self.nstates else: self.nstates = nstates log = lib.logger.Logger(self.stdout, self.verbose) vind, hdiag = self.gen_vind(self._scf) precond = self.get_precond(hdiag) def pickeig(w, v, nroots, envs): idx = numpy.where(w > self.positive_eig_threshold)[0] return w[idx], v[:,idx], idx x0sym = None if x0 is None: x0, x0sym = self.init_guess( self._scf, self.nstates, return_symmetry=True) elif mol.symmetry: x_sym = ghf._get_x_sym_table(self._scf).ravel() x0sym = [rhf._guess_wfnsym_id(self, x_sym, x) for x in x0] self.converged, w2, x1 = lr_eigh( vind, x0, precond, tol_residual=self.conv_tol, lindep=self.lindep, nroots=nstates, x0sym=x0sym, pick=pickeig, max_cycle=self.max_cycle, max_memory=self.max_memory, verbose=log) mo_energy = self._scf.mo_energy mo_occ = self._scf.mo_occ occidx = numpy.where(mo_occ==1)[0] viridx = numpy.where(mo_occ==0)[0] e_ia = (mo_energy[viridx,None] - mo_energy[occidx]).T e_ia = numpy.sqrt(e_ia) def norm_xy(w, z): zp = e_ia * z.reshape(e_ia.shape) zm = w/e_ia * z.reshape(e_ia.shape) x = (zp + zm) * .5 y = (zp - zm) * .5 norm = lib.norm(x)**2 - lib.norm(y)**2 norm = numpy.sqrt(1./norm) return (x*norm, y*norm) idx = numpy.where(w2 > self.positive_eig_threshold)[0] self.e = numpy.sqrt(w2[idx]) self.xy = [norm_xy(self.e[i], x1[i]) for i in idx] if self.chkfile: lib.chkfile.save(self.chkfile, 'tddft/e', self.e) lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy) log.timer('TDDFT', *cpu0) self._finalize() return self.e, self.xy
[docs] def nuc_grad_method(self): raise NotImplementedError
TDDFTNoHybrid = CasidaTDDFT
[docs] def tddft(mf): '''Driver to create TDDFT or CasidaTDDFT object''' if (not mf._numint.libxc.is_hybrid_xc(mf.xc) and # Casida formula can be applied for real orbitals only mf.mo_coeff.dtype == numpy.double and mf.collinear[0] != 'm'): return CasidaTDDFT(mf) else: return TDDFT(mf)
from pyscf import dft dft.gks.GKS.TDA = dft.gks_symm.GKS.TDA = lib.class_as_method(TDA) dft.gks.GKS.TDHF = dft.gks_symm.GKS.TDHF = None dft.gks.GKS.TDDFTNoHybrid = dft.gks_symm.GKS.TDDFTNoHybrid = lib.class_as_method(TDDFTNoHybrid) dft.gks.GKS.CasidaTDDFT = dft.gks_symm.GKS.CasidaTDDFT = lib.class_as_method(CasidaTDDFT) dft.gks.GKS.TDDFT = dft.gks_symm.GKS.TDDFT = tddft