Source code for pyscf.pbc.df.mdf_ao2mo

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

import numpy
from pyscf import lib
from pyscf.ao2mo import _ao2mo
from pyscf.ao2mo.incore import _conc_mos
from pyscf.pbc.df.fft_ao2mo import _format_kpts, _iskconserv
from pyscf.pbc.df import df_ao2mo
from pyscf.pbc.df import aft_ao2mo
from pyscf.pbc.lib import kpts_helper
from pyscf.pbc.lib.kpts_helper import gamma_point, unique
from pyscf import __config__


[docs] def get_eri(mydf, kpts=None, compact=getattr(__config__, 'pbc_df_ao2mo_get_eri_compact', True)): if mydf._cderi is None: mydf.build() kptijkl = _format_kpts(kpts) eri = aft_ao2mo.get_eri(mydf, kptijkl, compact=compact) eri += df_ao2mo.get_eri(mydf, kptijkl, compact=compact) return eri
[docs] def general(mydf, mo_coeffs, kpts=None, compact=getattr(__config__, 'pbc_df_ao2mo_general_compact', True)): if mydf._cderi is None: mydf.build() kptijkl = _format_kpts(kpts) if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2: mo_coeffs = (mo_coeffs,) * 4 eri_mo = aft_ao2mo.general(mydf, mo_coeffs, kptijkl, compact=compact) eri_mo += df_ao2mo.general(mydf, mo_coeffs, kptijkl, compact=compact) return eri_mo
[docs] def ao2mo_7d(mydf, mo_coeff_kpts, kpts=None, factor=1, out=None): cell = mydf.cell if kpts is None: kpts = mydf.kpts nkpts = len(kpts) if isinstance(mo_coeff_kpts, numpy.ndarray) and mo_coeff_kpts.ndim == 3: mo_coeff_kpts = [mo_coeff_kpts] * 4 else: mo_coeff_kpts = list(mo_coeff_kpts) # Shape of the orbitals can be different on different k-points. The # orbital coefficients must be formatted (padded by zeros) so that the # shape of the orbital coefficients are the same on all k-points. This can # be achieved by calling pbc.mp.kmp2.padded_mo_coeff function nmoi, nmoj, nmok, nmol = [x.shape[2] for x in mo_coeff_kpts] eri_shape = (nkpts, nkpts, nkpts, nmoi, nmoj, nmok, nmol) if gamma_point(kpts): dtype = numpy.result_type(*mo_coeff_kpts) else: dtype = numpy.complex128 if out is None: out = numpy.empty(eri_shape, dtype=dtype) else: assert (out.shape == eri_shape) if mydf._cderi is None: mydf.build() kptij_lst = numpy.array([(ki, kj) for ki in kpts for kj in kpts]) kptis_lst = kptij_lst[:,0] kptjs_lst = kptij_lst[:,1] kpt_ji = kptjs_lst - kptis_lst uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji) ngrids = numpy.prod(mydf.mesh) nao = cell.nao_nr() max_memory = max(2000, mydf.max_memory-lib.current_memory()[0]-nao**4*16/1e6) * .5 tao = [] ao_loc = None kconserv = kpts_helper.get_kconserv(cell, kpts) def process(uniq_id, kpt, fswap): q = uniq_kpts[uniq_id] adapted_ji_idx = numpy.where(uniq_inverse == uniq_id)[0] kptjs = kptjs_lst[adapted_ji_idx] coulG = mydf.weighted_coulG(q, False, mydf.mesh) coulG *= factor moij_list = [] ijslice_list = [] for ji, ji_idx in enumerate(adapted_ji_idx): ki = ji_idx // nkpts kj = ji_idx % nkpts moij, ijslice = _conc_mos(mo_coeff_kpts[0][ki], mo_coeff_kpts[1][kj])[2:] moij_list.append(moij) ijslice_list.append(ijslice) fswap.create_dataset('zij/'+str(ji), (ngrids,nmoi*nmoj), 'D') for aoaoks, p0, p1 in mydf.ft_loop(mydf.mesh, q, kptjs, max_memory=max_memory): for ji, aoao in enumerate(aoaoks): ki = adapted_ji_idx[ji] // nkpts kj = adapted_ji_idx[ji] % nkpts buf = aoao.transpose(1,2,0).reshape(nao**2,p1-p0) zij = _ao2mo.r_e2(lib.transpose(buf), moij_list[ji], ijslice_list[ji], tao, ao_loc) zij *= coulG[p0:p1,None] fswap['zij/'+str(ji)][p0:p1] = zij mokl_list = [] klslice_list = [] for kk in range(nkpts): kl = kconserv[ki, kj, kk] mokl, klslice = _conc_mos(mo_coeff_kpts[2][kk], mo_coeff_kpts[3][kl])[2:] mokl_list.append(mokl) klslice_list.append(klslice) fswap.create_dataset('zkl/'+str(kk), (ngrids,nmok*nmol), 'D') ki = adapted_ji_idx[0] // nkpts kj = adapted_ji_idx[0] % nkpts kptls = kpts[kconserv[ki, kj, :]] for aoaoks, p0, p1 in mydf.ft_loop(mydf.mesh, q, -kptls, max_memory=max_memory): for kk, aoao in enumerate(aoaoks): buf = aoao.conj().transpose(1,2,0).reshape(nao**2,p1-p0) zkl = _ao2mo.r_e2(lib.transpose(buf), mokl_list[kk], klslice_list[kk], tao, ao_loc) fswap['zkl/'+str(kk)][p0:p1] = zkl for ji, ji_idx in enumerate(adapted_ji_idx): ki = ji_idx // nkpts kj = ji_idx % nkpts moij, ijslice = _conc_mos(mo_coeff_kpts[0][ki], mo_coeff_kpts[1][kj])[2:] zij = [] for LpqR, LpqI, sign in mydf.sr_loop(kpts[[ki,kj]], max_memory, False, mydf.blockdim): zij.append(_ao2mo.r_e2(LpqR+LpqI*1j, moij, ijslice, tao, ao_loc)) for kk in range(nkpts): kl = kconserv[ki, kj, kk] eri_mo = lib.dot(numpy.asarray(fswap['zij/'+str(ji)]).T, numpy.asarray(fswap['zkl/'+str(kk)])) for i, (LrsR, LrsI, sign) in \ enumerate(mydf.sr_loop(kpts[[kk,kl]], max_memory, False, mydf.blockdim)): zkl = _ao2mo.r_e2(LrsR+LrsI*1j, mokl_list[kk], klslice_list[kk], tao, ao_loc) lib.dot(zij[i].T, zkl, sign*factor, eri_mo, 1) if dtype == numpy.double: eri_mo = eri_mo.real out[ki,kj,kk] = eri_mo.reshape(eri_shape[3:]) del (fswap['zij']) del (fswap['zkl']) with lib.H5TmpFile() as fswap: for uniq_id, kpt in enumerate(uniq_kpts): process(uniq_id, kpt, fswap) return out