#!/usr/bin/env python
# Copyright 2014-2023 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Xiaojie Wu <wxj6000@gmail.com>
#
'''
Gradient of PCM family solvent models, copied from GPU4PySCF with modifications
'''
import numpy
import scipy
from pyscf import lib
from pyscf.lib import logger
from pyscf import gto, df
from pyscf.solvent.pcm import PI, switch_h, PCM
from pyscf.grad import rhf as rhf_grad
[docs]
def grad_switch_h(x):
''' first derivative of h(x)'''
dy = 30.0*x**2 - 60.0*x**3 + 30.0*x**4
dy[x<0] = 0.0
dy[x>1] = 0.0
return dy
[docs]
def get_dF_dA(surface):
'''
J. Chem. Phys. 133, 244111 (2010), Appendix C
'''
atom_coords = surface['atom_coords']
grid_coords = surface['grid_coords']
switch_fun = surface['switch_fun']
area = surface['area']
R_in_J = surface['R_in_J']
R_sw_J = surface['R_sw_J']
ngrids = grid_coords.shape[0]
natom = atom_coords.shape[0]
dF = numpy.zeros([ngrids, natom, 3])
dA = numpy.zeros([ngrids, natom, 3])
for ia in range(natom):
p0,p1 = surface['gslice_by_atom'][ia]
coords = grid_coords[p0:p1]
ri_rJ = numpy.expand_dims(coords, axis=1) - atom_coords
riJ = numpy.linalg.norm(ri_rJ, axis=-1)
diJ = (riJ - R_in_J) / R_sw_J
diJ[:,ia] = 1.0
diJ[diJ < 1e-8] = 0.0
ri_rJ[:,ia,:] = 0.0
ri_rJ[diJ < 1e-8] = 0.0
fiJ = switch_h(diJ)
dfiJ = grad_switch_h(diJ) / (fiJ * riJ * R_sw_J)
dfiJ = numpy.expand_dims(dfiJ, axis=-1) * ri_rJ
Fi = switch_fun[p0:p1]
Ai = area[p0:p1]
# grids response
Fi = numpy.expand_dims(Fi, axis=-1)
Ai = numpy.expand_dims(Ai, axis=-1)
dFi_grid = numpy.sum(dfiJ, axis=1)
dF[p0:p1,ia,:] += Fi * dFi_grid
dA[p0:p1,ia,:] += Ai * dFi_grid
# atom response
Fi = numpy.expand_dims(Fi, axis=-2)
Ai = numpy.expand_dims(Ai, axis=-2)
dF[p0:p1,:,:] -= Fi * dfiJ
dA[p0:p1,:,:] -= Ai * dfiJ
return dF, dA
[docs]
def get_dD_dS(surface, dF, with_S=True, with_D=False):
'''
derivative of D and S w.r.t grids, partial_i D_ij = -partial_j D_ij
S is symmetric, D is not
'''
grid_coords = surface['grid_coords']
exponents = surface['charge_exp']
norm_vec = surface['norm_vec']
switch_fun = surface['switch_fun']
xi_i, xi_j = numpy.meshgrid(exponents, exponents, indexing='ij')
xi_ij = xi_i * xi_j / (xi_i**2 + xi_j**2)**0.5
ri_rj = numpy.expand_dims(grid_coords, axis=1) - grid_coords
rij = numpy.linalg.norm(ri_rj, axis=-1)
xi_r_ij = xi_ij * rij
numpy.fill_diagonal(rij, 1)
dS_dr = -(scipy.special.erf(xi_r_ij) - 2.0*xi_r_ij/PI**0.5*numpy.exp(-xi_r_ij**2))/rij**2
numpy.fill_diagonal(dS_dr, 0)
dS_dr= numpy.expand_dims(dS_dr, axis=-1)
drij = ri_rj/numpy.expand_dims(rij, axis=-1)
dS = dS_dr * drij
dD = None
if with_D:
nj_rij = numpy.sum(ri_rj * norm_vec, axis=-1)
dD_dri = 4.0*xi_r_ij**2 * xi_ij / PI**0.5 * numpy.exp(-xi_r_ij**2) * nj_rij / rij**3
numpy.fill_diagonal(dD_dri, 0.0)
rij = numpy.expand_dims(rij, axis=-1)
nj_rij = numpy.expand_dims(nj_rij, axis=-1)
nj = numpy.expand_dims(norm_vec, axis=0)
dD_dri = numpy.expand_dims(dD_dri, axis=-1)
dD = dD_dri * drij + dS_dr * (-nj/rij + 3.0*nj_rij/rij**2 * drij)
