Source code for pyscf.pbc.mp.kmp2

#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Timothy Berkelbach <tim.berkelbach@gmail.com>
#         James McClain <jdmcclain47@gmail.com>
#         Xing Zhang <zhangxing.nju@gmail.com>
#


'''
kpoint-adapted and spin-adapted MP2
t2[i,j,a,b] = <ij|ab> / D_ij^ab

t2 and eris are never stored in full, only a partial
eri of size (nkpts,nocc,nocc,nvir,nvir)
'''

import numpy as np
from scipy.linalg import block_diag
import h5py

from pyscf import lib
from pyscf.lib import logger, einsum
from pyscf.mp import mp2
from pyscf.pbc.df import df
from pyscf.pbc.lib import kpts_helper
from pyscf.pbc.lib import kpts as libkpts
from pyscf.lib.parameters import LARGE_DENOM
from pyscf import __config__

WITH_T2 = getattr(__config__, 'mp_mp2_with_t2', True)

[docs] def kernel(mp, mo_energy, mo_coeff, verbose=logger.NOTE, with_t2=WITH_T2): """Computes k-point RMP2 energy. Args: mp (KMP2): an instance of KMP2 mo_energy (list): a list of numpy.ndarray. Each array contains MO energies of shape (Nmo,) for one kpt mo_coeff (list): a list of numpy.ndarray. Each array contains MO coefficients of shape (Nao, Nmo) for one kpt verbose (int, optional): level of verbosity. Defaults to logger.NOTE (=3). with_t2 (bool, optional): whether to compute t2 amplitudes. Defaults to WITH_T2 (=True). Returns: KMP2 energy and t2 amplitudes (=None if with_t2 is False) """ cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.new_logger(mp, verbose) mp.dump_flags() nmo = mp.nmo nocc = mp.nocc nvir = nmo - nocc nkpts = mp.nkpts with_df_ints = mp.with_df_ints and isinstance(mp._scf.with_df, df.GDF) mem_avail = mp.max_memory - lib.current_memory()[0] mem_usage = (nkpts * (nocc * nvir)**2) * 16 / 1e6 if with_df_ints: mydf = mp._scf.with_df if mydf.auxcell is None: # Calculate naux based on precomputed GDF integrals naux = mydf.get_naoaux() else: naux = mydf.auxcell.nao_nr() mem_usage += (nkpts**2 * naux * nocc * nvir) * 16 / 1e6 if with_t2: mem_usage += (nkpts**3 * (nocc * nvir)**2) * 16 / 1e6 if mem_usage > mem_avail: raise MemoryError('Insufficient memory! MP2 memory usage %d MB (currently available %d MB)' % (mem_usage, mem_avail)) eia = np.zeros((nocc,nvir)) eijab = np.zeros((nocc,nocc,nvir,nvir)) fao2mo = mp._scf.with_df.ao2mo kconserv = mp.khelper.kconserv oovv_ij = np.zeros((nkpts,nocc,nocc,nvir,nvir), dtype=mo_coeff[0].dtype) mo_e_o = [mo_energy[k][:nocc] for k in range(nkpts)] mo_e_v = [mo_energy[k][nocc:] for k in range(nkpts)] # Get location of non-zero/padded elements in occupied and virtual space nonzero_opadding, nonzero_vpadding = padding_k_idx(mp, kind="split") if with_t2: t2 = np.zeros((nkpts, nkpts, nkpts, nocc, nocc, nvir, nvir), dtype=complex) else: t2 = None # Build 3-index DF tensor Lov if with_df_ints: Lov = _init_mp_df_eris(mp) emp2_ss = emp2_os = 0. for ki in range(nkpts): for kj in range(nkpts): for ka in range(nkpts): kb = kconserv[ki,ka,kj] # (ia|jb) if with_df_ints: oovv_ij[ka] = (1./nkpts) * einsum("Lia,Ljb->iajb", Lov[ki, ka], Lov[kj, kb]).transpose(0,2,1,3) else: orbo_i = mo_coeff[ki][:,:nocc] orbo_j = mo_coeff[kj][:,:nocc] orbv_a = mo_coeff[ka][:,nocc:] orbv_b = mo_coeff[kb][:,nocc:] oovv_ij[ka] = fao2mo((orbo_i,orbv_a,orbo_j,orbv_b), (mp.kpts[ki],mp.kpts[ka],mp.kpts[kj],mp.kpts[kb]), compact=False).reshape(nocc,nvir,nocc,nvir).transpose(0,2,1,3) / nkpts for ka in range(nkpts): kb = kconserv[ki,ka,kj] # Remove zero/padded elements from denominator eia = LARGE_DENOM * np.ones((nocc, nvir), dtype=mo_energy[0].dtype) n0_ovp_ia = np.ix_(nonzero_opadding[ki], nonzero_vpadding[ka]) eia[n0_ovp_ia] = (mo_e_o[ki][:,None] - mo_e_v[ka])[n0_ovp_ia] ejb = LARGE_DENOM * np.ones((nocc, nvir), dtype=mo_energy[0].dtype) n0_ovp_jb = np.ix_(nonzero_opadding[kj], nonzero_vpadding[kb]) ejb[n0_ovp_jb] = (mo_e_o[kj][:,None] - mo_e_v[kb])[n0_ovp_jb] eijab = lib.direct_sum('ia,jb->ijab',eia,ejb) t2_ijab = np.conj(oovv_ij[ka]/eijab) if with_t2: t2[ki, kj, ka] = t2_ijab edi = einsum('ijab,ijab', t2_ijab, oovv_ij[ka]).real * 2 exi = -einsum('ijab,ijba', t2_ijab, oovv_ij[kb]).real emp2_ss += edi*0.5 + exi emp2_os += edi*0.5 log.timer("KMP2", *cput0) emp2_ss /= nkpts emp2_os /= nkpts emp2 = lib.tag_array(emp2_ss+emp2_os, e_corr_ss=emp2_ss, e_corr_os=emp2_os) return emp2, t2
def _init_mp_df_eris(mp): """Compute 3-center electron repulsion integrals, i.e. (L|ov), where `L` denotes DF auxiliary basis functions and `o` and `v` occupied and virtual canonical crystalline orbitals. Note that `o` and `v` contain kpt indices `ko` and `kv`, and the third kpt index `kL` is determined by the conservation of momentum. Arguments: mp (KMP2) -- A KMP2 instance Returns: Lov (numpy.ndarray) -- 3-center DF ints, with shape (nkpts, nkpts, naux, nocc, nvir) """ from pyscf.ao2mo import _ao2mo from pyscf.pbc.lib.kpts_helper import gamma_point log = logger.Logger(mp.stdout, mp.verbose) if mp._scf.with_df._cderi is None: mp._scf.with_df.build() cell = mp._scf.cell if cell.dimension == 2: # 2D ERIs are not positive definite. The 3-index tensors are stored in # two part. One corresponds to the positive part and one corresponds # to the negative part. The negative part is not considered in the # DF-driven CCSD implementation. raise NotImplementedError nocc = mp.nocc nmo = mp.nmo nvir = nmo - nocc nao = cell.nao_nr() mo_coeff = _add_padding(mp, mp.mo_coeff, mp.mo_energy)[0] kpts = mp.kpts nkpts = len(kpts) if gamma_point(kpts): dtype = np.double else: dtype = np.complex128 dtype = np.result_type(dtype, *mo_coeff) Lov = np.empty((nkpts, nkpts), dtype=object) cput0 = (logger.process_clock(), logger.perf_counter()) bra_start = 0 bra_end = nocc ket_start = nmo+nocc ket_end = ket_start + nvir with df.CDERIArray(mp._scf.with_df._cderi) as cderi_array: tao = [] ao_loc = None for ki in range(nkpts): for kj in range(nkpts): Lpq_ao = cderi_array[ki,kj] mo = np.hstack((mo_coeff[ki], mo_coeff[kj])) mo = np.asarray(mo, dtype=dtype, order='F') if dtype == np.double: out = _ao2mo.nr_e2(Lpq_ao, mo, (bra_start, bra_end, ket_start, ket_end), aosym='s2') else: #Note: Lpq.shape[0] != naux if linear dependency is found in auxbasis if Lpq_ao[0].size != nao**2: # aosym = 's2' Lpq_ao = lib.unpack_tril(Lpq_ao).astype(np.complex128) out = _ao2mo.r_e2(Lpq_ao, mo, (bra_start, bra_end, ket_start, ket_end), tao, ao_loc) Lov[ki, kj] = out.reshape(-1, nocc, nvir) log.timer_debug1("transforming