Source code for pyscf.solvent.grad.pcm

#!/usr/bin/env python
# Copyright 2014-2023 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Xiaojie Wu <wxj6000@gmail.com>
#

'''
Gradient of PCM family solvent models, copied from GPU4PySCF with modifications
'''

import numpy
import scipy
from pyscf import lib
from pyscf.lib import logger
from pyscf import gto, df
from pyscf.solvent.pcm import PI, switch_h
from pyscf.grad import rhf as rhf_grad

libdft = lib.load_library('libdft')

[docs] def grad_switch_h(x): ''' first derivative of h(x)''' dy = 30.0*x**2 - 60.0*x**3 + 30.0*x**4 dy[x<0] = 0.0 dy[x>1] = 0.0 return dy
[docs] def gradgrad_switch_h(x): ''' 2nd derivative of h(x) ''' ddy = 60.0*x - 180.0*x**2 + 120*x**3 ddy[x<0] = 0.0 ddy[x>1] = 0.0 return ddy
[docs] def get_dF_dA(surface): ''' J. Chem. Phys. 133, 244111 (2010), Appendix C ''' atom_coords = surface['atom_coords'] grid_coords = surface['grid_coords'] switch_fun = surface['switch_fun'] area = surface['area'] R_in_J = surface['R_in_J'] R_sw_J = surface['R_sw_J'] ngrids = grid_coords.shape[0] natom = atom_coords.shape[0] dF = numpy.zeros([ngrids, natom, 3]) dA = numpy.zeros([ngrids, natom, 3]) for ia in range(atom_coords.shape[0]): p0,p1 = surface['gslice_by_atom'][ia] coords = grid_coords[p0:p1] p1 = p0 + coords.shape[0] ri_rJ = numpy.expand_dims(coords, axis=1) - atom_coords riJ = numpy.linalg.norm(ri_rJ, axis=-1) diJ = (riJ - R_in_J) / R_sw_J diJ[:,ia] = 1.0 diJ[diJ < 1e-8] = 0.0 ri_rJ[:,ia,:] = 0.0 ri_rJ[diJ < 1e-8] = 0.0 fiJ = switch_h(diJ) dfiJ = grad_switch_h(diJ) / (fiJ * riJ * R_sw_J) dfiJ = numpy.expand_dims(dfiJ, axis=-1) * ri_rJ Fi = switch_fun[p0:p1] Ai = area[p0:p1] # grids response Fi = numpy.expand_dims(Fi, axis=-1) Ai = numpy.expand_dims(Ai, axis=-1) dFi_grid = numpy.sum(dfiJ, axis=1) dF[p0:p1,ia,:] += Fi * dFi_grid dA[p0:p1,ia,:] += Ai * dFi_grid # atom response Fi = numpy.expand_dims(Fi, axis=-2) Ai = numpy.expand_dims(Ai, axis=-2) dF[p0:p1,:,:] -= Fi * dfiJ dA[p0:p1,:,:] -= Ai * dfiJ return dF, dA
[docs] def get_dD_dS(surface, dF, with_S=True, with_D=False): ''' derivative of D and S w.r.t grids, partial_i D_ij = -partial_j D_ij S is symmetric, D is not ''' grid_coords = surface['grid_coords'] exponents = surface['charge_exp'] norm_vec = surface['norm_vec'] switch_fun = surface['switch_fun'] xi_i, xi_j = numpy.meshgrid(exponents, exponents, indexing='ij') xi_ij = xi_i * xi_j / (xi_i**2 + xi_j**2)**0.5 ri_rj = numpy.expand_dims(grid_coords, axis=1) - grid_coords rij = numpy.linalg.norm(ri_rj, axis=-1) xi_r_ij = xi_ij * rij numpy.fill_diagonal(rij, 1) dS_dr = -(scipy.special.erf(xi_r_ij) - 2.0*xi_r_ij/PI**0.5*numpy.exp(-xi_r_ij**2))/rij**2 numpy.fill_diagonal(dS_dr, 0) dS_dr= numpy.expand_dims(dS_dr, axis=-1) drij = ri_rj/numpy.expand_dims(rij, axis=-1) dS = dS_dr * drij dD = None if with_D: nj_rij = numpy.sum(ri_rj * norm_vec, axis=-1) dD_dri = 4.0*xi_r_ij**2 * xi_ij / PI**0.5 * numpy.exp(-xi_r_ij**2) * nj_rij / rij**3 numpy.fill_diagonal(dD_dri, 0.0) rij = numpy.expand_dims(rij, axis=-1) nj_rij = numpy.expand_dims(nj_rij, axis=-1) nj = numpy.expand_dims(norm_vec, axis=0) dD_dri = numpy.expand_dims(dD_dri, axis=-1) dD = dD_dri * drij + dS_dr * (-nj/rij + 3.0*nj_rij/rij**2 * drij) dSii_dF = -exponents * (2.0/PI)**0.5 / switch_fun**2 dSii = numpy.expand_dims(dSii_dF, axis=(1,2)) * dF return dD, dS, dSii
