Source code for pyscf.pbc.symm.group

#!/usr/bin/env python
# Copyright 2020-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Xing Zhang <zhangxing.nju@gmail.com>
#

from abc import ABC, abstractmethod
import numpy as np
from pyscf import lib
from pyscf.pbc.symm import geom
from pyscf.pbc.symm.tables import SchoenfliesNotation

def _round_zero(a, tol=1e-9):
    a[np.where(abs(a) < tol)] = 0
    return a

[docs] class GroupElement(ABC): ''' The abstract class for group elements. ''' def __call__(self, other): return self.__matmul__(other) @abstractmethod def __matmul__(self, other): pass def __mul__(self, other): assert isinstance(other, self.__class__) return self @ other @abstractmethod def __hash__(self): pass
[docs] @abstractmethod def inv(self): ''' Inverse of the group element. ''' pass
[docs] class PGElement(GroupElement): ''' The class for crystallographic point group elements. The group elements are rotation matrices represented in lattice translation vector basis. Attributes: matrix : (d,d) array of ints Rotation matrix in lattice translation vector basis. dimension : int Dimension of the space: `d`. ''' def __init__(self, matrix): self.matrix = matrix self.dimension = matrix.shape[0] def __matmul__(self, other): if not isinstance(other, PGElement): raise TypeError(f"{other} is not a point group element.") return PGElement(np.dot(self.matrix, other.matrix)) def __repr__(self): return self.matrix.__repr__() def __hash__(self): def _id(op): s = op.flatten() + 1 return lib.inv_base_repr_int(s, op.shape[0]) r = _id(self.rot) # move identity to the first place d = self.dimension r -= _id(np.eye(d, dtype=int)) if r < 0: r += _id(np.ones((d,d), dtype=int)) + 1 return int(r)
[docs] @staticmethod def decrypt_hash(h, dimension=3): if dimension == 3: id_eye = int('211121112', 3) id_max = int('222222222', 3) elif dimension == 2: id_eye = int('2112', 3) id_max = int('2222', 3) else: raise NotImplementedError r = h + id_eye if r > id_max: r -= id_max + 1 #s = np.base_repr(r, 3) #s = '0'*(dimension**2-len(s)) + s #rot = np.asarray([int(i) for i in s]) - 1 rot = np.asarray(lib.base_repr_int(r, 3, dimension**2)) - 1 rot = rot.reshape(dimension,dimension) # sanity check #element = PGElement(rot) #assert hash(element) == h return rot
def __lt__(self, other): if not isinstance(other, PGElement): raise TypeError(f"{other} is not a point group element.") return self.__hash__() < other.__hash__() @property def matrix(self): return self._matrix @matrix.setter def matrix(self, a): self._matrix = a rot = matrix
[docs] def inv(self): return PGElement(np.asarray(np.linalg.inv(self.matrix), dtype=np.int32))
[docs] class FiniteGroup(ABC): ''' The class for finite groups. Attributes: elements : list Group elements. order : int Group order. ''' def __init__(self, elements, from_hash=False): if from_hash: elements = self.__class__.elements_from_hash(elements) self.elements = np.asarray(elements) self._order = None self._hash_table = None self._inverse_table = None self._multiplication_table = None self._conjugacy_table = None self._conjugacy_mask = None self._chartab_full = None self._chartab = None self._group_name = None self._group_index = None self._check_sanity()
[docs] @staticmethod @abstractmethod def elements_from_hash(hashes, **kwargs): pass
def __len__(self): return self.order def __getitem__(self, i): return self.elements[i] def __and__(self, other): if type(self) is not type(other): raise TypeError(f'{self} and {other} must be the same type') if self is other: return self hi = list(self.hash_table.keys()) hj = list(other.hash_table.keys()) hij = np.intersect1d(hi, hj) return self.__class__(hij, from_hash=True) def __or__(self, other): if type(self) is not type(other): raise TypeError(f'{self} and {other} must be the same type') if self is other: return self hi = list(self.hash_table.keys()) hj = list(other.hash_table.keys()) hij = np.union1d(hi, hj) return self.__class__(hij, from_hash=True)