DF-MP2 integrals", *cput0) return Lov def _padding_k_idx(nmo, nocc, kind="split"): """A convention used for padding vectors, matrices and tensors in case when occupation numbers depend on the k-point index. Args: nmo (Iterable): k-dependent orbital number; nocc (Iterable): k-dependent occupation numbers; kind (str): either "split" (occupied and virtual spaces are split) or "joint" (occupied and virtual spaces are the joint; Returns: Two lists corresponding to the occupied and virtual spaces for kind="split". Each list contains integer arrays with indexes pointing to actual non-zero entries in the padded vector/matrix/tensor. If kind="joint", a single list of arrays is returned corresponding to the entire MO space. """ if kind not in ("split", "joint"): raise ValueError("The 'kind' argument must be one of 'split', 'joint'") if kind == "split": indexes_o = [] indexes_v = [] else: indexes = [] nocc = np.array(nocc) nmo = np.array(nmo) nvirt = nmo - nocc dense_o = np.amax(nocc) dense_v = np.amax(nvirt) dense_nmo = dense_o + dense_v for k_o, k_nmo in zip(nocc, nmo): k_v = k_nmo - k_o if kind == "split": indexes_o.append(np.arange(k_o)) indexes_v.append(np.arange(dense_v - k_v, dense_v)) else: indexes.append(np.concatenate(( np.arange(k_o), np.arange(dense_nmo - k_v, dense_nmo), ))) if kind == "split": return indexes_o, indexes_v else: return indexes
[docs] def padding_k_idx(mp, kind="split"): """A convention used for padding vectors, matrices and tensors in case when occupation numbers depend on the k-point index. This implementation stores k-dependent Fock and other matrix in dense arrays with additional dimensions corresponding to k-point indexes. In case when the occupation numbers depend on the k-point index (i.e. a metal) or when some k-points have more Bloch basis functions than others the corresponding data structure has to be padded with entries that are not used (fictitious occupied and virtual degrees of freedom). Current convention stores these states at the Fermi level as shown in the following example. +----+--------+--------+--------+ | | k=0 | k=1 | k=2 | | +--------+--------+--------+ | | nocc=2 | nocc=3 | nocc=2 | | | nvir=4 | nvir=3 | nvir=3 | +====+========+========+========+ | v3 | k0v3 | k1v2 | k2v2 | +----+--------+--------+--------+ | v2 | k0v2 | k1v1 | k2v1 | +----+--------+--------+--------+ | v1 | k0v1 | k1v0 | k2v0 | +----+--------+--------+--------+ | v0 | k0v0 | | | +====+========+========+========+ | Fermi level | +====+========+========+========+ | o2 | | k1o2 | | +----+--------+--------+--------+ | o1 | k0o1 | k1o1 | k2o1 | +----+--------+--------+--------+ | o0 | k0o0 | k1o0 | k2o0 | +----+--------+--------+--------+ In the above example, `get_nmo(mp, per_kpoint=True) == (6, 6, 5)`, `get_nocc(mp, per_kpoint) == (2, 3, 2)`. The resulting dense `get_nmo(mp) == 7` and `get_nocc(mp) == 3` correspond to padded dimensions. This function will return the following indexes corresponding to the filled entries of the above table: >>> padding_k_idx(mp, kind="split") ([(0, 1), (0, 1, 2), (0, 1)], [(0, 1, 2, 3), (1, 2, 3), (1, 2, 3)]) >>> padding_k_idx(mp, kind="joint") [(0, 1, 