# Copyright 2023 The GPU4PySCF Authors. All Rights Reserved.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
'''
Gradient of SMD solvent model, copied from GPU4PySCF with modification for CPU
'''
# pylint: disable=C0103
import numpy as np
from pyscf import lib
from pyscf.grad import rhf as rhf_grad
from pyscf.solvent import smd
from pyscf.solvent.grad import pcm as pcm_grad
from pyscf.lib import logger
[docs]
def grad_solver(pcmobj, dm):
'''
dE = 0.5*v* d(K^-1 R) *v + q*dv
v^T* d(K^-1 R)v = v^T*K^-1(dR - dK K^-1R)v = v^T K^-1(dR - dK q)
'''
mol = pcmobj.mol
log = logger.new_logger(mol, mol.verbose)
t1 = (logger.process_clock(), logger.perf_counter())
if not pcmobj._intermediates:
pcmobj.build()
dm_cache = pcmobj._intermediates.get('dm', None)
if dm_cache is not None and np.linalg.norm(dm_cache - dm) < 1e-10:
pass
else:
pcmobj._get_vind(dm)
gridslice = pcmobj.surface['gslice_by_atom']
v_grids = pcmobj._intermediates['v_grids']
A = pcmobj._intermediates['A']
D = pcmobj._intermediates['D']
S = pcmobj._intermediates['S']
K = pcmobj._intermediates['K']
q = pcmobj._intermediates['q']
vK_1 = np.linalg.solve(K.T, v_grids)
dF, dA = pcm_grad.get_dF_dA(pcmobj.surface)
dD, dS, dSii = pcm_grad.get_dD_dS(pcmobj.surface, dF, with_D=True, with_S=True)
DA = D*A
epsilon = pcmobj.eps
#de_dF = v0 * -dSii_dF * q
#de += 0.5*numpy.einsum('i,inx->nx', de_dF, dF)
# dQ = v^T K^-1 (dR - dK K^-1 R) v
de = np.zeros([pcmobj.mol.natm,3])
dD = dD.transpose([2,0,1])
dS = dS.transpose([2,0,1])
dSii = dSii.transpose([2,0,1])
dA = dA.transpose([2,0,1])
# IEF-PCM and SS(V)PE formally are the same in gradient calculation
# dR = f_eps/(2*pi) * (dD*A + D*dA),
# dK = dS - f_eps/(2*pi) * (dD*A*S + D*dA*S + D*A*dS)
f_epsilon = (epsilon - 1.0)/(epsilon + 1.0)
fac = f_epsilon/(2.0*np.pi)
Av = A*v_grids
de_dR = 0.5*fac * np.einsum('i,xij,j->ix', vK_1, dD, Av)
de_dR -= 0.5*fac * np.einsum('i,xij,j->jx', vK_1, dD, Av)
de_dR = np.asarray([np.sum(de_dR[p0:p1], axis=0) for p0,p1 in gridslice])
vK_1_D = vK_1.dot(D)
vK_1_Dv = vK_1_D * v_grids
de_dR += 0.5*fac * np.einsum('j,xjn->nx', vK_1_Dv, dA)
de_dS0 = 0.5*np.einsum('i,xij,j->ix', vK_1, dS, q)
de_dS0 -= 0.5*np.einsum('i,xij,j->jx', vK_1, dS, q)
de_dS0 = np.asarray([np.sum(de_dS0[p0:p1], axis=0) for p0,p1 in gridslice])
vK_1_q = vK_1 * q
de_dS0 += 0.5*np.einsum('i,xin->nx', vK_1_q, dSii)
vK_1_DA = np.dot(vK_1, DA)
de_dS1 = 0.5*np.einsum('i,xij,j->ix', vK_1_DA, dS, q)
de_dS1 -= 0.5*np.einsum('i,xij,j->jx', vK_1_DA, dS, q)
de_dS1 = np.asarray([np.sum(de_dS1[p0:p1], axis=0) for p0,p1 in gridslice])
vK_1_DAq = vK_1_DA*q
de_dS1 += 0.5*np.einsum('j,xjn->nx', vK_1_DAq, dSii)
Sq = np.dot(S,q)
ASq = A*Sq
de_dD = 0.5*np.einsum('i,xij,j->ix', vK_1, dD, ASq)
de_dD -= 0.5*np.einsum('i,xij,j->jx', vK_1, dD, ASq)
de_dD = np.asarray([np.sum(de_dD[p0:p1], axis=0) for p0,p1 in gridslice])
vK_1_D = np.dot(vK_1, D)
de_dA = 0.5*np.einsum('j,xjn->nx', vK_1_D*Sq, dA) # 0.5*cupy.einsum('j,xjn,j->nx', vK_1_D, dA, Sq)
de_dK = de_dS0 - fac * (de_dD + de_dA + de_dS1)
de += de_dR - de_dK
t1 = log.timer_debug1('grad solver', *t1)
return de
[docs]
def get_cds(smdobj):
return smd.get_cds_legacy(smdobj)[1]