Source code for pyscf.pbc.grad.krks

#!/usr/bin/env python
# Copyright 2020-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Yang Gao <younggao1994@gmail.com>

#
'''
Non-relativistic analytical nuclear gradients for restricted Kohn Sham with kpoints sampling
'''

from pyscf.pbc.grad import krhf as rhf_grad
from pyscf.grad import rks as rks_grad
import numpy as np
from pyscf.dft import numint
from pyscf import lib
from pyscf.lib import logger


[docs] def get_veff(ks_grad, dm=None, kpts=None): mf = ks_grad.base cell = ks_grad.cell if dm is None: dm = mf.make_rdm1() if kpts is None: kpts = mf.kpts t0 = (logger.process_clock(), logger.perf_counter()) ni = mf._numint if ks_grad.grids is not None: grids = ks_grad.grids else: grids = mf.grids if grids.coords is None: grids.build(with_non0tab=True) mem_now = lib.current_memory()[0] max_memory = max(2000, ks_grad.max_memory*.9-mem_now) if ks_grad.grid_response: raise NotImplementedError else: vxc = get_vxc(ni, cell, grids, mf.xc, dm, kpts, max_memory=max_memory, verbose=ks_grad.verbose) t0 = logger.timer(ks_grad, 'vxc', *t0) if not ni.libxc.is_hybrid_xc(mf.xc): vj = ks_grad.get_j(dm, kpts) vxc += vj else: omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, spin=cell.spin) vj, vk = ks_grad.get_jk(dm, kpts) vk *= hyb if omega != 0: with cell.with_range_coulomb(omega): vk += ks_grad.get_k(dm, kpts) * (alpha - hyb) vxc += vj - vk * .5 return vxc
[docs] def get_vxc(ni, cell, grids, xc_code, dms, kpts, kpts_band=None, relativity=0, hermi=1, max_memory=2000, verbose=None): xctype = ni._xc_type(xc_code) make_rho, nset, nao = ni._gen_rho_evaluator(cell, dms, hermi) ao_loc = cell.ao_loc_nr() nkpts = len(kpts) vmat = np.zeros((3,nset,nkpts,nao,nao), dtype=dms.dtype) if xctype == 'LDA': ao_deriv = 1 for ao_k1, ao_k2, mask, weight, coords \ in ni.block_loop(cell, grids, nao, ao_deriv, kpts, kpts_band, max_memory): ao_k1 = np.asarray(ao_k1) ao_k2 = np.asarray(ao_k2) for i in range(nset): rho = make_rho(i, ao_k2[:,0], mask, xctype) vxc = ni.eval_xc(xc_code, rho, 0, relativity, 1)[1] vrho = vxc[0] aow = np.einsum('xpi,p->xpi', ao_k1[:,0], weight*vrho) for kn in range(nkpts): rks_grad._d1_dot_(vmat[:,i,kn], cell, ao_k1[kn,1:4], aow[kn], mask, ao_loc, True) rho = vrho = aow = None elif xctype=='GGA': ao_deriv = 2 for ao_k1, ao_k2, mask, weight, coords \ in ni.block_loop(cell, grids, nao, ao_deriv, kpts, kpts_band, max_memory): ao_k1 = np.asarray(ao_k1) ao_k2 = np.asarray(ao_k2) for i in range(nset): rho = make_rho(i, ao_k2[:,:4], mask, xctype) vxc = ni.eval_xc(xc_code, rho, 0, relativity, 1, verbose=verbose)[1] wv = numint._rks_gga_wv0(rho, vxc, weight) for kn in range(nkpts): rks_grad._gga_grad_sum_(vmat[:,i,kn], cell, ao_k1[kn], wv, mask, ao_loc) rho = vxc = wv = None elif xctype=='NLC': raise NotImplementedError("NLC") else: raise NotImplementedError("metaGGA") if nset ==1 : return -vmat[:,0] else: return -vmat
[docs] class Gradients(rhf_grad.Gradients): _keys = {'grid_response', 'grids'} def __init__(self, mf): rhf_grad.Gradients.__init__(self, mf) self.grids = None self.grid_response = False
[docs] def dump_flags(self, verbose=None): rhf_grad.Gradients.dump_flags(self, verbose) logger.info(self, 'grid_response = %s', self.grid_response) return self
get_veff = get_veff
if __name__=='__main__': from pyscf.pbc import dft, gto, scf cell = gto.Cell() cell.atom = [['He', [0.0, 0.0, 0.0]], ['He', [1, 1.1, 1.2]]] cell.basis = 'gth-dzv' cell.a = np.eye(3) * 3 #cell.mesh = [19,19,19] cell.unit='bohr' cell.pseudo='gth-pade' cell.verbose=5 cell.build() nmp = [1,1,5] kpts = cell.make_kpts(nmp) kmf = dft.KRKS(cell, kpts) kmf.exxdiv = None kmf.xc = 'b3lyp' kmf.kernel() mygrad = Gradients(kmf) ana = mygrad.kernel() disp = 1e-5 cell1 = gto.Cell() cell1.atom = [['He', [0.0, 0.0, 0.0]], ['He', [1, 1.1, 1.2+disp/2.]]] cell1.basis = 'gth-dzv' cell1.a = np.eye(3) * 3 #cell1.mesh = [19,19,19] cell1.unit='bohr' cell1.pseudo='gth-pade' cell1.verbose=1 cell1.build() cell2 = gto.Cell() cell2.atom = [['He', [0.0, 0.0, 0.0]], ['He', [1, 1.1, 1.2-disp/2.]]] cell2.basis = 'gth-dzv' cell2.a = np.eye(3) * 3 #cell2.mesh = [19,19,19] cell2.unit='bohr' cell2.pseudo='gth-pade' cell2.verbose=1 cell2.build() kmf1 = dft.KRKS(cell1, kpts) kmf1.exxdiv = None kmf1.xc = 'b3lyp' ep = kmf1.kernel() kmf2 = dft.KRKS(cell2, kpts) kmf2.exxdiv = None kmf2.xc = 'b3lyp' em = kmf2.kernel() fin = (ep-em) / disp print(fin, ana)