dSii_dF = -exponents * (2.0/PI)**0.5 / switch_fun**2
dSii = numpy.expand_dims(dSii_dF, axis=(1,2)) * dF
return dD, dS, dSii
[docs]
def grad_nuc(pcmobj, dm, q_sym = None):
mol = pcmobj.mol
log = logger.new_logger(mol, mol.verbose)
t1 = (logger.process_clock(), logger.perf_counter())
if not pcmobj._intermediates:
pcmobj.build()
dm_cache = pcmobj._intermediates.get('dm', None)
if dm_cache is not None and numpy.linalg.norm(dm_cache - dm) < 1e-10:
pass
else:
pcmobj._get_vind(dm)
mol = pcmobj.mol
if q_sym is None:
q_sym = pcmobj._intermediates['q_sym']
gridslice = pcmobj.surface['gslice_by_atom']
grid_coords = pcmobj.surface['grid_coords']
exponents = pcmobj.surface['charge_exp']
atom_coords = mol.atom_coords(unit='B')
atom_charges = numpy.asarray(mol.atom_charges(), dtype=numpy.float64)
fakemol_nuc = gto.fakemol_for_charges(atom_coords)
fakemol = gto.fakemol_for_charges(grid_coords, expnt=exponents**2)
int2c2e_ip1 = mol._add_suffix('int2c2e_ip1')
v_ng_ip1 = gto.mole.intor_cross(int2c2e_ip1, fakemol_nuc, fakemol)
dv_g = numpy.einsum('g,xng->nx', q_sym, v_ng_ip1)
de = -numpy.einsum('nx,n->nx', dv_g, atom_charges)
v_ng_ip1 = gto.mole.intor_cross(int2c2e_ip1, fakemol, fakemol_nuc)
dv_g = numpy.einsum('n,xgn->gx', atom_charges, v_ng_ip1)
dv_g = numpy.einsum('gx,g->gx', dv_g, q_sym)
de -= numpy.asarray([numpy.sum(dv_g[p0:p1], axis=0) for p0,p1 in gridslice])
t1 = log.timer_debug1('grad nuc', *t1)
return de
[docs]
def grad_qv(pcmobj, dm, q_sym = None):
'''
contributions due to integrals
'''
if not pcmobj._intermediates:
pcmobj.build()
dm_cache = pcmobj._intermediates.get('dm', None)
if dm_cache is not None and numpy.linalg.norm(dm_cache - dm) < 1e-10:
pass
else:
pcmobj._get_vind(dm)
mol = pcmobj.mol
nao = mol.nao
log = logger.new_logger(mol, mol.verbose)
t1 = (logger.process_clock(), logger.perf_counter())
gridslice = pcmobj.surface['gslice_by_atom']
if q_sym is None:
q_sym = pcmobj._intermediates['q_sym']
grid_coords = pcmobj.surface['grid_coords']
exponents = pcmobj.surface['charge_exp']
max_memory = pcmobj.max_memory - lib.current_memory()[0]
blksize = int(max(max_memory*.9e6/8/nao**2/3, 400))
ngrids = q_sym.shape[0]
int3c2e_ip1 = mol._add_suffix('int3c2e_ip1')
cintopt = gto.moleintor.make_cintopt(mol._atm, mol._bas, mol._env, int3c2e_ip1)
dvj = numpy.zeros([3,nao])
for p0, p1 in lib.prange(0, ngrids, blksize):
fakemol = gto.fakemol_for_charges(grid_coords[p0:p1], expnt=exponents[p0:p1]**2)
v_nj = df.incore.aux_e2(mol, fakemol, intor=int3c2e_ip1, aosym='s1', cintopt=cintopt)
dvj += numpy.einsum('xijk,ij,k->xi', v_nj, dm, q_sym[p0:p1])
int3c2e_ip2 = mol._add_suffix('int3c2e_ip2')
cintopt = gto.moleintor.make_cintopt(mol._atm, mol._bas, mol._env, int3c2e_ip2)
dq = numpy.empty([3,ngrids])
for p0, p1 in lib.prange(0, ngrids, blksize):
fakemol = gto.fakemol_for_charges(grid_coords[p0:p1], expnt=exponents[p0:p1]**2)
q_nj = df.incore.aux_e2(mol, fakemol, intor=int3c2e_ip2, aosym='s1', cintopt=cintopt)
