Source code for pyscf.pbc.tdscf.kuhf

#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

from functools import reduce
import numpy
from pyscf import lib
from pyscf.lib import logger
from pyscf.tdscf import uhf
from pyscf.tdscf._lr_eig import eigh as lr_eigh, eig as lr_eig
from pyscf.pbc import scf
from pyscf.pbc.tdscf.krhf import KTDBase, _get_e_ia
from pyscf.pbc.lib.kpts_helper import is_gamma_point, get_kconserv_ria
from pyscf.pbc.scf import _response_functions  # noqa
from pyscf import __config__

REAL_EIG_THRESHOLD = getattr(__config__, 'pbc_tdscf_uhf_TDDFT_pick_eig_threshold', 1e-3)

[docs] class TDA(KTDBase):
[docs] def get_ab(self, mf=None, kshift=0): raise NotImplementedError
[docs] def gen_vind(self, mf, kshift=0): '''Compute Ax Kwargs: kshift : integer The index of the k-point that represents the transition between k-points in the excitation coefficients. ''' kconserv = get_kconserv_ria(mf.cell, mf.kpts)[kshift] mo_coeff = mf.mo_coeff mo_occ = mf.mo_occ nkpts = len(mo_occ[0]) nao, nmo = mo_coeff[0][0].shape occidxa = [numpy.where(mo_occ[0][k]> 0)[0] for k in range(nkpts)] occidxb = [numpy.where(mo_occ[1][k]> 0)[0] for k in range(nkpts)] viridxa = [numpy.where(mo_occ[0][k]==0)[0] for k in range(nkpts)] viridxb = [numpy.where(mo_occ[1][k]==0)[0] for k in range(nkpts)] orboa = [mo_coeff[0][k][:,occidxa[k]] for k in range(nkpts)] orbob = [mo_coeff[1][k][:,occidxb[k]] for k in range(nkpts)] orbva = [mo_coeff[0][kconserv[k]][:,viridxa[kconserv[k]]] for k in range(nkpts)] orbvb = [mo_coeff[1][kconserv[k]][:,viridxb[kconserv[k]]] for k in range(nkpts)] moe = scf.addons.mo_energy_with_exxdiv_none(mf) e_ia_a = _get_e_ia(moe[0], mo_occ[0], kconserv) e_ia_b = _get_e_ia(moe[1], mo_occ[1], kconserv) hdiag = numpy.hstack([x.ravel() for x in (e_ia_a + e_ia_b)]) mem_now = lib.current_memory()[0] max_memory = max(2000, self.max_memory*.8-mem_now) vresp = mf.gen_response(hermi=0, max_memory=max_memory) def vind(zs): nz = len(zs) zs = [_unpack(z, mo_occ, kconserv) for z in zs] dmov = numpy.empty((2,nz,nkpts,nao,nao), dtype=numpy.complex128) for i in range(nz): dm1a, dm1b = zs[i] for k in range(nkpts): dmov[0,i,k] = reduce(numpy.dot, (orboa[k], dm1a[k], orbva[k].conj().T)) dmov[1,i,k] = reduce(numpy.dot, (orbob[k], dm1b[k], orbvb[k].conj().T)) with lib.temporary_env(mf, exxdiv=None): dmov = dmov.reshape(2,nz,nkpts,nao,nao) v1ao = vresp(dmov, kshift) v1ao = v1ao.reshape(2,nz,nkpts,nao,nao) v1s = [] for i in range(nz): dm1a, dm1b = zs[i] v1as = [] v1bs = [] for k in range(nkpts): v1a = reduce(numpy.dot, (orboa[k].conj().T, v1ao[0,i,k], orbva[k])) v1b = reduce(numpy.dot, (orbob[k].conj().T, v1ao[1,i,k], orbvb[k])) v1a += e_ia_a[k] * dm1a[k] v1b += e_ia_b[k] * dm1b[k] v1as.append(v1a.ravel()) v1bs.append(v1b.ravel()) v1s.append( numpy.concatenate(v1as + v1bs) ) return lib.asarray(v1s).reshape(nz,-1) return vind, hdiag
[docs] def init_guess(self, mf, kshift, nstates=None): if nstates is None: nstates = self.nstates mo_energy = mf.mo_energy mo_occ = mf.mo_occ kconserv = get_kconserv_ria(mf.cell, mf.kpts)[kshift] e_ia_a = _get_e_ia(mo_energy[0], mo_occ[0], kconserv) e_ia_b = _get_e_ia(mo_energy[1], mo_occ[1], kconserv) e_ia = numpy.hstack([x.ravel() for x in (e_ia_a + e_ia_b)]) nov = e_ia.size nstates = min(nstates, nov) e_threshold = numpy.sort(e_ia)[nstates-1] e_threshold += self.deg_eia_thresh idx = numpy.where(e_ia <= e_threshold)[0] x0 = numpy.zeros((idx.size, nov)) for i, j in enumerate(idx): x0[i, j] = 1 # Koopmans' excitations return x0
