Source code for pyscf.solvent.grad.pcm

#!/usr/bin/env python
# Copyright 2014-2023 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Xiaojie Wu <wxj6000@gmail.com>
#

'''
Gradient of PCM family solvent models, copied from GPU4PySCF with modifications
'''

import numpy
import scipy
from pyscf import lib
from pyscf.lib import logger
from pyscf import gto, df
from pyscf.solvent.pcm import PI, switch_h, PCM
from pyscf.grad import rhf as rhf_grad

[docs] def grad_switch_h(x): ''' first derivative of h(x)''' dy = 30.0*x**2 - 60.0*x**3 + 30.0*x**4 dy[x<0] = 0.0 dy[x>1] = 0.0 return dy
[docs] def get_dF_dA(surface): ''' J. Chem. Phys. 133, 244111 (2010), Appendix C ''' atom_coords = surface['atom_coords'] grid_coords = surface['grid_coords'] switch_fun = surface['switch_fun'] area = surface['area'] R_in_J = surface['R_in_J'] R_sw_J = surface['R_sw_J'] ngrids = grid_coords.shape[0] natom = atom_coords.shape[0] dF = numpy.zeros([ngrids, natom, 3]) dA = numpy.zeros([ngrids, natom, 3]) for ia in range(natom): p0,p1 = surface['gslice_by_atom'][ia] coords = grid_coords[p0:p1] ri_rJ = numpy.expand_dims(coords, axis=1) - atom_coords riJ = numpy.linalg.norm(ri_rJ, axis=-1) diJ = (riJ - R_in_J) / R_sw_J diJ[:,ia] = 1.0 diJ[diJ < 1e-8] = 0.0 ri_rJ[:,ia,:] = 0.0 ri_rJ[diJ < 1e-8] = 0.0 fiJ = switch_h(diJ) dfiJ = grad_switch_h(diJ) / (fiJ * riJ * R_sw_J) dfiJ = numpy.expand_dims(dfiJ, axis=-1) * ri_rJ Fi = switch_fun[p0:p1] Ai = area[p0:p1] # grids response Fi = numpy.expand_dims(Fi, axis=-1) Ai = numpy.expand_dims(Ai, axis=-1) dFi_grid = numpy.sum(dfiJ, axis=1) dF[p0:p1,ia,:] += Fi * dFi_grid dA[p0:p1,ia,:] += Ai * dFi_grid # atom response Fi = numpy.expand_dims(Fi, axis=-2) Ai = numpy.expand_dims(Ai, axis=-2) dF[p0:p1,:,:] -= Fi * dfiJ dA[p0:p1,:,:] -= Ai * dfiJ return dF, dA
[docs] def get_dD_dS(surface, dF, with_S=True, with_D=False): ''' derivative of D and S w.r.t grids, partial_i D_ij = -partial_j D_ij S is symmetric, D is not ''' grid_coords = surface['grid_coords'] exponents = surface['charge_exp'] norm_vec = surface['norm_vec'] switch_fun = surface['switch_fun'] xi_i, xi_j = numpy.meshgrid(exponents, exponents, indexing='ij') xi_ij = xi_i * xi_j / (xi_i**2 + xi_j**2)**0.5 ri_rj = numpy.expand_dims(grid_coords, axis=1) - grid_coords rij = numpy.linalg.norm(ri_rj, axis=-1) xi_r_ij = xi_ij * rij numpy.fill_diagonal(rij, 1) dS_dr = -(scipy.special.erf(xi_r_ij) - 2.0*xi_r_ij/PI**0.5*numpy.exp(-xi_r_ij**2))/rij**2 numpy.fill_diagonal(dS_dr, 0) dS_dr= numpy.expand_dims(dS_dr, axis=-1) drij = ri_rj/numpy.expand_dims(rij, axis=-1) dS = dS_dr * drij dD = None if with_D: nj_rij = numpy.sum(ri_rj * norm_vec, axis=-1) dD_dri = 4.0*xi_r_ij**2 * xi_ij / PI**0.5 * numpy.exp(-xi_r_ij**2) * nj_rij / rij**3 numpy.fill_diagonal(dD_dri, 0.0) rij = numpy.expand_dims(rij, axis=-1) nj_rij = numpy.expand_dims(nj_rij, axis=-1) nj = numpy.expand_dims(norm_vec, axis=0) dD_dri = numpy.expand_dims(dD_dri, axis=-1) dD = dD_dri * drij + dS_dr * (-nj/rij + 3.0*nj_rij/rij**2 * drij) dSii_dF = -exponents * (2.0/PI)**0.5 / switch_fun**2 dSii = numpy.expand_dims(dSii_dF, axis=(1,2)) * dF return dD, dS, dSii
