Source code for pyscf.pbc.df.outcore

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

import numpy
import h5py
from pyscf import lib
from pyscf import gto
from pyscf.ao2mo.outcore import balance_segs
from pyscf.pbc.lib.kpts_helper import gamma_point, unique, KPT_DIFF_TOL
from pyscf.pbc.df.incore import wrap_int3c, make_auxcell

libpbc = lib.load_library('libpbc')

[docs] def aux_e1(cell, auxcell_or_auxbasis, erifile, intor='int3c2e', aosym='s2ij', comp=None, kptij_lst=None, dataname='eri_mo', shls_slice=None, max_memory=2000, verbose=0): r'''3-center AO integrals (L|ij) with double lattice sum: \sum_{lm} (L[0]|i[l]j[m]), where L is the auxiliary basis. Three-index integral tensor (kptij_idx, naux, nao_pair) or four-index integral tensor (kptij_idx, comp, naux, nao_pair) are stored on disk. Args: kptij_lst : (*,2,3) array A list of (kpti, kptj) ''' if isinstance(auxcell_or_auxbasis, gto.MoleBase): auxcell = auxcell_or_auxbasis else: auxcell = make_auxcell(cell, auxcell_or_auxbasis) intor, comp = gto.moleintor._get_intor_and_comp(cell._add_suffix(intor), comp) if isinstance(erifile, h5py.Group): feri = erifile elif h5py.is_hdf5(erifile): feri = lib.H5FileWrap(erifile, 'a') else: feri = lib.H5FileWrap(erifile, 'w') if dataname in feri: del (feri[dataname]) if dataname+'-kptij' in feri: del (feri[dataname+'-kptij']) if kptij_lst is None: kptij_lst = numpy.zeros((1,2,3)) feri[dataname+'-kptij'] = kptij_lst if shls_slice is None: shls_slice = (0, cell.nbas, 0, cell.nbas, 0, auxcell.nbas) ao_loc = cell.ao_loc_nr() aux_loc = auxcell.ao_loc_nr(auxcell.cart or 'ssc' in intor)[:shls_slice[5]+1] ni = ao_loc[shls_slice[1]] - ao_loc[shls_slice[0]] nj = ao_loc[shls_slice[3]] - ao_loc[shls_slice[2]] naux = aux_loc[shls_slice[5]] - aux_loc[shls_slice[4]] nkptij = len(kptij_lst) nii = (ao_loc[shls_slice[1]]*(ao_loc[shls_slice[1]]+1)//2 - ao_loc[shls_slice[0]]*(ao_loc[shls_slice[0]]+1)//2) nij = ni * nj kpti = kptij_lst[:,0] kptj = kptij_lst[:,1] aosym_ks2 = abs(kpti-kptj).sum(axis=1) < KPT_DIFF_TOL j_only = numpy.all(aosym_ks2) #aosym_ks2 &= (aosym[:2] == 's2' and shls_slice[:2] == shls_slice[2:4]) aosym_ks2 &= aosym[:2] == 's2' for k, kptij in enumerate(kptij_lst): key = '%s/%d' % (dataname, k) if gamma_point(kptij): dtype = 'f8' else: dtype = 'c16' if aosym_ks2[k]: nao_pair = nii else: nao_pair = nij if comp == 1: shape = (naux,nao_pair) else: shape = (comp,naux,nao_pair) feri.create_dataset(key, shape, dtype) if naux == 0: feri.close() return erifile if j_only and aosym[:2] == 's2': assert (shls_slice[2] == 0) nao_pair = nii else: nao_pair = nij buflen = max(8, int(max_memory*1e6/16/(nkptij*ni*nj*comp))) auxdims = aux_loc[shls_slice[4]+1:shls_slice[5]+1] - aux_loc[shls_slice[4]:shls_slice[5]] auxranges = balance_segs(auxdims, buflen) buflen = max([x[2] for x in auxranges]) int3c = wrap_int3c(cell, auxcell, intor, 's1', comp, kptij_lst) naux0 = 0 for istep, auxrange in enumerate(auxranges): sh0, sh1, nrow = auxrange sub_slice = (shls_slice[0], shls_slice[1], shls_slice[2], shls_slice[3], shls_slice[4]+sh0, shls_slice[4]+sh1) mat = int3c(sub_slice) for k, kptij in enumerate(kptij_lst): h5dat = feri['%s/%d'%(dataname,k)] if comp == 1: v = lib.transpose(mat[k]) if gamma_point(kptij): v = v.real if aosym_ks2[k] and v.shape[1] == ni**2: v = lib.pack_tril(v.reshape(-1,ni,ni)) h5dat[naux0:naux0+nrow] = v else: for icomp, v in enumerate(mat[k]): v = lib.transpose(v) if gamma_point(kptij): v = v.real if aosym_ks2[k] and v.shape[1] == ni**2: v = lib.pack_tril(v.reshape(-1,ni,ni)) h5dat[icomp,naux0:naux0+nrow] = v naux0 += nrow if not isinstance(erifile, h5py.Group): feri.close() return erifile