3, 4, 5, 6), (0, 1, 2, 4, 5, 6), (0, 1, 4, 5, 6)] Args: mp (:class:`MP2`): An instantiation of an SCF or post-Hartree-Fock object. kind (str): either "split" (occupied and virtual spaces are split) or "joint" (occupied and virtual spaces are the joint; Returns: Two lists corresponding to the occupied and virtual spaces for kind="split". Each list contains integer arrays with indexes pointing to actual non-zero entries in the padded vector/matrix/tensor. If kind="joint", a single list of arrays is returned corresponding to the entire MO space. """ return _padding_k_idx(mp.get_nmo(per_kpoint=True), mp.get_nocc(per_kpoint=True), kind=kind)
[docs] def padded_mo_energy(mp, mo_energy): """ Pads energies of active MOs. Args: mp (:class:`MP2`): An instantiation of an SCF or post-Hartree-Fock object. mo_energy (ndarray): original non-padded molecular energies; Returns: Padded molecular energies. """ frozen_mask = get_frozen_mask(mp) padding_convention = padding_k_idx(mp, kind="joint") nkpts = mp.nkpts result = np.zeros((nkpts, mp.nmo), dtype=mo_energy[0].dtype) for k in range(nkpts): result[np.ix_([k], padding_convention[k])] = mo_energy[k][frozen_mask[k]] return result
[docs] def padded_mo_coeff(mp, mo_coeff): """ Pads coefficients of active MOs. Args: mp (:class:`MP2`): An instantiation of an SCF or post-Hartree-Fock object. mo_coeff (ndarray): original non-padded molecular coefficients; Returns: Padded molecular coefficients. """ frozen_mask = get_frozen_mask(mp) padding_convention = padding_k_idx(mp, kind="joint") nkpts = mp.nkpts result = np.zeros((nkpts, mo_coeff[0].shape[0], mp.nmo), dtype=mo_coeff[0].dtype) for k in range(nkpts): result[np.ix_([k], np.arange(result.shape[1]), padding_convention[k])] = mo_coeff[k][:, frozen_mask[k]] return result
def _frozen_sanity_check(frozen, mo_occ, kpt_idx): '''Performs a few sanity checks on the frozen array and mo_occ. Specific tests include checking for duplicates within the frozen array. Args: frozen (array_like of int): The orbital indices that will be frozen. mo_occ (:obj:`ndarray` of int): The occupation number for each orbital resulting from a mean-field-like calculation. kpt_idx (int): The k-point that `mo_occ` and `frozen` belong to. ''' frozen = np.array(frozen) nocc = np.count_nonzero(mo_occ > 0) assert nocc, 'No occupied orbitals?\n\nnocc = %s\nmo_occ = %s' % (nocc, mo_occ) all_frozen_unique = (len(frozen) - len(np.unique(frozen))) == 0 if not all_frozen_unique: raise RuntimeError('Frozen orbital list contains duplicates!\n\nkpt_idx %s\n' 'frozen %s' % (kpt_idx, frozen)) if len(frozen) > 0 and np.max(frozen) > len(mo_occ) - 1: raise RuntimeError('Freezing orbital not in MO list!\n\nkpt_idx %s\n' 'frozen %s\nmax orbital idx %s' % (kpt_idx, frozen, len(mo_occ) - 1))
