Source code for pyscf.tdscf.dhf

#!/usr/bin/env python
# Copyright 2021-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
TDA and TDHF for no-pair DKS Hamiltonian
'''

from functools import reduce
import numpy
from pyscf import lib
from pyscf import scf
from pyscf import ao2mo
from pyscf.lib import logger
from pyscf.tdscf import rhf
from pyscf.tdscf._lr_eig import eigh as lr_eigh, eig as lr_eig
from pyscf import __config__

OUTPUT_THRESHOLD = getattr(__config__, 'tdscf_uhf_get_nto_threshold', 0.3)
REAL_EIG_THRESHOLD = getattr(__config__, 'tdscf_uhf_TDDFT_pick_eig_threshold', 1e-4)

[docs] def gen_tda_operation(mf, fock_ao=None): '''A x ''' mo_coeff = mf.mo_coeff mo_energy = mf.mo_energy mo_occ = mf.mo_occ nao, nmo = mo_coeff.shape # Remove all negative states n2c = nmo // 2 occidx = n2c + numpy.where(mo_occ[n2c:] == 1)[0] viridx = n2c + numpy.where(mo_occ[n2c:] == 0)[0] nocc = len(occidx) nvir = len(viridx) orbv = mo_coeff[:,viridx] orbo = mo_coeff[:,occidx] if fock_ao is None: e_ia = hdiag = mo_energy[viridx] - mo_energy[occidx,None] else: fock = reduce(numpy.dot, (mo_coeff.conj().T, fock_ao, mo_coeff)) foo = fock[occidx[:,None],occidx] fvv = fock[viridx[:,None],viridx] hdiag = fvv.diagonal() - foo.diagonal()[:,None] hdiag = hdiag.ravel() mo_coeff = numpy.asarray(numpy.hstack((orbo,orbv)), order='F') vresp = mf.gen_response(hermi=0) def vind(zs): zs = numpy.asarray(zs).reshape(-1,nocc,nvir) dmov = lib.einsum('xov,qv,po->xpq', zs, orbv.conj(), orbo) v1ao = vresp(dmov) v1ov = lib.einsum('xpq,po,qv->xov', v1ao, orbo.conj(), orbv) if fock_ao is None: v1ov += numpy.einsum('xia,ia->xia', zs, e_ia) else: v1ov += lib.einsum('xqs,sp->xqp', zs, fvv) v1ov -= lib.einsum('xpr,sp->xsr', zs, foo) return v1ov.reshape(v1ov.shape[0], -1) return vind, hdiag
gen_tda_hop = gen_tda_operation
[docs] def get_ab(mf, mo_energy=None, mo_coeff=None, mo_occ=None): r'''A and B matrices for TDDFT response function. A[i,a,j,b] = \delta_{ab}\delta_{ij}(E_a - E_i) + (ia||bj) B[i,a,j,b] = (ia||jb) ''' if mo_energy is None: mo_energy = mf.mo_energy if mo_coeff is None: mo_coeff = mf.mo_coeff if mo_occ is None: mo_occ = mf.mo_occ mol = mf.mol nao, nmo = mo_coeff.shape n2c = nmo // 2 occidx = n2c + numpy.where(mo_occ[n2c:] == 1)[0] viridx = n2c + numpy.where(mo_occ[n2c:] == 0)[0] orbv = mo_coeff[:,viridx] orbo = mo_coeff[:,occidx] nvir = orbv.shape[1] nocc = orbo.shape[1] nmo = nocc + nvir mo = numpy.hstack((orbo, orbv)) c1 = .5 / lib.param.LIGHT_SPEED moL = numpy.asarray(mo[:n2c], order='F') moS = numpy.asarray(mo[n2c:], order='F') * c1 orboL = moL[:,:nocc] orboS = moS[:,:nocc] e_ia = lib.direct_sum('a-i->ia', mo_energy[viridx], mo_energy[occidx]) a = numpy.diag(e_ia.ravel()).reshape(nocc,nvir,nocc,nvir) b = numpy.zeros_like(a) def add_hf_(a, b, hyb=1): eri_mo = ao2mo.kernel(mol, [orboL, moL, moL, moL], intor='int2e_spinor') eri_mo+= ao2mo.kernel(mol, [orboS, moS, moS, moS], intor='int2e_spsp1spsp2_spinor') eri_mo+= ao2mo.kernel(mol, [orboS, moS, moL, moL], intor='int2e_spsp1_spinor') eri_mo+= ao2mo.kernel(mol, [moS, moS, orboL, moL], intor='int2e_spsp1_spinor').T eri_mo = eri_mo.reshape(nocc,nmo,nmo,nmo) a = a + numpy.einsum('iabj->iajb', eri_mo[:nocc,nocc:,nocc:,:nocc]) a = a - numpy.einsum('ijba->iajb', eri_mo[:nocc,:nocc,nocc:,nocc:]) * hyb b = b + numpy.einsum('iajb->iajb', eri_mo[:nocc,nocc:,:nocc,nocc:]) b = b - numpy.einsum('jaib->iajb', eri_mo[:nocc,nocc:,:nocc,nocc:]) * hyb return a, b if isinstance(mf, scf.hf.KohnShamDFT): from pyscf.dft import xc_deriv ni = mf._numint ni.libxc.test_deriv_order(mf.xc, 2, raise_error=True) if mf.do_nlc(): raise NotImplementedError('DKS-TDDFT for NLC functionals') omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, mol.spin) assert omega == 0. a, b = add_hf_(a, b, hyb) xctype = ni._xc_type(mf.xc) dm0 = mf.make_rdm1(mo_coeff, mo_occ) mem_now = lib.current_memory()[0] max_memory = max(2000, mf.max_memory*.8-mem_now) def get_mo_value(ao): aoLa, aoLb, aoSa, aoSb = ao if aoLa.ndim == 2: moLa = lib.einsum('rp,pi->ri', aoLa, moL) moLb = lib.einsum('rp,pi->ri', aoLb, moL) moSa = lib.einsum('rp,pi->ri', aoSa, moS) moSb = lib.einsum('rp,pi->ri', aoSb, moS) return (moLa[:,:nocc], moLa[:,nocc:], moLb[:,:nocc], moLb[:,nocc:], moSa[:,:nocc], moSa[:,nocc:], moSb[:,:nocc], moSb[:,nocc:]) else: moLa = lib.einsum('xrp,pi->xri', aoLa, moL) moLb = lib.einsum('xrp,pi->xri', aoLb, moL) moSa = lib.einsum('xrp,pi->xri', aoSa, moS) moSb = lib.einsum('xrp,pi->xri', aoSb, moS) return (moLa[:,:,:nocc], moLa[:,:,nocc:], moLb[:,:,:nocc], moLb[:,:,nocc:], moSa[:,:,:nocc], moSa[:,:,nocc:], moSb[:,:,:nocc], moSb[:,:,nocc:]) def ud2tm(aa, ab, ba, bb): return numpy.stack([aa + bb, # rho ba + ab, # mx (ba - ab) * 1j, # my aa - bb]) # mz def addLS(rhoL, rhoS): rhoS[1:4] *= -1 # beta * Sigma return rhoL + rhoS if xctype == 'LDA': ao_deriv = 0 for ao, mask, weight, coords \ in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory, with_s=True): if ni.collinear[0] == 'm': rho = ni.eval_rho(mol, ao, dm0, mask, xctype, hermi=1, with_lapl=False) eval_xc = ni.mcfun_eval_xc_adapter(mf.xc) fxc = eval_xc(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = weight * fxc.reshape(4,4,-1) moLoa, moLva, moLob, moLvb, moSoa, moSva, moSob, moSvb = get_mo_value(ao) rhoL_ov_aa = numpy.einsum('ri,ra->ria', moLoa.conj(), moLva) rhoL_ov_ab = numpy.einsum('ri,ra->ria', moLoa.conj(), moLvb) rhoL_ov_ba = numpy.einsum('ri,ra->ria', moLob.conj(), moLva) rhoL_ov_bb = numpy.einsum('ri,ra->ria', moLob.conj(), moLvb) rhoS_ov_aa = numpy.einsum('ri,ra->ria', moSoa.conj(), moSva) rhoS_ov_ab = numpy.einsum('ri,ra->ria', moSoa.conj(), moSvb) rhoS_ov_ba = numpy.einsum('ri,ra->ria', moSob.conj(), moSva) rhoS_ov_bb = numpy.einsum('ri,ra->ria', moSob.conj(), moSvb) rhoL_ov = ud2tm(rhoL_ov_aa, rhoL_ov_ab, rhoL_ov_ba, rhoL_ov_bb) rhoS_ov = ud2tm(rhoS_ov_aa, rhoS_ov_ab, rhoS_ov_ba, rhoS_ov_bb) rho_ov = addLS(rhoL_ov, rhoS_ov) rho_vo = rho_ov.conj() w_ov = numpy.einsum('tsr,tria->sria', wfxc, rho_ov) a += lib.einsum('sria,srjb->iajb', w_ov, rho_vo) b += lib.einsum('sria,srjb->iajb', w_ov, rho_ov) elif ni.collinear[0] == 'c': rho = ni.eval_rho(mol, ao, dm0, mask, xctype, hermi=1, with_lapl=False) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2)[2] wv_a, wv_b = weight * fxc.reshape(2,2,-1) moLoa, moLva, moLob, moLvb, moSoa, moSva, moSob, moSvb = get_mo_value(ao) rhoL_ov_a = numpy.einsum('ri,ra->ria', moLoa.conj(), moLva) rhoL_ov_b = numpy.einsum('ri,ra->ria', moLob.conj(), moLvb) rhoS_ov_a = numpy.einsum('ri,ra->ria', moSoa.conj(), moSva) rhoS_ov_b = numpy.einsum('ri,ra->ria', moSob.conj(), moSvb) rhoL_vo_a = rhoL_ov_a.conj() rhoL_vo_b = rhoL_ov_b.conj() rhoS_vo_a = rhoS_ov_a.conj() rhoS_vo_b = rhoS_ov_b.conj() w_ov = wv_a[:,:,None,None] * rhoL_ov_a w_ov += wv_b[:,:,None,None] * rhoL_ov_b w_ov += wv_b[:,:,None,None] * rhoS_ov_a # for beta*Sigma w_ov += wv_a[:,:,None,None] * rhoS_ov_b wa_ov, wb_ov = w_ov a += lib.einsum('ria,rjb->iajb', wa_ov, rhoL_vo_a) a += lib.einsum('ria,rjb->iajb', wb_ov, rhoL_vo_b) a += lib.einsum('ria,rjb->iajb', wb_ov, rhoS_vo_a) a += lib.einsum('ria,rjb->iajb', wa_ov, rhoS_vo_b) b += lib.einsum('ria,rjb->iajb', wa_ov, rhoL_ov_a) b += lib.einsum('ria,rjb->iajb', wb_ov, rhoL_ov_b) b += lib.einsum('ria,rjb->iajb', wb_ov, rhoS_ov_a) b += lib.einsum('ria,rjb->iajb', wa_ov, rhoS_ov_b) else: raise NotImplementedError(ni.collinear) elif xctype == 'GGA': ao_deriv = 1 for ao, mask, weight, coords \ in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory, with_s=True): if ni.collinear[0] == 'm': rho = ni.eval_rho(mol, ao, dm0, mask, xctype, hermi=1, with_lapl=False) eval_xc = ni.mcfun_eval_xc_adapter(mf.xc) fxc = eval_xc(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = weight * fxc moLoa, moLva, moLob, moLvb, moSoa, moSva, moSob, moSvb = get_mo_value(ao) rhoL_ov_aa = numpy.einsum('ri,xra->xria', moLoa[0].conj(), moLva) rhoL_ov_ab = numpy.einsum('ri,xra->xria', moLoa[0].conj(), moLvb) rhoL_ov_ba = numpy.einsum('ri,xra->xria', moLob[0].conj(), moLva) rhoL_ov_bb = numpy.einsum('ri,xra->xria', moLob[0].conj(), moLvb) rhoS_ov_aa = numpy.einsum('ri,xra->xria', moSoa[0].conj(), moSva) rhoS_ov_ab = numpy.einsum('ri,xra->xria', moSoa[0].conj(), moSvb) rhoS_ov_ba = numpy.einsum('ri,xra->xria', moSob[0].conj(), moSva) rhoS_ov_bb = numpy.einsum('ri,xra->xria', moSob[0].conj(), moSvb) rhoL_ov_aa[1:4] += numpy.einsum('xri,ra->xria', moLoa[1:4].conj(), moLva[0]) rhoL_ov_ab[1:4] += numpy.einsum('xri,ra->xria', moLoa[1:4].conj(), moLvb[0]) rhoL_ov_ba[1:4] += numpy.einsum('xri,ra->xria', moLob[1:4].conj(), moLva[0]) rhoL_ov_bb[1:4] += numpy.einsum('xri,ra->xria', moLob[1:4].conj(), moLvb[0]) rhoS_ov_aa[1:4] += numpy.einsum('xri,ra->xria', moSoa[1:4].conj(), moSva[0]) rhoS_ov_ab[1:4] += numpy.einsum('xri,ra->xria', moSoa[1:4].conj(), moSvb[0]) rhoS_ov_ba[1:4] += numpy.einsum('xri,ra->xria', moSob[1:4].conj(), moSva[0]) rhoS_ov_bb[1:4] += numpy.einsum('xri,ra->xria', moSob[1:4].conj(), moSvb[0]) rhoL_ov = ud2tm(rhoL_ov_aa, rhoL_ov_ab, rhoL_ov_ba, rhoL_ov_bb) rhoS_ov = ud2tm(rhoS_ov_aa, rhoS_ov_ab, rhoS_ov_ba, rhoS_ov_bb) rho_ov = addLS(rhoL_ov, rhoS_ov) rho_vo = rho_ov.conj() w_ov = numpy.einsum('txsyr,txria->syria', wfxc, rho_ov) a += lib.einsum('syria,syrjb->iajb', w_ov, rho_vo) b += lib.einsum('syria,syrjb->iajb', w_ov, rho_ov) elif ni.collinear[0] == 'c': rho = ni.eval_rho(mol, ao, dm0, mask, xctype, hermi=1, with_lapl=False) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2)[2] fxc = xc_deriv.ud2ts(fxc) wfxc = weight * fxc moLoa, moLva, moLob, moLvb, moSoa, moSva, moSob, moSvb = get_mo_value(ao) rhoL_ov_a = numpy.einsum('xri,ra->xria', moLoa.conj(), moLva[0]) rhoL_ov_b = numpy.einsum('xri,ra->xria', moLob.conj(), moLvb[0]) rhoL_ov_a[1:4] += numpy.einsum('ri,xra->xria', moLoa[0].conj(), moLva[1:4]) rhoL_ov_b[1:4] += numpy.einsum('ri,xra->xria', moLob[0].conj(), moLvb[1:4]) rhoS_ov_a = numpy.einsum('xri,ra->xria', moSoa.conj(), moSva[0]) rhoS_ov_b = numpy.einsum('xri,ra->xria', moSob.conj(), moSvb[0]) rhoS_ov_a[1:4] += numpy.einsum('ri,xra->xria', moSoa[0].conj(), moSva[1:4]) rhoS_ov_b[1:4] += numpy.einsum('ri,xra->xria', moSob[0].conj(), moSvb[1:4]) rhoL_ov = numpy.stack((rhoL_ov_a+rhoL_ov_b, rhoL_ov_a-rhoL_ov_b)) rhoS_ov = numpy.stack((rhoS_ov_a+rhoS_ov_b, rhoS_ov_a-rhoS_ov_b)) rhoS_ov[1] *= -1 rho_ov = rhoL_ov + rhoS_ov rho_vo = rho_ov.conj() w_ov = numpy.einsum('txsyr,txria->syria', wfxc, rho_ov) a += lib.einsum('syria,syrjb->iajb', w_ov, rho_vo) b += lib.einsum('syria,syrjb->iajb', w_ov, rho_ov) else: raise NotImplementedError(ni.collinear) elif xctype == 'HF': pass elif xctype == 'NLC': raise NotImplementedError('NLC') elif xctype == 'MGGA': ao_deriv = 1 for ao, mask, weight, coords \ in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory, with_s=True): if