[docs] def grad_nuc(pcmobj, dm, q_sym = None): mol = pcmobj.mol log = logger.new_logger(mol, mol.verbose) t1 = (logger.process_clock(), logger.perf_counter()) if not pcmobj._intermediates: pcmobj.build() dm_cache = pcmobj._intermediates.get('dm', None) if dm_cache is not None and numpy.linalg.norm(dm_cache - dm) < 1e-10: pass else: pcmobj._get_vind(dm) mol = pcmobj.mol if q_sym is None: q_sym = pcmobj._intermediates['q_sym'] gridslice = pcmobj.surface['gslice_by_atom'] grid_coords = pcmobj.surface['grid_coords'] exponents = pcmobj.surface['charge_exp'] atom_coords = mol.atom_coords(unit='B') atom_charges = numpy.asarray(mol.atom_charges(), dtype=numpy.float64) fakemol_nuc = gto.fakemol_for_charges(atom_coords) fakemol = gto.fakemol_for_charges(grid_coords, expnt=exponents**2) int2c2e_ip1 = mol._add_suffix('int2c2e_ip1') v_ng_ip1 = gto.mole.intor_cross(int2c2e_ip1, fakemol_nuc, fakemol) dv_g = numpy.einsum('g,xng->nx', q_sym, v_ng_ip1) de = -numpy.einsum('nx,n->nx', dv_g, atom_charges) v_ng_ip1 = gto.mole.intor_cross(int2c2e_ip1, fakemol, fakemol_nuc) dv_g = numpy.einsum('n,xgn->gx', atom_charges, v_ng_ip1) dv_g = numpy.einsum('gx,g->gx', dv_g, q_sym) de -= numpy.asarray([numpy.sum(dv_g[p0:p1], axis=0) for p0,p1 in gridslice]) t1 = log.timer_debug1('grad nuc', *t1) return de
[docs] def grad_qv(pcmobj, dm, q_sym = None): ''' contributions due to integrals ''' if not pcmobj._intermediates: pcmobj.build() dm_cache = pcmobj._intermediates.get('dm', None) if dm_cache is not None and numpy.linalg.norm(dm_cache - dm) < 1e-10: pass else: pcmobj._get_vind(dm) mol = pcmobj.mol nao = mol.nao log = logger.new_logger(mol, mol.verbose) t1 = (logger.process_clock(), logger.perf_counter()) gridslice = pcmobj.surface['gslice_by_atom'] if q_sym is None: q_sym = pcmobj._intermediates['q_sym'] grid_coords = pcmobj.surface['grid_coords'] exponents = pcmobj.surface['charge_exp'] max_memory = pcmobj.max_memory - lib.current_memory()[0] blksize = int(max(max_memory*.9e6/8/nao**2/3, 400)) ngrids = q_sym.shape[0] int3c2e_ip1 = mol._add_suffix('int3c2e_ip1') cintopt = gto.moleintor.make_cintopt(mol._atm, mol._bas, mol._env, int3c2e_ip1) dvj = numpy.zeros([3,nao]) for p0, p1 in lib.prange(0, ngrids, blksize): fakemol = gto.fakemol_for_charges(grid_coords[p0:p1], expnt=exponents[p0:p1]**2) v_nj = df.incore.aux_e2(mol, fakemol, intor=int3c2e_ip1, aosym='s1', cintopt=cintopt) dvj += numpy.einsum('xijk,ij,k->xi', v_nj, dm, q_sym[p0:p1]) int3c2e_ip2 = mol._add_suffix('int3c2e_ip2') cintopt = gto.moleintor.make_cintopt(mol._atm, mol._bas, mol._env, int3c2e_ip2) dq = numpy.empty([3,ngrids]) for p0, p1 in lib.prange(0, ngrids, blksize): fakemol = gto.fakemol_for_charges(grid_coords[p0:p1], expnt=exponents[p0:p1]**2) q_nj = df.incore.aux_e2(mol, fakemol, intor=int3c2e_ip2, aosym='s1', cintopt=cintopt) dq[:,p0:p1] = numpy.einsum('xijk,ij,k->xk', q_nj, dm, q_sym[p0:p1]) aoslice = mol.aoslice_by_atom() dq = numpy.asarray([numpy.sum(dq[:,p0:p1], axis=1) for p0,p1 in gridslice]) dvj= 2.0 * numpy.asarray([numpy.sum(dvj[:,p0:p1], axis=1) for p0,p1 in aoslice[:,2:]]) de = dq + dvj t1 = log.timer_debug1('grad qv', *t1) return de