[docs] def get_nocc(mp, per_kpoint=False): '''Number of occupied orbitals for k-point calculations. Number of occupied orbitals for use in a calculation with k-points, taking into account frozen orbitals. Args: mp (:class:`MP2`): An instantiation of an SCF or post-Hartree-Fock object. per_kpoint (bool, optional): True returns the number of occupied orbitals at each k-point. False gives the max of this list. Returns: nocc (int, list of int): Number of occupied orbitals. For return type, see description of arg `per_kpoint`. ''' for i, moocc in enumerate(mp.mo_occ): if np.any(moocc % 1 != 0): raise RuntimeError("Fractional occupation numbers encountered @ kp={:d}: {}. This may have been caused by " "smearing of occupation numbers in the mean-field calculation. If so, consider " "executing mf.smearing_method = False; mf.mo_occ = mf.get_occ() prior to calling " "this".format(i, moocc)) if mp._nocc is not None: return mp._nocc elif mp.frozen is None: nocc = [np.count_nonzero(mp.mo_occ[ikpt]) for ikpt in range(mp.nkpts)] elif isinstance(mp.frozen, (int, np.integer)): nocc = [(np.count_nonzero(mp.mo_occ[ikpt]) - mp.frozen) for ikpt in range(mp.nkpts)] elif isinstance(mp.frozen[0], (int, np.integer)): [_frozen_sanity_check(mp.frozen, mp.mo_occ[ikpt], ikpt) for ikpt in range(mp.nkpts)] nocc = [] for ikpt in range(mp.nkpts): max_occ_idx = np.max(np.where(mp.mo_occ[ikpt] > 0)) frozen_nocc = np.sum(np.array(mp.frozen) <= max_occ_idx) nocc.append(np.count_nonzero(mp.mo_occ[ikpt]) - frozen_nocc) elif isinstance(mp.frozen[0], (list, np.ndarray)): nkpts = len(mp.frozen) if nkpts != mp.nkpts: raise RuntimeError('Frozen list has a different number of k-points (length) than passed in mean-field/' 'correlated calculation. \n\nCalculation nkpts = %d, frozen list = %s ' '(length = %d)' % (mp.nkpts, mp.frozen, nkpts)) [_frozen_sanity_check(frozen, mo_occ, ikpt) for ikpt, frozen, mo_occ in zip(range(nkpts), mp.frozen, mp.mo_occ)] nocc = [] for ikpt, frozen in enumerate(mp.frozen): max_occ_idx = np.max(np.where(mp.mo_occ[ikpt] > 0)) frozen_nocc = np.sum(np.array(frozen) <= max_occ_idx) nocc.append(np.count_nonzero(mp.mo_occ[ikpt]) - frozen_nocc) else: raise NotImplementedError assert any(np.array(nocc) > 0), ('Must have occupied orbitals! \n\nnocc %s\nfrozen %s\nmo_occ %s' % (nocc, mp.frozen, mp.mo_occ)) if not per_kpoint: nocc = np.amax(nocc) return nocc
[docs] def get_nmo(mp, per_kpoint=False): '''Number of orbitals for k-point calculations. Number of orbitals for use in a calculation with k-points, taking into account frozen orbitals. Note: If `per_kpoint` is False, then the number of orbitals here is equal to max(nocc) + max(nvir), where each max is done over all k-points. Otherwise the number of orbitals is returned as a list of number of orbitals at each k-point. Args: mp (:class:`MP2`): An instantiation of an SCF or post-Hartree-Fock object. per_kpoint (bool, optional): True returns the number of orbitals at each k-point. For a description of False, see Note. Returns: nmo (int, list of int): Number of orbitals. For return type, see description of arg `per_kpoint`. ''' if mp._nmo is not None: return mp._nmo if mp.frozen is None: nmo = [len(mp.mo_occ[ikpt]) for ikpt in range(mp.nkpts)] elif isinstance(mp.frozen, (int, np.integer)): nmo = [len(mp.mo_occ[ikpt]) - mp.frozen for ikpt in range(mp.nkpts)] elif isinstance(mp.frozen[0], (int, np.integer)): [_frozen_sanity_check(mp.frozen, mp.mo_occ[ikpt], ikpt) for ikpt in range(mp.nkpts)] nmo = [len(mp.mo_occ[ikpt]) - len(mp.frozen) for ikpt in range(mp.nkpts)] elif