Source code for pyscf.pbc.dft.gks

#!/usr/bin/env python
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Chia-Nan Yeh <yehcanon@gmail.com>
#

'''
Generalized collinear Kohn-Sham in the spin-orbital basis for periodic systems at a single k-point

See Also:
    pyscf.pbc.dft.kgks.py : General spin-orbital Kohn-Sham for periodic
                            systems with k-point sampling
'''


import numpy
import scipy.linalg
import pyscf.dft
from pyscf import lib
from pyscf.pbc.scf import ghf as pbcghf
from pyscf.lib import logger
from pyscf.pbc.dft import gen_grid
from pyscf.pbc.dft import rks
from pyscf.pbc.dft import multigrid
from pyscf.pbc.dft.numint2c import NumInt2C
from pyscf.dft import gks as mol_ks
from pyscf import __config__


[docs] def get_veff(ks, cell=None, dm=None, dm_last=0, vhf_last=0, hermi=1, kpt=None, kpts_band=None): '''Coulomb + XC functional for GKS.''' if cell is None: cell = ks.cell if dm is None: dm = ks.make_rdm1() if kpt is None: kpt = ks.kpt t0 = (logger.process_clock(), logger.perf_counter()) ni = ks._numint if ks.do_nlc(): raise NotImplementedError(f'NLC functional {ks.xc} + {ks.nlc}') hybrid = ni.libxc.is_hybrid_xc(ks.xc) # TODO GKS with hybrid functional if hybrid: raise NotImplementedError # TODO GKS with multigrid method if isinstance(ks.with_df, multigrid.MultiGridFFTDF): raise NotImplementedError # ndim = 2, dm.shape = (2*nao, 2*nao) ground_state = (dm.ndim == 2 and kpts_band is None) ks.initialize_grids(cell, dm, kpt, ground_state) # TODO: support non-symmetric density matrix assert (hermi == 1) dm = numpy.asarray(dm) # ndim = 2, dm.shape = (2*nao, 2*nao) ground_state = (dm.ndim == 2 and kpts_band is None) # vxc = (vxc_aa, vxc_bb). vxc_ab is neglected in collinear DFT. max_memory = ks.max_memory - lib.current_memory()[0] ni = ks._numint n, exc, vxc = ni.get_vxc(cell, ks.grids, ks.xc, dm, hermi=hermi, kpt=kpt, kpts_band=kpts_band, max_memory=max_memory) logger.info(ks, 'nelec by numeric integration = %s', n) t0 = logger.timer(ks, 'vxc', *t0) if not hybrid: vj = ks.get_j(cell, dm, hermi, kpt, kpts_band) vxc += vj else: omega, alpha, hyb = ks._numint.rsh_and_hybrid_coeff(ks.xc, spin=cell.spin) vj, vk = ks.get_jk(cell, dm, hermi, kpt, kpts_band) vk *= hyb if omega != 0: vklr = ks.get_k(cell, dm, hermi, kpt, kpts_band, omega=omega) vklr *= (alpha - hyb) vk += vklr vxc += vj - vk if ground_state: exc -= numpy.einsum('ij,ji', dm, vk).real * .5 if ground_state: ecoul = numpy.einsum('ij,ji', dm, vj).real * .5 else: ecoul = None vxc = lib.tag_array(vxc, ecoul=ecoul, exc=exc, vj=None, vk=None) return vxc
[docs] class GKS(rks.KohnShamDFT, pbcghf.GHF): '''GKS class adapted for PBCs at a single k-point. This is a literal duplication of the molecular GKS class with some `mol` variables replaced by `cell`. ''' collinear = mol_ks.GKS.collinear spin_samples = mol_ks.GKS.spin_samples get_veff = get_veff energy_elec = mol_ks.energy_elec def __init__(self, cell, kpt=numpy.zeros(3), xc='LDA,VWN', exxdiv=getattr(__config__, 'pbc_scf_SCF_exxdiv', 'ewald')): pbcghf.GHF.__init__(self, cell, kpt, exxdiv=exxdiv) rks.KohnShamDFT.__init__(self, xc) self._numint = NumInt2C()
[docs] def dump_flags(self, verbose=None): pbcghf.GHF.dump_flags(self, verbose) rks.KohnShamDFT.dump_flags(self, verbose) return self
[docs] def x2c1e(self): '''Adds spin-orbit coupling effects to H0 through the x2c1e approximation''' from pyscf.pbc.x2c.x2c1e import x2c1e_gscf return x2c1e_gscf(self)
x2c = x2c1e
[docs] def stability(self): raise NotImplementedError
[docs] def nuc_grad_method(self): raise NotImplementedError
[docs] def to_hf(self): '''Convert to GHF object.''' from pyscf.pbc import scf return self._transfer_attrs_(scf.GHF(self.cell, self.kpt))
to_gpu = lib.to_gpu