dq[:,p0:p1] = numpy.einsum('xijk,ij,k->xk', q_nj, dm, q_sym[p0:p1])
aoslice = mol.aoslice_by_atom()
dq = numpy.asarray([numpy.sum(dq[:,p0:p1], axis=1) for p0,p1 in gridslice])
dvj= 2.0 * numpy.asarray([numpy.sum(dvj[:,p0:p1], axis=1) for p0,p1 in aoslice[:,2:]])
de = dq + dvj
t1 = log.timer_debug1('grad qv', *t1)
return de
[docs]
def grad_solver(pcmobj, dm):
'''
dE = 0.5*v* d(K^-1 R) *v + q*dv
v^T* d(K^-1 R)v = v^T*K^-1(dR - dK K^-1R)v = v^T K^-1(dR - dK q)
'''
mol = pcmobj.mol
log = logger.new_logger(mol, mol.verbose)
t1 = (logger.process_clock(), logger.perf_counter())
if not pcmobj._intermediates:
pcmobj.build()
dm_cache = pcmobj._intermediates.get('dm', None)
if dm_cache is not None and numpy.linalg.norm(dm_cache - dm) < 1e-10:
pass
else:
pcmobj._get_vind(dm)
gridslice = pcmobj.surface['gslice_by_atom']
v_grids = pcmobj._intermediates['v_grids']
A = pcmobj._intermediates['A']
D = pcmobj._intermediates['D']
S = pcmobj._intermediates['S']
K = pcmobj._intermediates['K']
q = pcmobj._intermediates['q']
vK_1 = numpy.linalg.solve(K.T, v_grids)
dF, dA = get_dF_dA(pcmobj.surface)
with_D = pcmobj.method.upper() in ['IEF-PCM', 'IEFPCM', 'SS(V)PE']
dD, dS, dSii = get_dD_dS(pcmobj.surface, dF, with_D=with_D, with_S=True)
if pcmobj.method.upper() in ['IEF-PCM', 'IEFPCM', 'SS(V)PE']:
DA = D*A
epsilon = pcmobj.eps
#de_dF = v0 * -dSii_dF * q
#de += 0.5*numpy.einsum('i,inx->nx', de_dF, dF)
# dQ = v^T K^-1 (dR - dK K^-1 R) v
de = numpy.zeros([pcmobj.mol.natm,3])
if pcmobj.method.upper() in ['C-PCM', 'CPCM', 'COSMO']:
dS = dS.transpose([2,0,1])
dSii = dSii.transpose([2,0,1])
# dR = 0, dK = dS
de_dS = 0.5*(vK_1 * dS.dot(q)).T # numpy.einsum('i,xij,j->ix', vK_1, dS, q)
de_dS -= 0.5*numpy.einsum('i,xij,j->jx', vK_1, dS, q)
de -= numpy.asarray([numpy.sum(de_dS[p0:p1], axis=0) for p0,p1, in gridslice])
de -= 0.5*numpy.einsum('i,xij->jx', vK_1*q, dSii) # 0.5*numpy.einsum('i,xij,i->jx', vK_1, dSii, q)
elif pcmobj.method.upper() in ['IEF-PCM', 'IEFPCM']:
dD = dD.transpose([2,0,1])
dS = dS.transpose([2,0,1])
dSii = dSii.transpose([2,0,1])
dA = dA.transpose([2,0,1])
# dR = f_eps/(2*pi) * (dD*A + D*dA)
# dK = dS - f_eps/(2*pi) * (dD*A*S + D*dA*S + D*A*dS)
f_epsilon = (epsilon - 1.0)/(epsilon + 1.0)
fac = f_epsilon/(2.0*PI)
Av = A*v_grids
de_dR = 0.5*fac * numpy.einsum('i,xij,j->ix', vK_1, dD, Av)
de_dR -= 0.5*fac * numpy.einsum('i,xij,j->jx', vK_1, dD, Av)
de_dR = numpy.asarray([numpy.sum(de_dR[p0:p1], axis=0) for p0,p1 in gridslice])
vK_1_D = vK_1.dot(D)
vK_1_Dv = vK_1_D * v_grids
de_dR += 0.5*fac * numpy.einsum('j,xjn->nx', vK_1_Dv, dA)
de_dS0 = 0.5*numpy.einsum('i,xij,j->ix', vK_1, dS, q)
de_dS0 -= 0.5*numpy.einsum('i,xij,j->jx', vK_1, dS, q)
de_dS0 = numpy.asarray([numpy.sum(de_dS0[p0:p1], axis=0) for p0,p1 in gridslice])
vK_1_q = vK_1 * q
de_dS0 += 0.5*numpy.einsum('i,xin->nx', vK_1_q, dSii)
vK_1_DA = numpy.dot(vK_1, DA)
de_dS1 = 0.5*numpy.einsum('i,xij,j->ix', vK_1_DA, dS, q)
de_dS1 -= 0.5*numpy.einsum('i,xij,j->jx', vK_1_DA, dS, q)
