Source code for pyscf.pbc.symm.geom

#!/usr/bin/env python
# Copyright 2020-2023 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Xing Zhang <zhangxing.nju@gmail.com>
#

import numpy as np
from pyscf import __config__
from pyscf import lib
from pyscf.gto import mole
from functools import reduce

SYMPREC = getattr(__config__, 'pbc_symm_space_group_symprec', 1e-6) #this has the unit of length

[docs] def search_point_group_ops(cell, tol=SYMPREC): a = cell.lattice_vectors() G = np.dot(a, a.T) pbc_axis = np.array([1,1,1], dtype=bool) if cell.dimension < 3: pbc_axis[cell.dimension:] = False a_norm = np.sqrt(np.diag(G)) a_angle = np.arccos(G / np.outer(a_norm, a_norm)) tol2 = tol**2 rotations = [] for op in lib.cartesian_prod([[1,0,-1],]*9): W = np.asarray(op, dtype=np.int32).reshape(3,3) G_tilde = reduce(np.dot, (W.T, G, W)) #check change of metric a_tilde_norm = np.sqrt(np.diag(G_tilde)) length_error = np.abs(a_norm - a_tilde_norm) if (length_error > tol).any(): continue tmp = (a_norm + a_tilde_norm) a_tilde_angle = np.arccos(G_tilde / np.outer(a_tilde_norm, a_tilde_norm)) angle_error = np.sin(a_angle - a_tilde_angle) **2 * np.outer(tmp,tmp) / 4 if (angle_error > tol2).any(): continue #check if rotation inverts non-periodic axes if not (W[np.diag(~pbc_axis)] == 1).all(): continue #check if rotation swaps periodic and non-periodic axes pbc_axis2 = np.logical_and.outer(pbc_axis, pbc_axis) if W[~(pbc_axis2 | np.eye(3, dtype=bool))].any(): continue rotations.append(W) rotations = np.asarray(rotations) return rotations
[docs] def search_space_group_ops(cell, rotations=None, tol=SYMPREC): ''' Search for the allowed space group operations for a specific cell. Notes: The current implementation treats the cell with the spins on all atoms flipped as the same as the original cell. If this is not desired, then one can use different names for the two sets of atoms and set their magnetic moment to 0. ''' if rotations is None: rotations = search_point_group_ops(cell, tol=tol) a = cell.lattice_vectors() coords = cell.get_scaled_atom_coords() atmgrp = mole.atom_types(cell._atom, magmom=cell.magmom) atmgrp_spin_inv = {} #spin up and down inverted has_spin = False for atm in atmgrp.keys(): if atm[-2:] == '_u': has_spin = True atmgrp_spin_inv[atm] = atmgrp[atm[:-2]+'_d'] elif atm[-2:] == '_d': has_spin = True atmgrp_spin_inv[atm] = atmgrp[atm[:-2]+'_u'] else: atmgrp_spin_inv[atm] = atmgrp[atm] def test_trans(R, t, spin_inverse=False): for atm, idx in atmgrp.items(): x = coords[idx] xt = np.dot(x, R.T) + t if not spin_inverse: x_xt = np.concatenate((x,xt)) else: x_xt = np.concatenate((coords[atmgrp_spin_inv[atm]],xt)) x_xt = np.mod(x_xt, 1) x_xt = np.round(x_xt, -np.log10(tol).astype(int)) x_xt = np.mod(x_xt, 1) sorted_idx = np.lexsort(x_xt.T) x_xt = x_xt[sorted_idx] diff = np.dot(x_xt[::2] - x_xt[1::2], a) if (np.abs(diff) > tol).any(): return False return True grp_len = [len(v) for v in atmgrp.values()] atm = [k for k in atmgrp.keys() if len(atmgrp[k]) == min(grp_len)][0] x = coords[atmgrp[atm]] x_spin_inv = None if atm[-2:] in ['_u', '_d']: x_spin_inv = coords[atmgrp_spin_inv[atm]] from pyscf.pbc.symm.space_group import SPGElement ops = [] for rot in rotations: w = x - np.dot(x[0], rot.T) if x_spin_inv is not None: w_spin_inv = x_spin_inv - np.dot(x[0], rot.T) w = np.vstack((w, w_spin_inv)) w = np.mod(w, 1) w = np.round(w, -np.log10(tol).astype(int)) w = np.mod(w, 1) w = np.unique(w, axis=0) for trans in w: if test_trans(rot, trans): ops.append(SPGElement(rot, trans)) elif has_spin: if test_trans(rot, trans, True): ops.append(SPGElement(rot, trans)) return ops
[docs] def get_crystal_class(cell, ops=None, tol=SYMPREC): if ops is None: ops = search_space_group_ops(cell, tol=tol) rotations = [] for op in ops: rotations.append(op.rot) rotations = np.unique(np.asarray(rotations), axis=0) maps = {-6 : 0, -4 : 1, -3 : 2, -2 : 3, -1 : 4, 1 : 5, 2 : 6, 3 : 7, 4 : 8, 6 : 9} table = [0,] * 10 for rot in rotations: trace = np.trace(rot) det = np.linalg.det(rot) if trace == 3: assert(det == 1) table[maps[1]] += 1 elif trace == -3: assert(det == -1) table[maps[-1]] += 1 elif trace == 2: assert(det == 1) table[maps[6]] += 1 elif trace == -2: assert(det == -1) table[maps[-6]] += 1 elif trace == 0: if det == 1: table[maps[3]] += 1 elif det == -1: table[maps[-3]] += 1 elif trace == 1: if det == 1: table[maps[4]] += 1 elif det == -1: table[maps[-2]] += 1 elif trace == -1: if det == 1: table[maps[2]] += 1 elif det == -1: table[maps[-4]] += 1 else: raise ValueError("Input rotation matrix is wrong: %s" % rot) from pyscf.pbc.symm.tables import CrystalClass, LaueClass laue_class = None crystal_class = None for k, v in CrystalClass.items(): count = 0 for i in range(10): if table[i] == v[i]: count += 1 if count == 10: crystal_class = k break for k, v in LaueClass.items(): if crystal_class in v: laue_class = k break if crystal_class is None or laue_class is None: raise RuntimeError("Unable to determine crystal class.") return crystal_class, laue_class
if __name__ == "__main__": from pyscf.pbc import gto cell = gto.Cell() cell.atom = """ Cu 1.000000 1.00000 0.0000 O 0.000000 1.00000 0.0000 O 1.000000 2.00000 0.0000 Cu 1.000000 3.00000 0.0000 O 1.000000 4.00000 0.0000 O 2.000000 3.00000 0.0000 Cu 3.000000 3.00000 0.0000 O 4.000000 3.00000 0.0000 O 3.000000 2.00000 0.0000 Cu 3.000000 1.00000 0.0000 O 3.000000 0.00000 0.0000 O 2.000000 1.00000 0.0000 """ cell.a = [[4.0, 0., 0.], [0., 4.0, 0.], [0., 0., 16.0]] cell.dimension = 2 cell.magmom = [1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1] cell.build() ops = search_space_group_ops(cell) for op in ops: print(op) point_group = get_crystal_class(cell, ops=ops)[0] print(point_group)