Source code for pyscf.pbc.tdscf.uhf

#!/usr/bin/env python
# Copyright 2014-2018 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

import numpy as np
from pyscf import lib
from pyscf.tdscf import uhf
from pyscf.pbc.tdscf import rhf as td_rhf
from pyscf.pbc.tdscf.rhf import TDBase


[docs] def get_ab(mf): r'''A and B matrices for TDDFT response function. A[i,a,j,b] = \delta_{ab}\delta_{ij}(E_a - E_i) + (ia||bj) B[i,a,j,b] = (ia||jb) Spin symmetry is considered in the returned A, B lists. List A has three items: (A_aaaa, A_aabb, A_bbbb). A_bbaa = A_aabb.transpose(2,3,0,1). B has three items: (B_aaaa, B_aabb, B_bbbb). B_bbaa = B_aabb.transpose(2,3,0,1). ''' cell = mf.cell nao = cell.nao_nr() mo_energy = scf.addons.mo_energy_with_exxdiv_none(mf) mo = np.asarray(mf.mo_coeff) mo_occ = np.asarray(mf.mo_occ) kpt = mf.kpt occidx_a = np.where(mo_occ[0]==1)[0] viridx_a = np.where(mo_occ[0]==0)[0] occidx_b = np.where(mo_occ[1]==1)[0] viridx_b = np.where(mo_occ[1]==0)[0] orbo_a = mo[0][:,occidx_a] orbv_a = mo[0][:,viridx_a] orbo_b = mo[1][:,occidx_b] orbv_b = mo[1][:,viridx_b] nocc_a = orbo_a.shape[1] nvir_a = orbv_a.shape[1] nocc_b = orbo_b.shape[1] nvir_b = orbv_b.shape[1] mo_a = np.hstack((orbo_a,orbv_a)) mo_b = np.hstack((orbo_b,orbv_b)) nmo_a = nocc_a + nvir_a nmo_b = nocc_b + nvir_b e_ia_a = (mo_energy[0][viridx_a,None] - mo_energy[0][occidx_a]).T e_ia_b = (mo_energy[1][viridx_b,None] - mo_energy[1][occidx_b]).T a_aa = np.diag(e_ia_a.ravel()).reshape(nocc_a,nvir_a,nocc_a,nvir_a) a_bb = np.diag(e_ia_b.ravel()).reshape(nocc_b,nvir_b,nocc_b,nvir_b) a_ab = np.zeros((nocc_a,nvir_a,nocc_b,nvir_b)) b_aa = np.zeros_like(a_aa) b_ab = np.zeros_like(a_ab) b_bb = np.zeros_like(a_bb) a = (a_aa, a_ab, a_bb) b = (b_aa, b_ab, b_bb) def add_hf_(a, b, hyb=1): eri_aa = mf.with_df.ao2mo([orbo_a,mo_a,mo_a,mo_a], kpt, compact=False) eri_ab = mf.with_df.ao2mo([orbo_a,mo_a,mo_b,mo_b], kpt, compact=False) eri_bb = mf.with_df.ao2mo([orbo_b,mo_b,mo_b,mo_b], kpt, compact=False) eri_aa = eri_aa.reshape(nocc_a,nmo_a,nmo_a,nmo_a) eri_ab = eri_ab.reshape(nocc_a,nmo_a,nmo_b,nmo_b) eri_bb = eri_bb.reshape(nocc_b,nmo_b,nmo_b,nmo_b) a_aa, a_ab, a_bb = a b_aa, b_ab, b_bb = b a_aa += np.einsum('iabj->iajb', eri_aa[:nocc_a,nocc_a:,nocc_a:,:nocc_a]) a_aa -= np.einsum('ijba->iajb', eri_aa[:nocc_a,:nocc_a,nocc_a:,nocc_a:]) * hyb b_aa += np.einsum('iajb->iajb', eri_aa[:nocc_a,nocc_a:,:nocc_a,nocc_a:]) b_aa -= np.einsum('jaib->iajb', eri_aa[:nocc_a,nocc_a:,:nocc_a,nocc_a:]) * hyb a_bb += np.einsum('iabj->iajb', eri_bb[:nocc_b,nocc_b:,nocc_b:,:nocc_b]) a_bb -= np.einsum('ijba->iajb', eri_bb[:nocc_b,:nocc_b,nocc_b:,nocc_b:]) * hyb b_bb += np.einsum('iajb->iajb', eri_bb[:nocc_b,nocc_b:,:nocc_b,nocc_b:]) b_bb -= np.einsum('jaib->iajb', eri_bb[:nocc_b,nocc_b:,:nocc_b,nocc_b:]) * hyb a_ab += np.einsum('iabj->iajb', eri_ab[:nocc_a,nocc_a:,nocc_b:,:nocc_b]) b_ab += np.einsum('iajb->iajb', eri_ab[:nocc_a,nocc_a:,:nocc_b,nocc_b:]) if isinstance(mf, scf.hf.KohnShamDFT): ni = mf._numint omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, cell.spin) add_hf_(a, b, hyb) if omega != 0: # For RSH raise NotImplementedError xctype = ni._xc_type(mf.xc) dm0 = mf.make_rdm1(mo, mo_occ) make_rho = ni._gen_rho_evaluator(cell, dm0, hermi=1, with_lapl=False)[0] mem_now = lib.current_memory()[0] max_memory = max(2000, mf.max_memory*.8-mem_now) if xctype == 'LDA': ao_deriv = 0 for ao, _, mask, weight, coords \ in ni.block_loop(cell, mf.grids, nao, ao_deriv, kpt, None, max_memory): rho0a = make_rho(0, ao, mask, xctype) rho0b = make_rho(1, ao, mask, xctype) rho = (rho0a, rho0b) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = fxc[:,0,:,0] * weight rho_o_a = lib.einsum('rp,pi->ri', ao, orbo_a) rho_v_a = lib.einsum('rp,pi->ri', ao, orbv_a) rho_o_b = lib.einsum('rp,pi->ri', ao, orbo_b) rho_v_b = lib.einsum('rp,pi->ri', ao, orbv_b) rho_ov_a = np.einsum('ri,ra->ria', rho_o_a, rho_v_a) rho_ov_b = np.einsum('ri,ra->ria', rho_o_b, rho_v_b) rho_vo_a = rho_ov_a.conj() rho_vo_b = rho_ov_b.conj() w_ov_aa = np.einsum('ria,r->ria', rho_ov_a, wfxc[0,0]) w_ov_ab = np.einsum('ria,r->ria', rho_ov_a, wfxc[0,1]) w_ov_bb = np.einsum('ria,r->ria', rho_ov_b, wfxc[1,1]) a_aa += lib.einsum('ria,rjb->iajb', w_ov_aa, rho_vo_a) b_aa += lib.einsum('ria,rjb->iajb', w_ov_aa, rho_ov_a) a_ab += lib.einsum('ria,rjb->iajb', w_ov_ab, rho_vo_b) b_ab += lib.einsum('ria,rjb->iajb', w_ov_ab, rho_ov_b) a_bb += lib.einsum('ria,rjb->iajb', w_ov_bb, rho_vo_b) b_bb += lib.einsum('ria,rjb->iajb', w_ov_bb, rho_ov_b) elif xctype == 'GGA': ao_deriv = 1 for ao, _, mask, weight, coords \ in ni.block_loop(cell, mf.grids, nao, ao_deriv, kpt, None, max_memory): rho0a = make_rho(0, ao, mask, xctype) rho0b = make_rho(1, ao, mask, xctype) rho = (rho0a, rho0b) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = fxc * weight rho_o_a = lib.einsum('xrp,pi->xri', ao, orbo_a) rho_v_a = lib.einsum('xrp,pi->xri', ao, orbv_a) rho_o_b = lib.einsum('xrp,pi->xri', ao, orbo_b) rho_v_b = lib.einsum('xrp,pi->xri', ao, orbv_b) rho_ov_a = np.einsum('xri,ra->xria', rho_o_a, rho_v_a[0]) rho_ov_b = np.einsum('xri,ra->xria', rho_o_b, rho_v_b[0]) rho_ov_a[1:4] += np.einsum('ri,xra->xria', rho_o_a[0], rho_v_a[1:4]) rho_ov_b[1:4] += np.einsum('ri,xra->xria', rho_o_b[0], rho_v_b[1:4]) rho_vo_a = rho_ov_a.conj() rho_vo_b = rho_ov_b.conj() w_ov_aa = np.einsum('xyr,xria->yria', wfxc[0,:,0], rho_ov_a) w_ov_ab = np.einsum('xyr,xria->yria', wfxc[0,:,1], rho_ov_a) w_ov_bb = np.einsum('xyr,xria->yria', wfxc[1,:,1], rho_ov_b) a_aa += lib.einsum('xria,xrjb->iajb', w_ov_aa, rho_vo_a) b_aa += lib.einsum('xria,xrjb->iajb', w_ov_aa, rho_ov_a) a_ab += lib.einsum('xria,xrjb->iajb', w_ov_ab, rho_vo_b) b_ab += lib.einsum('xria,xrjb->iajb', w_ov_ab, rho_ov_b) a_bb += lib.einsum('xria,xrjb->iajb', w_ov_bb, rho_vo_b) b_bb += lib.einsum('xria,xrjb->iajb', w_ov_bb, rho_ov_b) elif xctype == 'HF': pass elif xctype == 'NLC': raise NotImplementedError('NLC') elif xctype == 'MGGA': ao_deriv = 1 for ao, _, mask, weight, coords \ in ni.block_loop(cell, mf.grids, nao, ao_deriv, kpt, None, max_memory): rho0a = make_rho(0, ao, mask, xctype) rho0b = make_rho(1, ao, mask, xctype) rho = (rho0a, rho0b) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = fxc * weight rho_oa = lib.einsum('xrp,pi->xri', ao, orbo_a) rho_ob = lib.einsum('xrp,pi->xri', ao, orbo_b) rho_va = lib.einsum('xrp,pi->xri', ao, orbv_a) rho_vb = lib.einsum('xrp,pi->xri', ao, orbv_b) rho_ov_a = np.einsum('xri,ra->xria', rho_oa, rho_va[0]) rho_ov_b = np.einsum('xri,ra->xria', rho_ob, rho_vb[0]) rho_ov_a[1:4] += np.einsum('ri,xra->xria', rho_oa[0], rho_va[1:4]) rho_ov_b[1:4] += np.einsum('ri,xra->xria', rho_ob[0], rho_vb[1:4]) tau_ov_a = np.einsum('xri,xra->ria', rho_oa[1:4], rho_va[1:4]) * .5 tau_ov_b = np.einsum('xri,xra->ria', rho_ob[1:4], rho_vb[1:4]) * .5 rho_ov_a = np.vstack([rho_ov_a, tau_ov_a[np.newaxis]]) rho_ov_b = np.vstack([rho_ov_b, tau_ov_b[np.newaxis]]) rho_vo_a = rho_ov_a.conj() rho_vo_b = rho_ov_b.conj() w_ov_aa = np.einsum('xyr,xria->yria', wfxc[0,:,0], rho_ov_a) w_ov_ab = np.einsum('xyr,xria->yria', wfxc[0,:,1], rho_ov_a) w_ov_bb = np.einsum('xyr,xria->yria', wfxc[1,:,1], rho_ov_b) a_aa += lib.einsum('xria,xrjb->iajb', w_ov_aa, rho_vo_a) b_aa += lib.einsum('xria,xrjb->iajb', w_ov_aa, rho_ov_a) a_ab += lib.einsum('xria,xrjb->iajb', w_ov_ab, rho_vo_b) b_ab += lib.einsum('xria,xrjb->iajb', w_ov_ab, rho_ov_b) a_bb += lib.einsum('xria,xrjb->iajb', w_ov_bb, rho_vo_b) b_bb += lib.einsum('xria,xrjb->iajb', w_ov_bb, rho_ov_b) else: add_hf_(a, b) return a, b
[docs] class TDA(TDBase):
[docs] def get_ab(self, mf=None): if mf is None: mf = self._scf return get_ab(mf)
singlet = None init_guess = uhf.TDA.init_guess kernel = uhf.TDA.kernel _gen_vind = uhf.TDA.gen_vind gen_vind = td_rhf.TDA.gen_vind
CIS = TDA
[docs] class TDHF(TDBase):
[docs] def get_ab(self, mf=None): if mf is None: mf = self._scf return get_ab(mf)
singlet = None init_guess = uhf.TDHF.init_guess kernel = uhf.TDHF.kernel _gen_vind = uhf.TDHF.gen_vind gen_vind = td_rhf.TDA.gen_vind
RPA = TDUHF = TDHF from pyscf.pbc import scf scf.uhf.UHF.TDA = lib.class_as_method(TDA) scf.uhf.UHF.TDHF = lib.class_as_method(TDHF)