Source code for pyscf.pbc.dft.krks

#!/usr/bin/env python
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Timothy Berkelbach <tim.berkelbach@gmail.com>
#          Qiming Sun <osirpt.sun@gmail.com>
#

'''
Non-relativistic Restricted Kohn-Sham for periodic systems with k-point sampling

See Also:
    pyscf.pbc.dft.rks.py : Non-relativistic Restricted Kohn-Sham for periodic
                           systems at a single k-point
'''


import numpy as np
from pyscf import lib
from pyscf.lib import logger
from pyscf.pbc.scf import khf
from pyscf.pbc.dft import gen_grid
from pyscf.pbc.dft import rks
from pyscf.pbc.dft import multigrid
from pyscf import __config__


[docs] def get_veff(ks, cell=None, dm=None, dm_last=0, vhf_last=0, hermi=1, kpts=None, kpts_band=None): '''Coulomb + XC functional .. note:: This is a replica of pyscf.dft.rks.get_veff with kpts added. This function will change the ks object. Args: ks : an instance of :class:`RKS` XC functional are controlled by ks.xc attribute. Attribute ks.grids might be initialized. dm : ndarray or list of ndarrays A density matrix or a list of density matrices Returns: Veff : (nkpts, nao, nao) or (*, nkpts, nao, nao) ndarray Veff = J + Vxc. ''' if cell is None: cell = ks.cell if dm is None: dm = ks.make_rdm1() if kpts is None: kpts = ks.kpts t0 = (logger.process_clock(), logger.perf_counter()) ni = ks._numint hybrid = ni.libxc.is_hybrid_xc(ks.xc) if not hybrid and isinstance(ks.with_df, multigrid.MultiGridFFTDF): if ks.nlc or ni.libxc.is_nlc(ks.xc): raise NotImplementedError(f'MultiGrid for NLC functional {ks.xc} + {ks.nlc}') n, exc, vxc = multigrid.nr_rks(ks.with_df, ks.xc, dm, hermi, kpts, kpts_band, with_j=True, return_j=False) logger.debug(ks, 'nelec by numeric integration = %s', n) t0 = logger.timer(ks, 'vxc', *t0) return vxc # ndim = 3 : dm.shape = (nkpts, nao, nao) ground_state = (isinstance(dm, np.ndarray) and dm.ndim == 3 and kpts_band is None) ks.initialize_grids(cell, dm, kpts, ground_state) if hermi == 2: # because rho = 0 n, exc, vxc = 0, 0, 0 else: max_memory = ks.max_memory - lib.current_memory()[0] n, exc, vxc = ni.nr_rks(cell, ks.grids, ks.xc, dm, 0, hermi, kpts, kpts_band, max_memory=max_memory) logger.debug(ks, 'nelec by numeric integration = %s', n) if ks.nlc or ni.libxc.is_nlc(ks.xc): if ni.libxc.is_nlc(ks.xc): xc = ks.xc else: assert ni.libxc.is_nlc(ks.nlc) xc = ks.nlc n, enlc, vnlc = ni.nr_nlc_vxc(cell, ks.nlcgrids, xc, dm, 0, hermi, kpts, max_memory=max_memory) exc += enlc vxc += vnlc logger.debug(ks, 'nelec with nlc grids = %s', n) t0 = logger.timer(ks, 'vxc', *t0) nkpts = len(kpts) weight = 1. / nkpts if not hybrid: vj = ks.get_j(cell, dm, hermi, kpts, kpts_band) vxc += vj else: omega, alpha, hyb = ni.rsh_and_hybrid_coeff(ks.xc, spin=cell.spin) vj, vk = ks.get_jk(cell, dm, hermi, kpts, kpts_band) vk *= hyb if omega != 0: vklr = ks.get_k(cell, dm, hermi, kpts, kpts_band, omega=omega) vklr *= (alpha - hyb) vk += vklr vxc += vj - vk * .5 if ground_state: exc -= np.einsum('Kij,Kji', dm, vk).real * .5 * .5 * weight if ground_state: ecoul = np.einsum('Kij,Kji', dm, vj).real * .5 * weight else: ecoul = None vxc = lib.tag_array(vxc, ecoul=ecoul, exc=exc, vj=None, vk=None) return vxc
[docs] @lib.with_doc(khf.get_rho.__doc__) def get_rho(mf, dm=None, grids=None, kpts=None): if dm is None: dm = mf.make_rdm1() if grids is None: grids = mf.grids if kpts is None: kpts = mf.kpts if dm[0].ndim == 3: # the KUKS density matrix dm = dm[0] + dm[1] if isinstance(mf.with_df, multigrid.MultiGridFFTDF): rho = mf.with_df.get_rho(dm, kpts) else: rho = mf._numint.get_rho(mf.cell, dm, grids, kpts, mf.max_memory) return rho
[docs] def energy_elec(mf, dm_kpts=None, h1e_kpts=None, vhf=None): if h1e_kpts is None: h1e_kpts = mf.get_hcore(mf.cell, mf.kpts) if dm_kpts is None: dm_kpts = mf.make_rdm1() if vhf is None or getattr(vhf, 'ecoul', None) is None: vhf = mf.get_veff(mf.cell, dm_kpts) weight = 1./len(h1e_kpts) e1 = weight * np.einsum('kij,kji', h1e_kpts, dm_kpts) ecoul = vhf.ecoul tot_e = e1 + ecoul + vhf.exc mf.scf_summary['e1'] = e1.real mf.scf_summary['coul'] = ecoul.real mf.scf_summary['exc'] = vhf.exc.real logger.debug(mf, 'E1 = %s Ecoul = %s Exc = %s', e1, ecoul, vhf.exc) if khf.CHECK_COULOMB_IMAG and abs(ecoul.imag > mf.cell.precision*10): logger.warn(mf, "Coulomb energy has imaginary part %s. " "Coulomb integrals (e-e, e-N) may not converge !", ecoul.imag) return tot_e.real, vhf.ecoul + vhf.exc
[docs] class KRKS(rks.KohnShamDFT, khf.KRHF): '''RKS class adapted for PBCs with k-point sampling. ''' get_veff = get_veff energy_elec = energy_elec get_rho = get_rho def __init__(self, cell, kpts=np.zeros((1,3)), xc='LDA,VWN', exxdiv=getattr(__config__, 'pbc_scf_SCF_exxdiv', 'ewald')): khf.KRHF.__init__(self, cell, kpts, exxdiv=exxdiv) rks.KohnShamDFT.__init__(self, xc)
[docs] def dump_flags(self, verbose=None): khf.KRHF.dump_flags(self, verbose) rks.KohnShamDFT.dump_flags(self, verbose) return self
[docs] def nuc_grad_method(self): from pyscf.pbc.grad import krks return krks.Gradients(self)
[docs] def to_hf(self): '''Convert to KRHF object.''' from pyscf.pbc import scf return self._transfer_attrs_(scf.KRHF(self.cell, self.kpts))
if __name__ == '__main__': from pyscf.pbc import gto cell = gto.Cell() cell.unit = 'A' cell.atom = 'C 0., 0., 0.; C 0.8917, 0.8917, 0.8917' cell.a = '''0. 1.7834 1.7834 1.7834 0. 1.7834 1.7834 1.7834 0. ''' cell.basis = 'gth-szv' cell.pseudo = 'gth-pade' cell.verbose = 7 cell.output = '/dev/null' cell.build() mf = KRKS(cell, cell.make_kpts([2,1,1])) print(mf.kernel())