isinstance(mp.frozen, (list, np.ndarray)): nkpts = len(mp.frozen) if nkpts != mp.nkpts: raise RuntimeError('Frozen list has a different number of k-points (length) than passed in mean-field/' 'correlated calculation. \n\nCalculation nkpts = %d, frozen list = %s ' '(length = %d)' % (mp.nkpts, mp.frozen, nkpts)) [_frozen_sanity_check(fro, mo_occ, ikpt) for ikpt, fro, mo_occ in zip(range(nkpts), mp.frozen, mp.mo_occ)] nmo = [len(mp.mo_occ[ikpt]) - len(mp.frozen[ikpt]) for ikpt in range(nkpts)] else: raise NotImplementedError assert all(np.array(nmo) > 0), ('Must have a positive number of orbitals!\n\nnmo %s\nfrozen %s\nmo_occ %s' % (nmo, mp.frozen, mp.mo_occ)) if not per_kpoint: # Depending on whether there are more occupied bands, we want to make sure that # nmo has enough room for max(nocc) + max(nvir) number of orbitals for occupied # and virtual space nocc = mp.get_nocc(per_kpoint=True) nmo = np.max(nocc) + np.max(np.array(nmo) - np.array(nocc)) return nmo
[docs] def get_frozen_mask(mp): '''Boolean mask for orbitals in k-point post-HF method. Creates a boolean mask to remove frozen orbitals and keep other orbitals for post-HF calculations. Args: mp (:class:`MP2`): An instantiation of an SCF or post-Hartree-Fock object. Returns: moidx (list of :obj:`ndarray` of `bool`): Boolean mask of orbitals to include. ''' moidx = [np.ones(x.size, dtype=bool) for x in mp.mo_occ] if mp.frozen is None: pass elif isinstance(mp.frozen, (int, np.integer)): for idx in moidx: idx[:mp.frozen] = False elif isinstance(mp.frozen[0], (int, np.integer)): frozen = list(mp.frozen) for idx in moidx: idx[frozen] = False elif isinstance(mp.frozen[0], (list, np.ndarray)): nkpts = len(mp.frozen) if nkpts != mp.nkpts: raise RuntimeError('Frozen list has a different number of k-points (length) than passed in mean-field/' 'correlated calculation. \n\nCalculation nkpts = %d, frozen list = %s ' '(length = %d)' % (mp.nkpts, mp.frozen, nkpts)) [_frozen_sanity_check(fro, mo_occ, ikpt) for ikpt, fro, mo_occ in zip(range(nkpts), mp.frozen, mp.mo_occ)] for ikpt, kpt_occ in enumerate(moidx): kpt_occ[mp.frozen[ikpt]] = False else: raise NotImplementedError return moidx
def _add_padding(mp, mo_coeff, mo_energy): nmo = mp.nmo # Check if these are padded mo coefficients and energies and/or if some orbitals are frozen. if (mp.frozen is not None) or (not np.all([x.shape[1] == nmo for x in mo_coeff])): mo_coeff = padded_mo_coeff(mp, mo_coeff) if (mp.frozen is not None) or (not np.all([x.shape[0] == nmo for x in mo_energy])): mo_energy = padded_mo_energy(mp, mo_energy) return mo_coeff, mo_energy
[docs] def make_rdm1(mp, t2=None, kind="compact"): r""" Spin-traced one-particle density matrix in the MO basis representation. The occupied-virtual orbital response is not included. dm1[p,q] = <q_alpha^\dagger p_alpha> + <q_beta^\dagger p_beta> The convention of 1-pdm is based on McWeeney's book, Eq (5.4.20). The contraction between 1-particle Hamiltonian and rdm1 is E = einsum('pq,qp', h1, rdm1) Args: mp (KMP2): a KMP2 kernel object; t2 (ndarray): a t2 MP2 tensor; kind (str): either 'compact' or 'padded' - defines behavior for k-dependent MO basis sizes; Returns: A k-dependent single-particle density matrix. """ if kind not in ("compact", "padded"): raise ValueError("The 'kind' argument should be either 'compact' or 'padded'") d_imds = _gamma1_intermediates(mp, t2=t2) result = [] padding_idxs = padding_k_idx(mp, kind="joint") for (oo, vv), idxs in zip(zip(*d_imds), padding_idxs): oo += np.eye(*oo.shape) d = block_diag(oo, vv) d += d.conj().T if kind == "padded": result.append(d) else: result.append(d[np.ix_(idxs, idxs)]) return result
