Source code for pyscf.pbc.df.fft_jk

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
JK with discrete Fourier transformation
'''


import numpy as np
from pyscf import lib
from pyscf.lib import logger
from pyscf.pbc import tools
from pyscf.pbc.df.df_jk import _format_dms, _format_kpts_band, _format_jks
from pyscf.pbc.df.df_jk import _ewald_exxdiv_for_G0
from pyscf.pbc.lib.kpts_helper import is_zero


[docs] def get_j_kpts(mydf, dm_kpts, hermi=1, kpts=np.zeros((1,3)), kpts_band=None): '''Get the Coulomb (J) AO matrix at sampled k-points. Args: dm_kpts : (nkpts, nao, nao) ndarray or a list of (nkpts,nao,nao) ndarray Density matrix at each k-point. If a list of k-point DMs, eg, UHF alpha and beta DM, the alpha and beta DMs are contracted separately. kpts : (nkpts, 3) ndarray Kwargs: kpts_band : (3,) ndarray or (*,3) ndarray A list of arbitrary "band" k-points at which to evalute the matrix. Returns: vj : (nkpts, nao, nao) ndarray or list of vj if the input dm_kpts is a list of DMs ''' cell = mydf.cell mesh = mydf.mesh assert cell.low_dim_ft_type != 'inf_vacuum' assert cell.dimension > 1 ni = mydf._numint dm_kpts = lib.asarray(dm_kpts, order='C') dms = _format_dms(dm_kpts, kpts) nset, nkpts, nao = dms.shape[:3] make_rho, nset, nao = ni._gen_rho_evaluator(cell, dms, hermi) coulG = tools.get_coulG(cell, mesh=mesh) ngrids = len(coulG) if hermi == 1 or is_zero(kpts): vR = rhoR = np.zeros((nset,ngrids)) for ao_ks_etc, p0, p1 in mydf.aoR_loop(mydf.grids, kpts): ao_ks, mask = ao_ks_etc[0], ao_ks_etc[2] for i in range(nset): rhoR[i,p0:p1] += make_rho(i, ao_ks, mask, 'LDA').real ao = ao_ks = None for i in range(nset): rhoG = tools.fft(rhoR[i], mesh) vG = coulG * rhoG vR[i] = tools.ifft(vG, mesh).real else: # vR may be complex if the underlying density is complex vR = rhoR = np.zeros((nset,ngrids), dtype=np.complex128) for ao_ks_etc, p0, p1 in mydf.aoR_loop(mydf.grids, kpts): ao_ks, mask = ao_ks_etc[0], ao_ks_etc[2] for i in range(nset): for k, ao in enumerate(ao_ks): ao_dm = lib.dot(ao, dms[i,k]) rhoR[i,p0:p1] += np.einsum('xi,xi->x', ao_dm, ao.conj()) rhoR *= 1./nkpts for i in range(nset): rhoG = tools.fft(rhoR[i], mesh) vG = coulG * rhoG vR[i] = tools.ifft(vG, mesh) kpts_band, input_band = _format_kpts_band(kpts_band, kpts), kpts_band nband = len(kpts_band) weight = cell.vol / ngrids vR *= weight if is_zero(kpts_band): vj_kpts = np.zeros((nset,nband,nao,nao)) else: vj_kpts = np.zeros((nset,nband,nao,nao), dtype=np.complex128) for ao_ks_etc, p0, p1 in mydf.aoR_loop(mydf.grids, kpts_band): ao_ks, mask = ao_ks_etc[0], ao_ks_etc[2] for i in range(nset): # ni.eval_mat can handle real vR only # vj_kpts[i] += ni.eval_mat(cell, ao_ks, 1., None, vR[i,p0:p1], mask, 'LDA') for k, ao in enumerate(ao_ks): aow = np.einsum('xi,x->xi', ao, vR[i,p0:p1]) vj_kpts[i,k] += lib.dot(ao.conj().T, aow) return _format_jks(vj_kpts, dm_kpts, input_band, kpts)