[docs] def grad_solver(pcmobj, dm): ''' dE = 0.5*v* d(K^-1 R) *v + q*dv v^T* d(K^-1 R)v = v^T*K^-1(dR - dK K^-1R)v = v^T K^-1(dR - dK q) ''' mol = pcmobj.mol log = logger.new_logger(mol, mol.verbose) t1 = (logger.process_clock(), logger.perf_counter()) if not pcmobj._intermediates: pcmobj.build() dm_cache = pcmobj._intermediates.get('dm', None) if dm_cache is not None and numpy.linalg.norm(dm_cache - dm) < 1e-10: pass else: pcmobj._get_vind(dm) gridslice = pcmobj.surface['gslice_by_atom'] v_grids = pcmobj._intermediates['v_grids'] A = pcmobj._intermediates['A'] D = pcmobj._intermediates['D'] S = pcmobj._intermediates['S'] K = pcmobj._intermediates['K'] q = pcmobj._intermediates['q'] vK_1 = numpy.linalg.solve(K.T, v_grids) dF, dA = get_dF_dA(pcmobj.surface) with_D = pcmobj.method.upper() in ['IEF-PCM', 'IEFPCM', 'SS(V)PE'] dD, dS, dSii = get_dD_dS(pcmobj.surface, dF, with_D=with_D, with_S=True) if pcmobj.method.upper() in ['IEF-PCM', 'IEFPCM', 'SS(V)PE']: DA = D*A epsilon = pcmobj.eps #de_dF = v0 * -dSii_dF * q #de += 0.5*numpy.einsum('i,inx->nx', de_dF, dF) # dQ = v^T K^-1 (dR - dK K^-1 R) v de = numpy.zeros([pcmobj.mol.natm,3]) if pcmobj.method.upper() in ['C-PCM', 'CPCM', 'COSMO']: dS = dS.transpose([2,0,1]) dSii = dSii.transpose([2,0,1]) # dR = 0, dK = dS de_dS = 0.5*(vK_1 * dS.dot(q)).T # numpy.einsum('i,xij,j->ix', vK_1, dS, q) de_dS -= 0.5*numpy.einsum('i,xij,j->jx', vK_1, dS, q) de -= numpy.asarray([numpy.sum(de_dS[p0:p1], axis=0) for p0,p1, in gridslice]) de -= 0.5*numpy.einsum('i,xij->jx', vK_1*q, dSii) # 0.5*numpy.einsum('i,xij,i->jx', vK_1, dSii, q) elif pcmobj.method.upper() in ['IEF-PCM', 'IEFPCM']: dD = dD.transpose([2,0,1]) dS = dS.transpose([2,0,1]) dSii = dSii.transpose([2,0,1]) dA = dA.transpose([2,0,1]) # dR = f_eps/(2*pi) * (dD*A + D*dA) # dK = dS - f_eps/(2*pi) * (dD*A*S + D*dA*S + D*A*dS) f_epsilon = (epsilon - 1.0)/(epsilon + 1.0) fac = f_epsilon/(2.0*PI) Av = A*v_grids de_dR = 0.5*fac * numpy.einsum('i,xij,j->ix', vK_1, dD, Av) de_dR -= 0.5*fac * numpy.einsum('i,xij,j->jx', vK_1, dD, Av) de_dR = numpy.asarray([numpy.sum(de_dR[p0:p1], axis=0) for p0,p1 in gridslice]) vK_1_D = vK_1.dot(D) vK_1_Dv = vK_1_D * v_grids de_dR += 0.5*fac * numpy.einsum('j,xjn->nx', vK_1_Dv, dA) de_dS0 = 0.5*numpy.einsum('i,xij,j->ix', vK_1, dS, q) de_dS0 -= 0.5*numpy.einsum('i,xij,j->jx', vK_1, dS, q) de_dS0 = numpy.asarray([numpy.sum(de_dS0[p0:p1], axis=0) for p0,p1 in gridslice]) vK_1_q = vK_1 * q de_dS0 += 0.5*numpy.einsum('i,xin->nx', vK_1_q, dSii) vK_1_DA = numpy.dot(vK_1, DA) de_dS1 = 0.5*numpy.einsum('i,xij,j->ix', vK_1_DA, dS, q) de_dS1 -= 