[docs] def grad_nuc(pcmobj, dm): mol = pcmobj.mol log = logger.new_logger(mol, mol.verbose) t1 = (logger.process_clock(), logger.perf_counter()) if not pcmobj._intermediates: pcmobj.build() dm_cache = pcmobj._intermediates.get('dm', None) if dm_cache is not None and numpy.linalg.norm(dm_cache - dm) < 1e-10: pass else: pcmobj._get_vind(dm) mol = pcmobj.mol q_sym = pcmobj._intermediates['q_sym'] gridslice = pcmobj.surface['gslice_by_atom'] grid_coords = pcmobj.surface['grid_coords'] exponents = pcmobj.surface['charge_exp'] atom_coords = mol.atom_coords(unit='B') atom_charges = numpy.asarray(mol.atom_charges(), dtype=numpy.float64) fakemol_nuc = gto.fakemol_for_charges(atom_coords) fakemol = gto.fakemol_for_charges(grid_coords, expnt=exponents**2) int2c2e_ip1 = mol._add_suffix('int2c2e_ip1') v_ng_ip1 = gto.mole.intor_cross(int2c2e_ip1, fakemol_nuc, fakemol) dv_g = numpy.einsum('g,xng->nx', q_sym, v_ng_ip1) de = -numpy.einsum('nx,n->nx', dv_g, atom_charges) v_ng_ip1 = gto.mole.intor_cross(int2c2e_ip1, fakemol, fakemol_nuc) dv_g = numpy.einsum('n,xgn->gx', atom_charges, v_ng_ip1) dv_g = numpy.einsum('gx,g->gx', dv_g, q_sym) de -= numpy.asarray([numpy.sum(dv_g[p0:p1], axis=0) for p0,p1 in gridslice]) t1 = log.timer_debug1('grad nuc', *t1) return de
[docs] def grad_qv(pcmobj, dm): ''' contributions due to integrals ''' if not pcmobj._intermediates: pcmobj.build() dm_cache = pcmobj._intermediates.get('dm', None) if dm_cache is not None and numpy.linalg.norm(dm_cache - dm) < 1e-10: pass else: pcmobj._get_vind(dm) mol = pcmobj.mol nao = mol.nao log = logger.new_logger(mol, mol.verbose) t1 = (logger.process_clock(), logger.perf_counter()) gridslice = pcmobj.surface['gslice_by_atom'] q_sym = pcmobj._intermediates['q_sym'] grid_coords = pcmobj.surface['grid_coords'] exponents = pcmobj.surface['charge_exp'] max_memory = pcmobj.max_memory - lib.current_memory()[0] blksize = int(max(max_memory*.9e6/8/nao**2/3, 400)) ngrids = q_sym.shape[0] int3c2e_ip1 = mol._add_suffix('int3c2e_ip1') cintopt = gto.moleintor.make_cintopt(mol._atm, mol._bas, mol._env, int3c2e_ip1) dvj = numpy.zeros([3,nao]) for p0, p1 in lib.prange(0, ngrids, blksize): fakemol = gto.fakemol_for_charges(grid_coords[p0:p1], expnt=exponents[p0:p1]**2) v_nj = df.incore.aux_e2(mol, fakemol, intor=int3c2e_ip1, aosym='s1', cintopt=cintopt) dvj += numpy.einsum('xijk,ij,k->xi', v_nj, dm, q_sym[p0:p1]) int3c2e_ip2 = mol._add_suffix('int3c2e_ip2') cintopt = gto.moleintor.make_cintopt(mol._atm, mol._bas, mol._env, int3c2e_ip2) dq = numpy.empty([3,ngrids]) for p0, p1 in lib.prange(0, ngrids, blksize): fakemol = gto.fakemol_for_charges(grid_coords[p0:p1], expnt=exponents[p0:p1]**2) q_nj = df.incore.aux_e2(mol, fakemol, intor=int3c2e_ip2, aosym='s1', cintopt=cintopt) dq[:,p0:p1] = numpy.einsum('xijk,ij,k->xk', q_nj, dm, q_sym[p0:p1]) aoslice = mol.aoslice_by_atom() dq = numpy.asarray([numpy.sum(dq[:,p0:p1], axis=1) for p0,p1 in gridslice]) dvj= 2.0 * numpy.asarray([numpy.sum(dvj[:,p0:p1], axis=1) for p0,p1 in aoslice[:,2:]]) de = dq + dvj t1 = log.timer_debug1('grad qv', *t1) return de
[docs] def grad_solver(pcmobj, dm): ''' dE = 0.5*v* d(K^-1 R) *v + q*dv v^T* d(K^-1 R)v = v^T*K^-1(dR - dK K^-1R)v = v^T K^-1(dR - dK q) ''' mol = pcmobj.mol log = logger.new_logger(mol, mol.verbose) t1 = (logger.process_clock(), logger.perf_counter()) if not pcmobj._intermediates: pcmobj.build() dm_cache = pcmobj._intermediates.get('dm', None) if dm_cache is not None and numpy.linalg.norm(dm_cache - dm) < 1e-10: pass else: pcmobj._get_vind(dm) gridslice = pcmobj.surface['gslice_by_atom'] v_grids = pcmobj._intermediates['v_grids'] A = pcmobj._intermediates['A'] D = pcmobj._intermediates['D'] S = pcmobj._intermediates['S'] K = pcmobj._intermediates['K'] q = pcmobj._intermediates['q'] vK_1 = numpy.linalg.solve(K.T, v_grids) dF, dA = get_dF_dA(pcmobj.surface) with_D = pcmobj.method.upper() in ['IEF-PCM', 'IEFPCM', 'SS(V)PE'] dD, dS, dSii = get_dD_dS(pcmobj.surface, dF, with_D=with_D, with_S=True) if pcmobj.method.upper() in ['IEF-PCM', 'IEFPCM', 'SS(V)PE']: DA = D*A epsilon = pcmobj.eps #de_dF = v0 * -dSii_dF * q #de += 0.5*numpy.einsum('i,inx->nx', de_dF, dF) # dQ = v^T K^-1 (dR - dK K^-1 R) v de = numpy.zeros([pcmobj.mol.natm,3]) if pcmobj.method.upper() in ['C-PCM', 'CPCM', 'COSMO']: dS = dS.transpose([2,0,1]) dSii = dSii.transpose([2,0,1]) # dR = 0, dK = dS de_dS = (vK_1 * dS.dot(q)).T # numpy.einsum('i,xij,j->ix', vK_1, dS, q) de -= numpy.asarray([numpy.sum(de_dS[p0:p1], axis=0) for p0,p1, in gridslice]) de -= 0.5*numpy.einsum('i,xij->jx', vK_1*q, dSii) # 0.5*numpy.einsum('i,xij,i->jx', vK_1, dSii, q) elif pcmobj.method.upper() in ['IEF-PCM', 'IEFPCM', 'SS(V)PE']: dD = dD.transpose([2,0,1]) dS = dS.transpose([2,0,1]) dSii = dSii.transpose([2,0,1]) dA = dA.transpose([2,0,1]) # IEF-PCM and SS(V)PE formally are the same in gradient calculation # dR = f_eps/(2*pi) * (dD*A + D*dA), # dK = dS - f_eps/(2*pi) * (dD*A*S + D*dA*S + D*A*dS) f_epsilon = (epsilon - 1.0)/(epsilon + 1.0) fac = f_epsilon/(2.0*PI) Av = A*v_grids de_dR = 0.5*fac * numpy.einsum('i,xij,j->ix', vK_1, dD, Av) de_dR -= 0.5*fac * numpy.einsum('i,xij,j->jx', vK_1, dD, Av) de_dR = numpy.asarray([numpy.sum(de_dR[p0:p1], axis=0) for p0,p1 in gridslice]) vK_1_D = vK_1.dot(D) vK_1_Dv = vK_1_D * v_grids de_dR += 0.5*fac * numpy.einsum('j,xjn->nx', vK_1_Dv, dA) de_dS0 = 0.5*numpy.einsum('i,xij,j->ix', vK_1, dS, q) de_dS0 -= 