[docs] def get_j_e1_kpts(mydf, dm_kpts, kpts=np.zeros((1,3)), kpts_band=None): '''Derivatives of Coulomb (J) AO matrix at sampled k-points. ''' cell = mydf.cell mesh = mydf.mesh assert cell.low_dim_ft_type != 'inf_vacuum' assert cell.dimension > 1 ni = mydf._numint dm_kpts = lib.asarray(dm_kpts, order='C') dms = _format_dms(dm_kpts, kpts) nset, nkpts, nao = dms.shape[:3] make_rho, nset, nao = ni._gen_rho_evaluator(cell, dms, hermi=1) coulG = tools.get_coulG(cell, mesh=mesh) ngrids = len(coulG) if is_zero(kpts): vR = rhoR = np.zeros((nset,ngrids)) for ao_ks_etc, p0, p1 in mydf.aoR_loop(mydf.grids, kpts): ao_ks, mask = ao_ks_etc[0], ao_ks_etc[2] for i in range(nset): rhoR[i,p0:p1] += make_rho(i, ao_ks, mask, 'LDA').real ao = ao_ks = None for i in range(nset): rhoG = tools.fft(rhoR[i], mesh) vG = coulG * rhoG vR[i] = tools.ifft(vG, mesh).real else: # vR may be complex if the underlying density is complex vR = rhoR = np.zeros((nset,ngrids), dtype=np.complex128) for ao_ks_etc, p0, p1 in mydf.aoR_loop(mydf.grids, kpts): ao_ks, mask = ao_ks_etc[0], ao_ks_etc[2] for i in range(nset): for k, ao in enumerate(ao_ks): ao_dm = lib.dot(ao, dms[i,k]) rhoR[i,p0:p1] += np.einsum('xi,xi->x', ao_dm, ao.conj()) rhoR *= 1./nkpts for i in range(nset): rhoG = tools.fft(rhoR[i], mesh) vG = coulG * rhoG vR[i] = tools.ifft(vG, mesh) kpts_band, input_band = _format_kpts_band(kpts_band, kpts), kpts_band nband = len(kpts_band) weight = cell.vol / ngrids vR *= weight if is_zero(kpts_band): vj_kpts = np.zeros((3,nset,nband,nao,nao)) else: vj_kpts = np.zeros((3,nset,nband,nao,nao), dtype=np.complex128) for ao_ks_etc, p0, p1 in mydf.aoR_loop(mydf.grids, kpts_band, deriv=1): ao_ks, mask = ao_ks_etc[0], ao_ks_etc[2] for i in range(nset): # ni.eval_mat can handle real vR only # vj_kpts[i] += ni.eval_mat(cell, ao_ks, 1., None, vR[i,p0:p1], mask, 'LDA') for k, ao in enumerate(ao_ks): aow = np.einsum('xi,x->xi', ao[0], vR[i,p0:p1]) vj_kpts[:,i,k] -= lib.einsum('axi,xj->aij', ao[1:].conj(), aow) vj_kpts = np.asarray([_format_jks(vj, dm_kpts, input_band, kpts) for vj in vj_kpts]) return vj_kpts
[docs] def get_k_kpts(mydf, dm_kpts, hermi=1, kpts=np.zeros((1,3)), kpts_band=None, exxdiv=None): '''Get the Coulomb (J) and exchange (K) AO matrices at sampled k-points. Args: dm_kpts : (nkpts, nao, nao) ndarray Density matrix at each k-point kpts : (nkpts, 3) ndarray Kwargs: hermi : int Whether K matrix is hermitian | 0 : not hermitian and not symmetric | 1 : hermitian kpts_band : (3,) ndarray or (*,3) ndarray A list of arbitrary "band" k-points at which to evalute the matrix. Returns: vj : (nkpts, nao, nao) ndarray vk : (nkpts, nao, nao) ndarray or list of vj and vk if the input dm_kpts is a list of DMs ''' cell = mydf.cell mesh = mydf.mesh assert