[docs] def issubset(self, other): if type(self) is not type(other): raise TypeError(f'{self} and {other} must be the same type') if self is other: return True hi = list(self.hash_table.keys()) hj = list(other.hash_table.keys()) return set(hi).issubset(set(hj))
@property def order(self): if self._order is None: self._order = len(self.elements) return self._order @order.setter def order(self, n): self._order = n @property def hash_table(self): ''' Hash table for group elements: {hash : index}. ''' if self._hash_table is None: self._hash_table = {hash(g) : i for i, g in enumerate(self.elements)} return self._hash_table @hash_table.setter def hash_table(self, table): self._hash_table = table @property def inverse_table(self): ''' Table for inverse of the group elements. Return : (n,) array of ints The indices of elements. ''' if self._inverse_table is None: _table = [self.hash_table[hash(g.inv())] for g in self.elements] self._inverse_table = np.asarray(_table) return self._inverse_table @inverse_table.setter def inverse_table(self, table): self._inverse_table = table @property def multiplication_table(self): ''' Multiplication table of the group. Return : (n, n) array of ints The indices of elements. ''' if self._multiplication_table is None: prod = self.elements[:,None] * self.elements[None,:] _table = [self.hash_table[hash(gh)] for gh in prod.flatten()] self._multiplication_table = np.asarray(_table).reshape(prod.shape) return self._multiplication_table @multiplication_table.setter def multiplication_table(self, table): self._multiplication_table = table @property def conjugacy_table(self): ''' conjugacy_table[`index_g`, `index_x`] returns the index of element `h`, where :math:`h = x * g * x^{-1}`. ''' if self._conjugacy_table is None: prod_table = self.multiplication_table g_xinv = prod_table[:,self.inverse_table] self._conjugacy_table = prod_table[np.arange(self.order)[None,:], g_xinv] return self._conjugacy_table @conjugacy_table.setter def conjugacy_table(self, table): self._conjugacy_table = table @property def conjugacy_mask(self): ''' Boolean mask array indicating whether two elements are conjugate with each other. ''' if self._conjugacy_mask is None: n = self.order is_conjugate = np.zeros((n,n), dtype=bool) is_conjugate[np.arange(n)[:,None], self.conjugacy_table] = True self._conjugacy_mask = is_conjugate return self._conjugacy_mask
[docs] def conjugacy_classes(self): ''' Compute conjugacy classes. Returns: classes : (n_irrep,n) boolean array The indices of `True` correspond to the indices of elements in this class. representatives : (n_irrep,) array of ints Representive elements' indices in each class. inverse : (n,) array of ints The indices to reconstruct `conjugacy_mask` from `classes`. ''' _, idx = np.unique(self.conjugacy_mask, axis=0, return_index=True) representatives = np.sort(idx.ravel()) classes = self.conjugacy_mask[representatives] inverse = -np.ones((self.order), dtype=int) diff = (self.conjugacy_mask[None,:,:]==classes[:,None,:]).all(axis=-1) for i, a in enumerate(diff): inverse[np.where(a)[0]] = i assert (inverse >= 0).all() assert (classes[inverse] == self.conjugacy_mask).all() return classes, representatives, inverse