0.5*numpy.einsum('i,xij,j->jx', vK_1_DA, dS, q) de_dS1 = numpy.asarray([numpy.sum(de_dS1[p0:p1], axis=0) for p0,p1 in gridslice]) vK_1_DAq = vK_1_DA*q de_dS1 += 0.5*numpy.einsum('j,xjn->nx', vK_1_DAq, dSii) Sq = numpy.dot(S,q) ASq = A*Sq de_dD = 0.5*numpy.einsum('i,xij,j->ix', vK_1, dD, ASq) de_dD -= 0.5*numpy.einsum('i,xij,j->jx', vK_1, dD, ASq) de_dD = numpy.asarray([numpy.sum(de_dD[p0:p1], axis=0) for p0,p1 in gridslice]) de_dA = 0.5*numpy.einsum('j,xjn->nx', vK_1_D*Sq, dA) de_dK = de_dS0 - fac * (de_dD + de_dA + de_dS1) de += de_dR - de_dK elif pcmobj.method.upper() in ['SS(V)PE']: dD = dD.transpose([2,0,1]) dS = dS.transpose([2,0,1]) dSii = dSii.transpose([2,0,1]) dA = dA.transpose([2,0,1]) # dR = f_eps/(2*pi) * (dD*A + D*dA), # dK = dS - f_eps/(4*pi) * (dD*A*S + D*dA*S + D*A*dS + dS*A*DT + S*dA*DT + S*A*dDT) f_epsilon = (epsilon - 1.0)/(epsilon + 1.0) fac_R = f_epsilon/(2.0*PI) Av = A*v_grids de_dR = 0.5*fac_R * numpy.einsum('i,xij,j->ix', vK_1, dD, Av) de_dR -= 0.5*fac_R * numpy.einsum('i,xij,j->jx', vK_1, dD, Av) de_dR = numpy.asarray([numpy.sum(de_dR[p0:p1], axis=0) for p0,p1 in gridslice]) vK_1_D = vK_1.dot(D) vK_1_Dv = vK_1_D * v_grids de_dR += 0.5*fac_R * numpy.einsum('j,xjn->nx', vK_1_Dv, dA) de_dS0 = 0.5*numpy.einsum('i,xij,j->ix', vK_1, dS, q) de_dS0 -= 0.5*numpy.einsum('i,xij,j->jx', vK_1, dS, q) de_dS0 = numpy.asarray([numpy.sum(de_dS0[p0:p1], axis=0) for p0,p1 in gridslice]) vK_1_q = vK_1 * q de_dS0 += 0.5*numpy.einsum('i,xin->nx', vK_1_q, dSii) vK_1_DA = numpy.dot(vK_1, DA) de_dS1 = 0.5*numpy.einsum('i,xij,j->ix', vK_1_DA, dS, q) de_dS1 -= 0.5*numpy.einsum('i,xij,j->jx', vK_1_DA, dS, q) de_dS1 = numpy.asarray([numpy.sum(de_dS1[p0:p1], axis=0) for p0,p1 in gridslice]) vK_1_DAq = vK_1_DA*q de_dS1 += 0.5*numpy.einsum('j,xjn->nx', vK_1_DAq, dSii) DT_q = numpy.dot(D.T, q) ADT_q = A * DT_q de_dS1_T = 0.5*numpy.einsum('i,xij,j->ix', vK_1, dS, ADT_q) de_dS1_T -= 0.5*numpy.einsum('i,xij,j->jx', vK_1, dS, ADT_q) de_dS1_T = numpy.asarray([numpy.sum(de_dS1_T[p0:p1], axis=0) for p0,p1 in gridslice]) vK_1_ADT_q = vK_1 * ADT_q de_dS1_T += 0.5*numpy.einsum('j,xjn->nx', vK_1_ADT_q, dSii) Sq = numpy.dot(S,q) ASq = A*Sq de_dD = 0.5*numpy.einsum('i,xij,j->ix', vK_1, dD, ASq) de_dD -= 0.5*numpy.einsum('i,xij,j->jx', vK_1, dD, ASq) de_dD = numpy.asarray([numpy.sum(de_dD[p0:p1], axis=0) for p0,p1 in gridslice]) vK_1_S = numpy.dot(vK_1, S) vK_1_SA = vK_1_S * A de_dD_T = 0.5*numpy.einsum('i,xij,j->ix', vK_1_SA, -dD.transpose(0,2,1), q) de_dD_T -= 0.5*numpy.einsum('i,xij,j->jx', vK_1_SA, -dD.transpose(0,2,1), q) de_dD_T = numpy.asarray([numpy.sum(de_dD_T[p0:p1], axis=0) for p0,p1 in gridslice]) de_dA = 0.5*numpy.einsum('j,xjn->nx', vK_1_D*Sq, dA) de_dA_T = 0.5*numpy.einsum('j,xjn->nx', vK_1_S*DT_q, dA) fac_K = f_epsilon/(4.0*PI) de_dK = de_dS0 - fac_K * (de_dD + de_dA + de_dS1 + de_dD_T + de_dA_T + de_dS1_T) de += de_dR - de_dK else: raise RuntimeError(f"Unknown implicit solvent model: {pcmobj.method}") t1 = log.timer_debug1('grad solver', *t1) return de