def _aux_e2(cell, auxcell_or_auxbasis, erifile, intor='int3c2e', aosym='s2ij', comp=None, kptij_lst=None, dataname='eri_mo', shls_slice=None, max_memory=2000, verbose=0): r'''3-center AO integrals (ij|L) with double lattice sum: \sum_{lm} (i[l]j[m]|L[0]), where L is the auxiliary basis. Three-index integral tensor (kptij_idx, nao_pair, naux) or four-index integral tensor (kptij_idx, comp, nao_pair, naux) are stored on disk. **This function should be only used by df and mdf initialization function _make_j3c** Args: kptij_lst : (*,2,3) array A list of (kpti, kptj) ''' if isinstance(auxcell_or_auxbasis, gto.MoleBase): auxcell = auxcell_or_auxbasis else: auxcell = make_auxcell(cell, auxcell_or_auxbasis) intor, comp = gto.moleintor._get_intor_and_comp(cell._add_suffix(intor), comp) if isinstance(erifile, h5py.Group): feri = erifile elif h5py.is_hdf5(erifile): feri = lib.H5FileWrap(erifile, 'a') else: feri = lib.H5FileWrap(erifile, 'w') if dataname in feri: del (feri[dataname]) if dataname+'-kptij' in feri: del (feri[dataname+'-kptij']) if kptij_lst is None: kptij_lst = numpy.zeros((1,2,3)) feri[dataname+'-kptij'] = kptij_lst if shls_slice is None: shls_slice = (0, cell.nbas, 0, cell.nbas, 0, auxcell.nbas) ao_loc = cell.ao_loc_nr() aux_loc = auxcell.ao_loc_nr(auxcell.cart or 'ssc' in intor)[:shls_slice[5]+1] ni = ao_loc[shls_slice[1]] - ao_loc[shls_slice[0]] nj = ao_loc[shls_slice[3]] - ao_loc[shls_slice[2]] nkptij = len(kptij_lst) nii = (ao_loc[shls_slice[1]]*(ao_loc[shls_slice[1]]+1)//2 - ao_loc[shls_slice[0]]*(ao_loc[shls_slice[0]]+1)//2) nij = ni * nj kpti = kptij_lst[:,0] kptj = kptij_lst[:,1] aosym_ks2 = abs(kpti-kptj).sum(axis=1) < KPT_DIFF_TOL j_only = numpy.all(aosym_ks2) #aosym_ks2 &= (aosym[:2] == 's2' and shls_slice[:2] == shls_slice[2:4]) aosym_ks2 &= aosym[:2] == 's2' if j_only and aosym[:2] == 's2': assert (shls_slice[2] == 0) nao_pair = nii else: nao_pair = nij buflen = max(8, int(max_memory*.47e6/16/(nkptij*ni*nj*comp))) auxdims = aux_loc[shls_slice[4]+1:shls_slice[5]+1] - aux_loc[shls_slice[4]:shls_slice[5]] auxranges = balance_segs(auxdims, buflen) buflen = max([x[2] for x in auxranges]) int3c = wrap_int3c(cell, auxcell, intor, 's1', comp, kptij_lst) def process(aux_range): sh0, sh1, nrow = aux_range sub_slice = (shls_slice[0], shls_slice[1], shls_slice[2], shls_slice[3], shls_slice[4]+sh0, shls_slice[4]+sh1) mat = int3c(sub_slice) return mat kptis = kptij_lst[:,0] kptjs = kptij_lst[:,1] kpt_ji = kptjs - kptis uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji) # sorted_ij_idx: Sort and group the kptij_lst according to the ordering in # df._make_j3c to reduce the data fragment in the hdf5 file. When datasets # are written to hdf5, they are saved sequentially. If the integral data are # saved as the order of kptij_lst, removing the datasets in df._make_j3c will # lead to disk space fragment that can not be reused. sorted_ij_idx = numpy.hstack([numpy.where(uniq_inverse == k)[0] for k, kpt in enumerate(uniq_kpts)]) tril_idx = numpy.tril_indices(ni) tril_idx = tril_idx[0] * ni + tril_idx[1] for istep, mat in enumerate(lib.map_with_prefetch(process, auxranges)): for k in sorted_ij_idx: v = mat[k] if gamma_point(kptij_lst[k]): v = v.real if aosym_ks2[k] and nao_pair == ni**2: v = v[:,tril_idx] feri['%s/%d/%d' % (dataname,k,istep)] = v mat = None if not isinstance(erifile, h5py.Group): feri.close() return erifile