[docs] def kernel(self, x0=None): '''TDA diagonalization solver ''' cpu0 = (logger.process_clock(), logger.perf_counter()) self.check_sanity() self.dump_flags() log = logger.new_logger(self) mf = self._scf mo_occ = mf.mo_occ def pickeig(w, v, nroots, envs): idx = numpy.where(w > self.positive_eig_threshold)[0] return w[idx], v[:,idx], idx log = logger.Logger(self.stdout, self.verbose) self.converged = [] self.e = [] self.xy = [] for i,kshift in enumerate(self.kshift_lst): kconserv = get_kconserv_ria(mf.cell, mf.kpts)[kshift] vind, hdiag = self.gen_vind(self._scf, kshift) precond = self.get_precond(hdiag) if x0 is None: x0k = self.init_guess(self._scf, kshift, self.nstates) else: x0k = x0[i] converged, e, x1 = lr_eigh( vind, x0k, precond, tol_residual=self.conv_tol, lindep=self.lindep, nroots=self.nstates, pick=pickeig, max_cycle=self.max_cycle, max_memory=self.max_memory, verbose=log) self.converged.append( converged ) self.e.append( e ) self.xy.append( [(_unpack(xi, mo_occ, kconserv), # (X_alpha, X_beta) (0, 0)) # (Y_alpha, Y_beta) for xi in x1] ) #TODO: analyze CIS wfn point group symmetry log.timer(self.__class__.__name__, *cpu0) self._finalize() return self.e, self.xy
CIS = KTDA = TDA
[docs] class TDHF(KTDBase):
[docs] def get_ab(self, mf=None, kshift=0): raise NotImplementedError
[docs] def gen_vind(self, mf, kshift=0): assert kshift == 0 mo_coeff = mf.mo_coeff mo_occ = mf.mo_occ nkpts = len(mo_occ[0]) nao, nmo = mo_coeff[0][0].shape occidxa = [numpy.where(mo_occ[0][k]> 0)[0] for k in range(nkpts)] occidxb = [numpy.where(mo_occ[1][k]> 0)[0] for k in range(nkpts)] viridxa = [numpy.where(mo_occ[0][k]==0)[0] for k in range(nkpts)] viridxb = [numpy.where(mo_occ[1][k]==0)[0] for k in range(nkpts)] orboa = [mo_coeff[0][k][:,occidxa[k]] for k in range(nkpts)] orbob = [mo_coeff[1][k][:,occidxb[k]] for k in range(nkpts)] orbva = [mo_coeff[0][k][:,viridxa[k]] for k in range(nkpts)] orbvb = [mo_coeff[1][k][:,viridxb[k]] for k in range(nkpts)] kconserv = numpy.arange(nkpts) moe = scf.addons.mo_energy_with_exxdiv_none(mf) e_ia_a = _get_e_ia(moe[0], mo_occ[0], kconserv) e_ia_b = _get_e_ia(moe[1], mo_occ[1], kconserv) hdiag = numpy.hstack([x.ravel() for x in (e_ia_a + e_ia_b)]) hdiag = numpy.hstack((hdiag, -hdiag)) tot_x_a = sum(x.size for x in e_ia_a) tot_x_b = sum(x.size for x in e_ia_b) tot_x = tot_x_a + tot_x_b mem_now = lib.current_memory()[0] max_memory = max(2000, self.max_memory*.8-mem_now) vresp = mf.gen_response(hermi=0, max_memory=max_memory) def vind(xys): nz = len(xys) x1s = [_unpack(x[:tot_x], mo_occ, kconserv) for x in xys] y1s = [_unpack(x[tot_x:], mo_occ, kconserv) for x in xys] dmov = numpy.empty((2,nz,nkpts,nao,nao), dtype=numpy.complex128) for i in range(nz): xa, xb = x1s[i] ya, yb = y1s[i] for k in range(nkpts): dmx = reduce(numpy.dot, (orboa[k], xa[k] , orbva[k].conj().T)) dmy = reduce(numpy.dot, (orbva[k], ya[k].T, orboa[k].conj().T)) dmov[0,i,k] = dmx + dmy dmx = reduce(numpy.dot, (orbob[k], xb[k] , orbvb[k].conj().T)) dmy = reduce(numpy.dot, (orbvb[k], yb[k].T, orbob[k].conj().T)) dmov[1,i,k] = dmx + dmy with lib.temporary_env(mf, exxdiv=None): dmov = dmov.reshape(2,nz,nkpts,nao,nao) v1ao = vresp(dmov, kshift) v1ao = v1ao.reshape(2,nz,nkpts,nao,nao) v1s = [] for i in range(nz): xa, xb = x1s[i] ya, yb = y1s[i] v1xsa = [0] * nkpts v1xsb = [0] * nkpts v1ysa = [0] * nkpts v1ysb = [0] * nkpts for k in range(nkpts): v1xa = reduce(numpy.dot, (orboa[k].conj().T, v1ao[0,i,k], orbva[k])) v1xb = reduce(numpy.dot, (orbob[k].conj().T, v1ao[1,i,k], orbvb[k])) v1ya = reduce(numpy.dot, (orbva[k].conj().T, v1ao[0,i,k], orboa[k])).T v1yb = reduce(numpy.dot, (orbvb[k].conj().T, v1ao[1,i,k], orbob[k])).T v1xa += e_ia_a[k] * xa[k] v1xb += e_ia_b[k] * xb[k] v1ya += e_ia_a[k].conj() * ya[k] v1yb += e_ia_b[k].conj() * yb[k] v1xsa[k] += v1xa.ravel() v1xsb[k] += v1xb.ravel() v1ysa[k] += -v1ya.ravel() v1ysb[k] += -v1yb.ravel() v1s.append( numpy.concatenate(v1xsa + v1xsb + v1ysa + v1ysb) ) return numpy.hstack(v1s).reshape(nz,-1) return vind, hdiag
[docs] def init_guess(self, mf, kshift, nstates=None, wfnsym=None): x0 = TDA.init_guess(self, mf, kshift, nstates) y0 = numpy.zeros_like(x0) return numpy.hstack([x0, y0])
get_precond = uhf.TDHF.get_precond
[docs] def kernel(self, x0=None): '''TDHF diagonalization with non-Hermitian eigenvalue solver ''' cpu0 = (logger.process_clock(), logger.perf_counter()) self.check_sanity() self.dump_flags() log = logger.new_logger(self) mf = self._scf mo_occ = mf.mo_occ real_system = (is_gamma_point(self._scf.kpts) and self._scf.mo_coeff[0][0].dtype == numpy.double) if any(k != 0 for k in self.kshift_lst): raise RuntimeError('kshift != 0 for TDHF') # We only need positive eigenvalues def pickeig(w, v, nroots, envs): realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD) & (w.real > self.positive_eig_threshold))[0] return lib.linalg_helper._eigs_cmplx2real(w, v, realidx, real_system) self.converged = [] self.e = [] self.xy = [] for i,kshift in enumerate(self.kshift_lst): kconserv = get_kconserv_ria(mf.cell, mf.kpts)[kshift] vind, hdiag = self.gen_vind(self._scf, kshift) precond = self.get_precond(hdiag) if x0 is None: x0k = self.init_guess(self._scf, kshift, self.nstates) else: x0k = x0[i] converged, w, x1 = lr_eig( vind, x0k, precond, tol_residual=self.conv_tol, lindep=self.lindep, nroots=self.nstates, pick=pickeig, max_cycle=self.max_cycle, max_memory=self.max_memory, verbose=log) self.converged.append( converged ) e = [] xy = [] for i, z in enumerate(x1): xs, ys = z.reshape(2,-1) norm = lib.norm(xs)**2 - lib.norm(ys)**2 if norm > 0: norm = 1/numpy.sqrt(norm) xs *= norm ys *= norm e.append(w[i]) xy.append((_unpack(xs, mo_occ, kconserv), _unpack(ys, mo_occ, kconserv))) self.e.append( numpy.array(e) ) self.xy.append( xy ) log.timer(self.__class__.__name__, *cpu0) self._finalize() return self.e, self.xy
RPA = KTDHF = TDHF def _unpack(vo, mo_occ, kconserv): za = [] zb = [] p1 = 0 for k, occ in enumerate(mo_occ[0]): no = numpy.count_nonzero(occ > 0) no1 = numpy.count_nonzero(mo_occ[0][kconserv[k]] > 0) nv = occ.size - no1 p0, p1 = p1, p1 + no * nv za.append(vo[p0:p1].reshape(no,nv)) for k, occ in enumerate(mo_occ[1]): no = numpy.count_nonzero(occ > 0) no1 = numpy.count_nonzero(mo_occ[1][kconserv[k]] > 0) nv = occ.size - no1 p0, p1 = p1, p1 + no * nv zb.append(vo[p0:p1].reshape(no,nv)) return za, zb scf.kuhf.KUHF.TDA = lib.class_as_method(KTDA) scf.kuhf.KUHF.TDHF = lib.class_as_method(KTDHF)