[docs] def make_grad_object(base_method): '''Create nuclear gradients object with solvent contributions for the given solvent-attached method based on its gradients method in vaccum ''' from pyscf.solvent._attach_solvent import _Solvation if isinstance(base_method, rhf_grad.GradientsBase): # For backward compatibility. The input argument is a gradient object in # previous implementations. base_method = base_method.base # Must be a solvent-attached method assert isinstance(base_method, _Solvation) with_solvent = base_method.with_solvent if with_solvent.frozen: raise RuntimeError('Frozen solvent model is not avialbe for energy gradients') # create the Gradients in vacuum. Cannot call super().Gradients() here # because other dynamic corrections might be applied to the base_method. # Calling super().Gradients might discard these corrections. vac_grad = base_method.undo_solvent().Gradients() # The base method for vac_grad discards the with_solvent. Change its base to # the solvent-attached base method vac_grad.base = base_method name = with_solvent.__class__.__name__ + vac_grad.__class__.__name__ return lib.set_class(WithSolventGrad(vac_grad), (WithSolventGrad, vac_grad.__class__), name)
[docs] class WithSolventGrad: _keys = {'de_solvent', 'de_solute'} def __init__(self, grad_method): self.__dict__.update(grad_method.__dict__) self.de_solvent = None self.de_solute = None
[docs] def undo_solvent(self): cls = self.__class__ name_mixin = self.base.with_solvent.__class__.__name__ obj = lib.view(self, lib.drop_class(cls, WithSolventGrad, name_mixin)) del obj.de_solvent del obj.de_solute return obj
[docs] def to_gpu(self): from gpu4pyscf.solvent.hessian import pcm # type: ignore from pyscf.tdscf.rhf import TDBase # Only PCM and SMD are available on GPU. # FIXME: The SMD class is a child class of PCM now. Additional check for # SMD should be made if SMD is refactored as an independent class assert isinstance(self.with_solvent, PCM) if isinstance(self, TDBase): raise NotImplementedError('.to_gpu() for PCM-TDDFT') return self.base.to_gpu().PCM().Gradients()
[docs] def kernel(self, *args, dm=None, atmlst=None, **kwargs): if dm is None: dm = self.base.make_rdm1(ao_repr=True) if dm.ndim == 3: dm = dm[0] + dm[1] logger.debug(self, 'Compute gradients from solvents') self.de_solvent = self.base.with_solvent.grad(dm) logger.debug(self, 'Compute gradients from solutes') self.de_solute = super().kernel(*args, **kwargs) self.de = self.de_solute + self.de_solvent if self.verbose >= logger.NOTE: logger.note(self, '--------------- %s (+%s) gradients ---------------', self.base.__class__.__name__, self.base.with_solvent.__class__.__name__) rhf_grad._write(self, self.mol, self.de, self.atmlst) logger.note(self, '----------------------------------------------') return self.de
def _finalize(self): # disable _finalize. It is called in grad_method.kernel method # where self.de was not yet initialized. pass