0.5*numpy.einsum('i,xij,j->jx', vK_1, dS, q) de_dS0 = numpy.asarray([numpy.sum(de_dS0[p0:p1], axis=0) for p0,p1 in gridslice]) vK_1_q = vK_1 * q de_dS0 += 0.5*numpy.einsum('i,xin->nx', vK_1_q, dSii) vK_1_DA = numpy.dot(vK_1, DA) de_dS1 = 0.5*numpy.einsum('i,xij,j->ix', vK_1_DA, dS, q) de_dS1 -= 0.5*numpy.einsum('i,xij,j->jx', vK_1_DA, dS, q) de_dS1 = numpy.asarray([numpy.sum(de_dS1[p0:p1], axis=0) for p0,p1 in gridslice]) vK_1_DAq = vK_1_DA*q de_dS1 += 0.5*numpy.einsum('j,xjn->nx', vK_1_DAq, dSii) Sq = numpy.dot(S,q) ASq = A*Sq de_dD = 0.5*numpy.einsum('i,xij,j->ix', vK_1, dD, ASq) de_dD -= 0.5*numpy.einsum('i,xij,j->jx', vK_1, dD, ASq) de_dD = numpy.asarray([numpy.sum(de_dD[p0:p1], axis=0) for p0,p1 in gridslice]) vK_1_D = numpy.dot(vK_1, D) de_dA = 0.5*numpy.einsum('j,xjn->nx', vK_1_D*Sq, dA) # 0.5*numpy.einsum('j,xjn,j->nx', vK_1_D, dA, Sq) de_dK = de_dS0 - fac * (de_dD + de_dA + de_dS1) de += de_dR - de_dK else: raise RuntimeError(f"Unknown implicit solvent model: {pcmobj.method}") t1 = log.timer_debug1('grad solver', *t1) return de
[docs] def make_grad_object(grad_method): '''For grad_method in vacuum, add nuclear gradients of solvent pcmobj''' if grad_method.base.with_solvent.frozen: raise RuntimeError('Frozen solvent model is not avialbe for energy gradients') name = (grad_method.base.with_solvent.__class__.__name__ + grad_method.__class__.__name__) return lib.set_class(WithSolventGrad(grad_method), (WithSolventGrad, grad_method.__class__), name)
[docs] class WithSolventGrad: _keys = {'de_solvent', 'de_solute'} def __init__(self, grad_method): self.__dict__.update(grad_method.__dict__) self.de_solvent = None self.de_solute = None
[docs] def undo_solvent(self): cls = self.__class__ name_mixin = self.base.with_solvent.__class__.__name__ obj = lib.view(self, lib.drop_class(cls, WithSolventGrad, name_mixin)) del obj.de_solvent del obj.de_solute return obj
[docs] def to_gpu(self): from gpu4pyscf.solvent.grad import pcm # type: ignore grad_method = self.undo_solvent().to_gpu() return pcm.make_grad_object(grad_method)
[docs] def kernel(self, *args, dm=None, atmlst=None, **kwargs): dm = kwargs.pop('dm', None) if dm is None: dm = self.base.make_rdm1(ao_repr=True) if dm.ndim == 3: dm = dm[0] + dm[1] self.de_solute = super().kernel(*args, **kwargs) self.de_solvent = grad_qv(self.base.with_solvent, dm) self.de_solvent+= grad_nuc(self.base.with_solvent, dm) self.de_solvent+= grad_solver(self.base.with_solvent, dm) self.de = self.de_solute + self.de_solvent if self.verbose >= logger.NOTE: logger.note(self, '--------------- %s (+%s) gradients ---------------', self.base.__class__.__name__, self.base.with_solvent.__class__.__name__) rhf_grad._write(self, self.mol, self.de, self.atmlst) logger.note(self, '----------------------------------------------') return self.de
def _finalize(self): # disable _finalize. It is called in grad_method.kernel method # where self.de was not yet initialized. pass