ni.collinear[0] == 'm': rho = ni.eval_rho(mol, ao, dm0, mask, xctype, hermi=1, with_lapl=False) eval_xc = ni.mcfun_eval_xc_adapter(mf.xc) fxc = eval_xc(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = weight * fxc moLoa, moLva, moLob, moLvb, moSoa, moSva, moSob, moSvb = get_mo_value(ao) rhoL_ov_aa = numpy.einsum('ri,xra->xria', moLoa[0].conj(), moLva) rhoL_ov_ab = numpy.einsum('ri,xra->xria', moLoa[0].conj(), moLvb) rhoL_ov_ba = numpy.einsum('ri,xra->xria', moLob[0].conj(), moLva) rhoL_ov_bb = numpy.einsum('ri,xra->xria', moLob[0].conj(), moLvb) rhoS_ov_aa = numpy.einsum('ri,xra->xria', moSoa[0].conj(), moSva) rhoS_ov_ab = numpy.einsum('ri,xra->xria', moSoa[0].conj(), moSvb) rhoS_ov_ba = numpy.einsum('ri,xra->xria', moSob[0].conj(), moSva) rhoS_ov_bb = numpy.einsum('ri,xra->xria', moSob[0].conj(), moSvb) rhoL_ov_aa[1:4] += numpy.einsum('xri,ra->xria', moLoa[1:4].conj(), moLva[0]) rhoL_ov_ab[1:4] += numpy.einsum('xri,ra->xria', moLoa[1:4].conj(), moLvb[0]) rhoL_ov_ba[1:4] += numpy.einsum('xri,ra->xria', moLob[1:4].conj(), moLva[0]) rhoL_ov_bb[1:4] += numpy.einsum('xri,ra->xria', moLob[1:4].conj(), moLvb[0]) rhoS_ov_aa[1:4] += numpy.einsum('xri,ra->xria', moSoa[1:4].conj(), moSva[0]) rhoS_ov_ab[1:4] += numpy.einsum('xri,ra->xria', moSoa[1:4].conj(), moSvb[0]) rhoS_ov_ba[1:4] += numpy.einsum('xri,ra->xria', moSob[1:4].conj(), moSva[0]) rhoS_ov_bb[1:4] += numpy.einsum('xri,ra->xria', moSob[1:4].conj(), moSvb[0]) tauL_ov_aa = numpy.einsum('xri,xra->ria', moLoa[1:4].conj(), moLva[1:4]) * .5 tauL_ov_ab = numpy.einsum('xri,xra->ria', moLoa[1:4].conj(), moLvb[1:4]) * .5 tauL_ov_ba = numpy.einsum('xri,xra->ria', moLob[1:4].conj(), moLva[1:4]) * .5 tauL_ov_bb = numpy.einsum('xri,xra->ria', moLob[1:4].conj(), moLvb[1:4]) * .5 tauS_ov_aa = numpy.einsum('xri,xra->ria', moSoa[1:4].conj(), moSva[1:4]) * .5 tauS_ov_ab = numpy.einsum('xri,xra->ria', moSoa[1:4].conj(), moSvb[1:4]) * .5 tauS_ov_ba = numpy.einsum('xri,xra->ria', moSob[1:4].conj(), moSva[1:4]) * .5 tauS_ov_bb = numpy.einsum('xri,xra->ria', moSob[1:4].conj(), moSvb[1:4]) * .5 rhoL_ov_aa = numpy.vstack([rhoL_ov_aa, tauL_ov_aa[numpy.newaxis]]) rhoL_ov_ab = numpy.vstack([rhoL_ov_ab, tauL_ov_ab[numpy.newaxis]]) rhoL_ov_ba = numpy.vstack([rhoL_ov_ba, tauL_ov_ba[numpy.newaxis]]) rhoL_ov_bb = numpy.vstack([rhoL_ov_bb, tauL_ov_bb[numpy.newaxis]]) rhoS_ov_aa = numpy.vstack([rhoS_ov_aa, tauS_ov_aa[numpy.newaxis]]) rhoS_ov_ab = numpy.vstack([rhoS_ov_ab, tauS_ov_ab[numpy.newaxis]]) rhoS_ov_ba = numpy.vstack([rhoS_ov_ba, tauS_ov_ba[numpy.newaxis]]) rhoS_ov_bb = numpy.vstack([rhoS_ov_bb, tauS_ov_bb[numpy.newaxis]]) rhoL_ov = ud2tm(rhoL_ov_aa, rhoL_ov_ab, rhoL_ov_ba, rhoL_ov_bb) rhoS_ov = ud2tm(rhoS_ov_aa, rhoS_ov_ab, rhoS_ov_ba, rhoS_ov_bb) rho_ov = addLS(rhoL_ov, rhoS_ov) rho_vo = rho_ov.conj() w_ov = numpy.einsum('txsyr,txria->syria', wfxc, rho_ov) a += lib.einsum('syria,syrjb->iajb', w_ov, rho_vo) b += lib.einsum('syria,syrjb->iajb', w_ov, rho_ov) elif ni.collinear[0] == 'c': rho = ni.eval_rho(mol, ao, dm0, mask, xctype, hermi=1, with_lapl=False) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2)[2] fxc = xc_deriv.ud2ts(fxc) wfxc = weight * fxc moLoa, moLva, moLob, moLvb, moSoa, moSva, moSob, moSvb = get_mo_value(ao) rhoL_ov_a = numpy.einsum('xri,ra->xria', moLoa.conj(), moLva[0]) rhoL_ov_b = numpy.einsum('xri,ra->xria', moLob.conj(), moLvb[0]) rhoS_ov_a = numpy.einsum('xri,ra->xria', moSoa.conj(), moSva[0]) rhoS_ov_b = numpy.einsum('xri,ra->xria', moSob.conj(), moSvb[0]) rhoL_ov_a[1:4] += numpy.einsum('ri,xra->xria', moLoa[0].conj(), moLva[1:4]) rhoL_ov_b[1:4] += numpy.einsum('ri,xra->xria', moLob[0].conj(), moLvb[1:4]) rhoS_ov_a[1:4] += numpy.einsum('ri,xra->xria', moSoa[0].conj(), moSva[1:4]) rhoS_ov_b[1:4] += numpy.einsum('ri,xra->xria', moSob[0].conj(), moSvb[1:4]) tauL_ov_a = numpy.einsum('xri,xra->ria', moLoa[1:4].conj(), moLva[1:4]) * .5 tauL_ov_b = numpy.einsum('xri,xra->ria', moLob[1:4].conj(), moLvb[1:4]) * .5 tauS_ov_a = numpy.einsum('xri,xra->ria', moSoa[1:4].conj(), moSva[1:4]) * .5 tauS_ov_b = numpy.einsum('xri,xra->ria', moSob[1:4].conj(), moSvb[1:4]) * .5 rhoL_ov_a = numpy.vstack([rhoL_ov_a, tauL_ov_a[numpy.newaxis]]) rhoL_ov_b = numpy.vstack([rhoL_ov_b, tauL_ov_b[numpy.newaxis]]) rhoS_ov_a = numpy.vstack([rhoS_ov_a, tauS_ov_a[numpy.newaxis]]) rhoS_ov_b = numpy.vstack([rhoS_ov_b, tauS_ov_b[numpy.newaxis]]) rhoL_ov = numpy.stack((rhoL_ov_a+rhoL_ov_b, rhoL_ov_a-rhoL_ov_b)) rhoS_ov = numpy.stack((rhoS_ov_a+rhoS_ov_b, rhoS_ov_a-rhoS_ov_b)) rhoS_ov[1] *= -1 rho_ov = rhoL_ov + rhoS_ov rho_vo = rho_ov.conj() w_ov = numpy.einsum('txsyr,txria->syria', wfxc, rho_ov) a += lib.einsum('syria,syrjb->iajb', w_ov, rho_vo) b += lib.einsum('syria,syrjb->iajb', w_ov, rho_ov) else: raise NotImplementedError(ni.collinear) else: a, b = add_hf_(a, b) return a, b
[docs] def get_nto(tdobj, state=1, threshold=OUTPUT_THRESHOLD, verbose=None): raise NotImplementedError('get_nto')
[docs] def analyze(tdobj, verbose=None): raise NotImplementedError('analyze')
def _contract_multipole(tdobj, ints, hermi=True, xy=None): raise NotImplementedError
[docs] class TDBase(rhf.TDBase):
[docs] @lib.with_doc(get_ab.__doc__) def get_ab(self, mf=None): if mf is None: mf = self._scf return get_ab(mf)
analyze = analyze get_nto = get_nto _contract_multipole = _contract_multipole # needed by transition dipoles