de_dS1 = numpy.asarray([numpy.sum(de_dS1[p0:p1], axis=0) for p0,p1 in gridslice])
vK_1_DAq = vK_1_DA*q
de_dS1 += 0.5*numpy.einsum('j,xjn->nx', vK_1_DAq, dSii)
Sq = numpy.dot(S,q)
ASq = A*Sq
de_dD = 0.5*numpy.einsum('i,xij,j->ix', vK_1, dD, ASq)
de_dD -= 0.5*numpy.einsum('i,xij,j->jx', vK_1, dD, ASq)
de_dD = numpy.asarray([numpy.sum(de_dD[p0:p1], axis=0) for p0,p1 in gridslice])
de_dA = 0.5*numpy.einsum('j,xjn->nx', vK_1_D*Sq, dA)
de_dK = de_dS0 - fac * (de_dD + de_dA + de_dS1)
de += de_dR - de_dK
elif pcmobj.method.upper() in ['SS(V)PE']:
dD = dD.transpose([2,0,1])
dS = dS.transpose([2,0,1])
dSii = dSii.transpose([2,0,1])
dA = dA.transpose([2,0,1])
# dR = f_eps/(2*pi) * (dD*A + D*dA),
# dK = dS - f_eps/(4*pi) * (dD*A*S + D*dA*S + D*A*dS + dS*A*DT + S*dA*DT + S*A*dDT)
f_epsilon = (epsilon - 1.0)/(epsilon + 1.0)
fac_R = f_epsilon/(2.0*PI)
Av = A*v_grids
de_dR = 0.5*fac_R * numpy.einsum('i,xij,j->ix', vK_1, dD, Av)
de_dR -= 0.5*fac_R * numpy.einsum('i,xij,j->jx', vK_1, dD, Av)
de_dR = numpy.asarray([numpy.sum(de_dR[p0:p1], axis=0) for p0,p1 in gridslice])
vK_1_D = vK_1.dot(D)
vK_1_Dv = vK_1_D * v_grids
de_dR += 0.5*fac_R * numpy.einsum('j,xjn->nx', vK_1_Dv, dA)
de_dS0 = 0.5*numpy.einsum('i,xij,j->ix', vK_1, dS, q)
de_dS0 -= 0.5*numpy.einsum('i,xij,j->jx', vK_1, dS, q)
de_dS0 = numpy.asarray([numpy.sum(de_dS0[p0:p1], axis=0) for p0,p1 in gridslice])
vK_1_q = vK_1 * q
de_dS0 += 0.5*numpy.einsum('i,xin->nx', vK_1_q, dSii)
vK_1_DA = numpy.dot(vK_1, DA)
de_dS1 = 0.5*numpy.einsum('i,xij,j->ix', vK_1_DA, dS, q)
de_dS1 -= 0.5*numpy.einsum('i,xij,j->jx', vK_1_DA, dS, q)
de_dS1 = numpy.asarray([numpy.sum(de_dS1[p0:p1], axis=0) for p0,p1 in gridslice])
vK_1_DAq = vK_1_DA*q
de_dS1 += 0.5*numpy.einsum('j,xjn->nx', vK_1_DAq, dSii)
DT_q = numpy.dot(D.T, q)
ADT_q = A * DT_q
de_dS1_T = 0.5*numpy.einsum('i,xij,j->ix', vK_1, dS, ADT_q)
de_dS1_T -= 0.5*numpy.einsum('i,xij,j->jx', vK_1, dS, ADT_q)
de_dS1_T = numpy.asarray([numpy.sum(de_dS1_T[p0:p1], axis=0) for p0,p1 in gridslice])
vK_1_ADT_q = vK_1 * ADT_q
de_dS1_T += 0.5*numpy.einsum('j,xjn->nx', vK_1_ADT_q, dSii)
Sq = numpy.dot(S,q)
ASq = A*Sq
de_dD = 0.5*numpy.einsum('i,xij,j->ix', vK_1, dD, ASq)
de_dD -= 0.5*numpy.einsum('i,xij,j->jx', vK_1, dD, ASq)
de_dD = numpy.asarray([numpy.sum(de_dD[p0:p1], axis=0) for p0,p1 in gridslice])
vK_1_S = numpy.dot(vK_1, S)
vK_1_SA = vK_1_S * A
de_dD_T = 0.5*numpy.einsum('i,xij,j->ix', vK_1_SA, -dD.transpose(0,2,1), q)
de_dD_T -= 0.5*numpy.einsum('i,xij,j->jx', vK_1_SA, -dD.transpose(0,2,1), q)
de_dD_T = numpy.asarray([numpy.sum(de_dD_T[p0:p1], axis=0) for p0,p1 in gridslice])
de_dA = 0.5*numpy.einsum('j,xjn->nx', vK_1_D*Sq, dA)
de_dA_T = 0.5*numpy.einsum('j,xjn->nx', vK_1_S*DT_q, dA)
fac_K = f_epsilon/(4.0*PI)
de_dK = de_dS0 - fac_K * (de_dD + de_dA + de_dS1 + de_dD_T + de_dA_T + de_dS1_T)
de += de_dR - de_dK
else:
raise RuntimeError(f"Unknown implicit solvent model: {pcmobj.method}")
t1 = log.timer_debug1('grad solver', *t1)