[docs] def make_rdm2(mp, t2=None, kind="compact"): r''' Spin-traced two-particle density matrix in MO basis .. math:: dm2[p,q,r,s] = \sum_{\sigma,\tau} <p_\sigma^\dagger r_\tau^\dagger s_\tau q_\sigma> Note the contraction between ERIs (in Chemist's notation) and rdm2 is E = einsum('pqrs,pqrs', eri, rdm2) ''' if kind not in ("compact", "padded"): raise ValueError("The 'kind' argument should be either 'compact' or 'padded'") if t2 is None: t2 = mp.t2 dm1 = mp.make_rdm1(t2, "padded") nmo = mp.nmo nocc = mp.nocc nkpts = mp.nkpts dtype = t2.dtype dm2 = np.zeros((nkpts,nkpts,nkpts,nmo,nmo,nmo,nmo),dtype=dtype) for ki in range(nkpts): for kj in range(nkpts): for ka in range(nkpts): kb = mp.khelper.kconserv[ki, ka, kj] dovov = t2[ki, kj, ka].transpose(0,2,1,3) * 2 - t2[kj, ki, ka].transpose(1,2,0,3) dovov *= 2 dm2[ki,ka,kj,:nocc,nocc:,:nocc,nocc:] = dovov dm2[ka,ki,kb,nocc:,:nocc,nocc:,:nocc] = dovov.transpose(1,0,3,2).conj() occidx = padding_k_idx(mp, kind="split")[0] for ki in range(nkpts): for i in occidx[ki]: dm1[ki][i,i] -= 2 for ki in range(nkpts): for kp in range(nkpts): for i in occidx[ki]: dm2[ki,ki,kp,i,i,:,:] += dm1[kp].T * 2 dm2[kp,kp,ki,:,:,i,i] += dm1[kp].T * 2 dm2[kp,ki,ki,:,i,i,:] -= dm1[kp].T dm2[ki,kp,kp,i,:,:,i] -= dm1[kp] for ki in range(nkpts): for kj in range(nkpts): for i in occidx[ki]: for j in occidx[kj]: dm2[ki,ki,kj,i,i,j,j] += 4 dm2[ki,kj,kj,i,j,j,i] -= 2 if kind == "padded": return dm2 else: idx = padding_k_idx(mp, kind="joint") result = [] for kp in range(nkpts): for kq in range(nkpts): for kr in range(nkpts): ks = mp.khelper.kconserv[kp, kq, kr] result.append(dm2[kp,kq,kr][np.ix_(idx[kp],idx[kq],idx[kr],idx[ks])]) return result
def _gamma1_intermediates(mp, t2=None): # Memory optimization should be here if t2 is None: t2 = mp.t2 if t2 is None: raise NotImplementedError("Run kmp2.kernel with `with_t2=True`") nmo = mp.nmo nocc = mp.nocc nvir = nmo - nocc nkpts = mp.nkpts dtype = t2.dtype dm1occ = np.zeros((nkpts, nocc, nocc), dtype=dtype) dm1vir = np.zeros((nkpts, nvir, nvir), dtype=dtype) for ki in range(nkpts): for kj in range(nkpts): for ka in range(nkpts): kb = mp.khelper.kconserv[ki, ka, kj] dm1vir[kb] += einsum('ijax,ijay->yx', t2[ki][kj][ka].conj(), t2[ki][kj][ka]) * 2 -\ einsum('ijax,ijya->yx', t2[ki][kj][ka].conj(), t2[ki][kj][kb]) dm1occ[kj] += einsum('ixab,iyab->xy', t2[ki][kj][ka].conj(), t2[ki][kj][ka]) * 2 -\ einsum('ixab,iyba->xy', t2[ki][kj][ka].conj(), t2[ki][kj][kb]) return -dm1occ, dm1vir