[docs] def nuc_grad_method(self): raise NotImplementedError
[docs] @lib.with_doc(rhf.TDA.__doc__) class TDA(TDBase): singlet = None
[docs] def gen_vind(self, mf=None): '''Generate function to compute Ax''' if mf is None: mf = self._scf return gen_tda_hop(mf)
[docs] def init_guess(self, mf, nstates=None, wfnsym=None): if nstates is None: nstates = self.nstates mo_energy = mf.mo_energy mo_occ = mf.mo_occ # Remove all negative states n2c = mf.mo_occ.size // 2 occidx = n2c + numpy.where(mo_occ[n2c:] == 1)[0] viridx = n2c + numpy.where(mo_occ[n2c:] == 0)[0] e_ia = mo_energy[viridx] - mo_energy[occidx,None] nov = e_ia.size nstates = min(nstates, nov) e_ia = e_ia.ravel() e_threshold = numpy.sort(e_ia)[nstates-1] e_threshold += self.deg_eia_thresh idx = numpy.where(e_ia <= e_threshold)[0] x0 = numpy.zeros((idx.size, nov)) for i, j in enumerate(idx): x0[i, j] = 1 # Koopmans' excitations return x0
[docs] def kernel(self, x0=None, nstates=None): '''TDA diagonalization solver ''' cpu0 = (logger.process_clock(), logger.perf_counter()) self.check_sanity() self.dump_flags() if nstates is None: nstates = self.nstates else: self.nstates = nstates log = logger.Logger(self.stdout, self.verbose) vind, hdiag = self.gen_vind(self._scf) precond = self.get_precond(hdiag) def pickeig(w, v, nroots, envs): idx = numpy.where(w > self.positive_eig_threshold)[0] return w[idx], v[:,idx], idx if x0 is None: x0 = self.init_guess(self._scf, self.nstates) self.converged, self.e, x1 = lr_eigh( vind, x0, precond, tol_residual=self.conv_tol, lindep=self.lindep, nroots=nstates, pick=pickeig, max_cycle=self.max_cycle, max_memory=self.max_memory, verbose=log) nocc = (self._scf.mo_occ>0).sum() nmo = self._scf.mo_occ.size n2c = nmo // 2 nvir = n2c - nocc self.xy = [(xi.reshape(nocc,nvir), 0) for xi in x1] if self.chkfile: lib.chkfile.save(self.chkfile, 'tddft/e', self.e) lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy) log.timer('TDA', *cpu0) self._finalize() return self.e, self.xy
[docs] def gen_tdhf_operation(mf, fock_ao=None): '''Generate function to compute [ A B ][X] [-B* -A*][Y] ''' mo_coeff = mf.mo_coeff mo_energy = mf.mo_energy mo_occ = mf.mo_occ nao, nmo = mo_coeff.shape n2c = nmo // 2 occidx = n2c + numpy.where(mo_occ[n2c:] == 1)[0] viridx = n2c + numpy.where(mo_occ[n2c:] == 0)[0] nocc = len(occidx) nvir = len(viridx) orbv = mo_coeff[:,viridx] orbo = mo_coeff[:,occidx] assert fock_ao is None e_ia = hdiag = mo_energy[viridx] - mo_energy[occidx,None] hdiag = numpy.hstack((hdiag.ravel(), -hdiag.ravel())).real mo_coeff = numpy.asarray(numpy.hstack((orbo,orbv)), order='F') vresp = mf.gen_response(hermi=0) def vind(xys): xys = numpy.asarray(xys).reshape(-1,2,nocc,nvir) xs, ys = xys.transpose(1,0,2,3) dms = lib.einsum('xov,qv,po->xpq', xs, orbv.conj(), orbo) dms += lib.einsum('xov,pv,qo->xpq', ys, orbv, orbo.conj()) v1ao = vresp(dms) # = <mb||nj> Xjb + <mj||nb> Yjb # A ~= <ib||aj>, B = <ij||ab> # AX + BY # = <ib||aj> Xjb + <ij||ab> Yjb # = (<mb||nj> Xjb + <mj||nb> Yjb) Cmi* Cna v1ov = lib.einsum('xpq,po,qv->xov', v1ao, orbo.conj(), orbv) # (B*)X + (A*)Y # = <ab||ij> Xjb + <aj||ib> Yjb # = (<mb||nj> Xjb + <mj||nb> Yjb) Cma* Cni v1vo = lib.einsum('xpq,qo,pv->xov', v1ao, orbo, orbv.conj()) v1ov += numpy.einsum('xia,ia->xia', xs, e_ia) # AX v1vo += numpy.einsum('xia,ia->xia', ys, e_ia.conj()) # (A*)Y # (AX, (-A*)Y) nz = xys.shape[0] hx = numpy.hstack((v1ov.reshape(nz,-1), -v1vo.reshape(nz,-1))) return hx return vind, hdiag
[docs] class TDHF(TDBase): singlet = None
[docs] @lib.with_doc(gen_tdhf_operation.__doc__) def gen_vind(self, mf=None): if mf is None: mf = self._scf return gen_tdhf_operation(mf)
[docs] def init_guess(self, mf, nstates=None, wfnsym=None): x0 = TDA.init_guess(self, mf, nstates, wfnsym) y0 = numpy.zeros_like(x0) return numpy.hstack([x0, y0])
get_precond = rhf.TDHF.get_precond
[docs] def kernel(self, x0=None, nstates=None): '''TDHF diagonalization with non-Hermitian eigenvalue solver ''' cpu0 = (logger.process_clock(), logger.perf_counter()) self.check_sanity() self.dump_flags() if nstates is None: nstates = self.nstates else: self.nstates = nstates log = logger.Logger(self.stdout, self.verbose) vind, hdiag = self.gen_vind(self._scf) precond = self.get_precond(hdiag) def pickeig(w, v, nroots, envs): realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD) & (w.real > self.positive_eig_threshold))[0] # FIXME: Should the amplitudes be real? return lib.linalg_helper._eigs_cmplx2real(w, v, realidx, real_eigenvectors=False) if x0 is None: x0 = self.init_guess(self._scf, self.nstates) self.converged, w, x1 = lr_eig( vind, x0, precond, tol_residual=self.conv_tol, lindep=self.lindep, nroots=nstates, pick=pickeig, max_cycle=self.max_cycle, max_memory=self.max_memory, verbose=log) nocc = (self._scf.mo_occ>0).sum() nmo = self._scf.mo_occ.size n2c = nmo // 2 nvir = n2c - nocc self.e = w def norm_xy(z): x, y = z.reshape(2,nocc,nvir) norm = lib.norm(x)**2 - lib.norm(y)**2 norm = numpy.sqrt(1./norm) return x*norm, y*norm self.xy = [norm_xy(z) for z in x1] if self.chkfile: lib.chkfile.save(self.chkfile, 'tddft/e', self.e) lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy) log.timer('TDDFT', *cpu0) self._finalize() return self.e, self.xy
scf.dhf.DHF.TDA = scf.dhf.RDHF.TDA = lib.class_as_method(TDA) scf.dhf.DHF.TDHF = scf.dhf.RDHF.TDHF = lib.class_as_method(TDHF) del (OUTPUT_THRESHOLD)