[docs] def character_table(self, return_full_table=False, recompute=False): ''' Character table of the group. Args: return_full_table : bool If True, return the characters for all elements. recompute : bool Whether to recompute the character table. Default is False, meaning to use the cached table if possible. Returns: chartab : array Character table for classes. chartab_full : array, optional Character table for all elements. ''' if not recompute: if not return_full_table and self._chartab is not None: return self._chartab if return_full_table and self._chartab_full is not None: return self._chartab_full classes, _, inverse = self.conjugacy_classes() class_sizes = classes.sum(axis=1) ginv_h = self.multiplication_table[self.inverse_table] M = classes @ np.random.rand(self.order)[ginv_h] @ classes.T M /= class_sizes _, Rchi = np.linalg.eig(M) chi = Rchi.T / class_sizes norm = np.sum(np.abs(chi) ** 2 * class_sizes[None,:], axis=1) ** 0.5 chi = chi / norm[:,None] * self.order ** 0.5 chi /= (chi[:, 0] / np.abs(chi[:, 0]))[:,None] chi = np.round(chi, 9) chi_copy = chi.copy() chi_copy[:,1:] *= -1 idx = np.lexsort(np.rot90(chi_copy)) chi = chi[idx] chi = _round_zero(chi) self._chartab = chi self._chartab_full = chi[:, inverse] if return_full_table: return self._chartab_full else: return self._chartab
[docs] def project_chi(self, chi, other): ''' Project characters to another group. ''' if self is other: return chi i_ind, j_ind = self.get_elements_map(other) chi_j = np.zeros((other.order,)) chi_j[j_ind] = chi[i_ind] return chi_j
[docs] def get_elements_map(self, other): if not (other.issubset(self) or self.issubset(other)): raise KeyError(f'{self} or {other} must be a subset of the other.') hi = [hash(g) for g in self.elements] hj = [hash(g) for g in other.elements] _, i_ind, j_ind = np.intersect1d(hi, hj, return_indices=True) return i_ind, j_ind
[docs] def get_irrep_chi(self, ir): chartab = self.character_table(True) return chartab[ir]
def _check_sanity(self): try: # check duplication assert len(self.hash_table) == self.order # check inversion assert (abs(np.sort(self.inverse_table) -np.arange(self.order)).max() == 0) # check multiplication assert (abs(np.sort(self.multiplication_table, axis=-1) -np.arange(self.order)[None,:]).max() == 0) except (AssertionError, KeyError, ValueError): raise ValueError('The elements do not form a group.')
[docs] class PointGroup(FiniteGroup): ''' The class for crystallographic point groups. '''
[docs] def group_name(self, notation='international'): if self._group_name is not None and notation=='international': return self._group_name name = geom.get_crystal_class(None, self.elements)[0] self._group_name = name if notation.lower().startswith('scho'): # Schoenflies name = SchoenfliesNotation[name] return name
@property def group_index(self): if self._group_index is None: name = self.group_name() self._group_index = list(SchoenfliesNotation.keys()).index(name) return self._group_index
[docs] @staticmethod def elements_from_hash(hashes, dimension=3): elements = [PGElement(PGElement.decrypt_hash(h, dimension)) for h in hashes] return elements
[docs] class Representation: ''' Helper class for representation reductions. Only characters are stored at the moment. ''' def __init__(self, group, rep=None, chi=None): self.group = group self.rep = rep self.chi = chi @property def rep(self): if self._rep is None: self._rep = self.chi_to_rep(self.chi) return self._rep @rep.setter def rep(self, value): self._rep = value @property def chi(self): if self._chi is None: self._chi = self.rep_to_chi(self.rep) return self._chi @chi.setter def chi(self, value): self._chi = value
[docs] def rep_to_chi(self, rep): chartab = self.group.character_table(True) chi = np.einsum('ni,n->i', chartab, rep) return chi
[docs] def chi_to_rep(self, chi): group = self.group chartab = group.character_table(True) assert len(chi) == chartab.shape[1] nA = np.einsum('ni,i->n', chartab.conj(), chi) / group.order assert (abs(nA - nA.round()) < 1e-9).all() nA = np.rint(nA).astype(int) return nA
def __matmul__(self, other): g1, chi1 = self.group, self.chi g2, chi2 = other.group, other.chi g12 = g1 & g2 chi1_proj = g1.project_chi(chi1, g12) chi2_proj = g2.project_chi(chi2, g12) chi12_proj = chi1_proj * chi2_proj return self.__class__(g12, chi=chi12_proj)