[docs] class KMP2(mp2.MP2): _keys = {'kpts', 'nkpts', 'khelper'} def __init__(self, mf, frozen=None, mo_coeff=None, mo_occ=None): if mo_coeff is None: mo_coeff = mf.mo_coeff if mo_occ is None: mo_occ = mf.mo_occ self.mol = mf.mol self._scf = mf self.verbose = self.mol.verbose self.stdout = self.mol.stdout self.max_memory = mf.max_memory self.frozen = frozen if isinstance(self._scf.with_df, df.GDF): self.with_df_ints = True else: self.with_df_ints = False ################################################## # don't modify the following attributes, they are not input options self.kpts = mf.kpts if isinstance(self.kpts, libkpts.KPoints): self.nkpts = self.kpts.nkpts self.khelper = kpts_helper.KptsHelper(mf.cell, mf.kpts.kpts) #padding has to be after transformation self.mo_energy = self.kpts.transform_mo_energy(mf.mo_energy) self.mo_coeff = self.kpts.transform_mo_coeff(mo_coeff) self.mo_occ = self.kpts.transform_mo_occ(mo_occ) else: self.nkpts = len(self.kpts) self.khelper = kpts_helper.KptsHelper(mf.cell, mf.kpts) self.mo_energy = mf.mo_energy self.mo_coeff = mo_coeff self.mo_occ = mo_occ self._nocc = None self._nmo = None self.e_hf = None self.e_corr = None self.e_corr_ss = None self.e_corr_os = None self.t2 = None get_nocc = get_nocc get_nmo = get_nmo get_frozen_mask = get_frozen_mask make_rdm1 = make_rdm1 make_rdm2 = make_rdm2
[docs] def dump_flags(self): logger.info(self, "") logger.info(self, "******** %s ********", self.__class__) logger.info(self, "nkpts = %d", self.nkpts) logger.info(self, "nocc = %d", self.nocc) logger.info(self, "nmo = %d", self.nmo) logger.info(self, "with_df_ints = %s", self.with_df_ints) if self.frozen is not None: logger.info(self, "frozen orbitals = %s", self.frozen) logger.info( self, "max_memory %d MB (current use %d MB)", self.max_memory, lib.current_memory()[0], ) return self
[docs] def kernel(self, mo_energy=None, mo_coeff=None, with_t2=WITH_T2): if mo_energy is None: mo_energy = self.mo_energy if mo_coeff is None: mo_coeff = self.mo_coeff if mo_energy is None or mo_coeff is None: log = logger.Logger(self.stdout, self.verbose) log.warn('mo_coeff, mo_energy are not given.\n' 'You may need to call mf.kernel() to generate them.') raise RuntimeError self.e_hf = self.get_e_hf(mo_coeff=mo_coeff) mo_coeff, mo_energy = _add_padding(self, mo_coeff, mo_energy) self.e_corr, self.t2 = \ kernel(self, mo_energy, mo_coeff, verbose=self.verbose, with_t2=with_t2) self.e_corr_ss = getattr(self.e_corr, 'e_corr_ss', 0) self.e_corr_os = getattr(self.e_corr, 'e_corr_os', 0) self.e_corr = float(self.e_corr) self._finalize() return self.e_corr, self.t2
to_gpu = lib.to_gpu
KRMP2 = KMP2 from pyscf.pbc import scf scf.khf.KRHF.MP2 = lib.class_as_method(KRMP2) scf.kghf.KGHF.MP2 = None scf.krohf.KROHF.MP2 = None if __name__ == '__main__': from pyscf.pbc import gto, scf, mp cell = gto.Cell() cell.atom=''' C 0.000000000000 0.000000000000 0.000000000000 C 1.685068664391 1.685068664391 1.685068664391 ''' cell.basis = 'gth-szv' cell.pseudo = 'gth-pade' cell.a = ''' 0.000000000, 3.370137329, 3.370137329 3.370137329, 0.000000000, 3.370137329 3.370137329, 3.370137329, 0.000000000''' cell.unit = 'B' cell.verbose = 5 cell.build() # Running HF and MP2 with 1x1x2 Monkhorst-Pack k-point mesh kmf = scf.KRHF(cell, kpts=cell.make_kpts([1,1,2]), exxdiv=None) ehf = kmf.kernel() mymp = mp.KMP2(kmf) emp2, t2 = mymp.kernel() print(emp2 - -0.204721432828996)