return de
[docs]
def make_grad_object(base_method):
'''Create nuclear gradients object with solvent contributions for the given
solvent-attached method based on its gradients method in vaccum
'''
from pyscf.solvent._attach_solvent import _Solvation
if isinstance(base_method, rhf_grad.GradientsBase):
# For backward compatibility. The input argument is a gradient object in
# previous implementations.
base_method = base_method.base
# Must be a solvent-attached method
assert isinstance(base_method, _Solvation)
with_solvent = base_method.with_solvent
if with_solvent.frozen:
raise RuntimeError('Frozen solvent model is not avialbe for energy gradients')
# create the Gradients in vacuum. Cannot call super().Gradients() here
# because other dynamic corrections might be applied to the base_method.
# Calling super().Gradients might discard these corrections.
vac_grad = base_method.undo_solvent().Gradients()
# The base method for vac_grad discards the with_solvent. Change its base to
# the solvent-attached base method
vac_grad.base = base_method
name = with_solvent.__class__.__name__ + vac_grad.__class__.__name__
return lib.set_class(WithSolventGrad(vac_grad),
(WithSolventGrad, vac_grad.__class__), name)
[docs]
class WithSolventGrad:
_keys = {'de_solvent', 'de_solute'}
def __init__(self, grad_method):
self.__dict__.update(grad_method.__dict__)
self.de_solvent = None
self.de_solute = None
[docs]
def undo_solvent(self):
cls = self.__class__
name_mixin = self.base.with_solvent.__class__.__name__
obj = lib.view(self, lib.drop_class(cls, WithSolventGrad, name_mixin))
del obj.de_solvent
del obj.de_solute
return obj
[docs]
def to_gpu(self):
from gpu4pyscf.solvent.hessian import pcm # type: ignore
from pyscf.tdscf.rhf import TDBase
# Only PCM and SMD are available on GPU.
# FIXME: The SMD class is a child class of PCM now. Additional check for
# SMD should be made if SMD is refactored as an independent class
assert isinstance(self.with_solvent, PCM)
if isinstance(self, TDBase):
raise NotImplementedError('.to_gpu() for PCM-TDDFT')
return self.base.to_gpu().PCM().Gradients()
[docs]
def kernel(self, *args, dm=None, atmlst=None, **kwargs):
if dm is None:
dm = self.base.make_rdm1(ao_repr=True)
if dm.ndim == 3:
dm = dm[0] + dm[1]
logger.debug(self, 'Compute gradients from solvents')
self.de_solvent = self.base.with_solvent.grad(dm)
logger.debug(self, 'Compute gradients from solutes')
self.de_solute = super().kernel(*args, **kwargs)
self.de = self.de_solute + self.de_solvent
if self.verbose >= logger.NOTE:
logger.note(self, '--------------- %s (+%s) gradients ---------------',
self.base.__class__.__name__,
self.base.with_solvent.__class__.__name__)
rhf_grad._write(self, self.mol, self.de, self.atmlst)
logger.note(self, '----------------------------------------------')
return self.de
def _finalize(self):
# disable _finalize. It is called in grad_method.kernel method
# where self.de was not yet initialized.
pass