cell.low_dim_ft_type != 'inf_vacuum' assert cell.dimension > 1 coords = cell.gen_uniform_grids(mesh) ngrids = coords.shape[0] if getattr(dm_kpts, 'mo_coeff', None) is not None: mo_coeff = dm_kpts.mo_coeff mo_occ = dm_kpts.mo_occ else: mo_coeff = None kpts = np.asarray(kpts) dm_kpts = lib.asarray(dm_kpts, order='C') dms = _format_dms(dm_kpts, kpts) nset, nkpts, nao = dms.shape[:3] weight = 1./nkpts * (cell.vol/ngrids) kpts_band, input_band = _format_kpts_band(kpts_band, kpts), kpts_band nband = len(kpts_band) if is_zero(kpts_band) and is_zero(kpts): vk_kpts = np.zeros((nset,nband,nao,nao), dtype=dms.dtype) else: vk_kpts = np.zeros((nset,nband,nao,nao), dtype=np.complex128) coords = mydf.grids.coords ao2_kpts = [np.asarray(ao.T, order='C') for ao in mydf._numint.eval_ao(cell, coords, kpts=kpts)] if input_band is None: ao1_kpts = ao2_kpts else: ao1_kpts = [np.asarray(ao.T, order='C') for ao in mydf._numint.eval_ao(cell, coords, kpts=kpts_band)] if mo_coeff is not None and nset == 1: mo_coeff = [mo_coeff[k][:,occ>0] * np.sqrt(occ[occ>0]) for k, occ in enumerate(mo_occ)] ao2_kpts = [np.dot(mo_coeff[k].T, ao) for k, ao in enumerate(ao2_kpts)] mem_now = lib.current_memory()[0] max_memory = mydf.max_memory - mem_now blksize = int(min(nao, max(1, (max_memory-mem_now)*1e6/16/4/ngrids/nao))) logger.debug1(mydf, 'fft_jk: get_k_kpts max_memory %s blksize %d', max_memory, blksize) #ao1_dtype = np.result_type(*ao1_kpts) #ao2_dtype = np.result_type(*ao2_kpts) vR_dm = np.empty((nset,nao,ngrids), dtype=vk_kpts.dtype) t1 = (logger.process_clock(), logger.perf_counter()) for k2, ao2T in enumerate(ao2_kpts): if ao2T.size == 0: continue kpt2 = kpts[k2] naoj = ao2T.shape[0] if mo_coeff is None or nset > 1: ao_dms = [lib.dot(dms[i,k2], ao2T.conj()) for i in range(nset)] else: ao_dms = [ao2T.conj()] for k1, ao1T in enumerate(ao1_kpts): kpt1 = kpts_band[k1] # If we have an ewald exxdiv, we add the G=0 correction near the # end of the function to bypass any discretization errors # that arise from the FFT. if exxdiv == 'ewald' or exxdiv is None: coulG = tools.get_coulG(cell, kpt2-kpt1, False, mydf, mesh) else: coulG = tools.get_coulG(cell, kpt2-kpt1, exxdiv, mydf, mesh) if is_zero(kpt1-kpt2): expmikr = np.array(1.) else: expmikr = np.exp(-1j * np.dot(coords, kpt2-kpt1)) for p0, p1 in lib.prange(0, nao, blksize): rho1 = np.einsum('ig,jg->ijg', ao1T[p0:p1].conj()*expmikr, ao2T) vG = tools.fft(rho1.reshape(-1,ngrids), mesh) rho1 = None vG *= coulG vR = tools.ifft(vG, mesh).reshape(p1-p0,naoj,ngrids) vG = None if vR_dm.dtype == np.double: vR = vR.real for i in range(nset): np.einsum('ijg,jg->ig', vR, ao_dms[i], out=vR_dm[i,p0:p1]) vR = None vR_dm *= expmikr.conj() for i in range(nset): vk_kpts[i,k1] += weight * lib.dot(vR_dm[i], ao1T.T) t1 = logger.timer_debug1(mydf, 'get_k_kpts: make_kpt (%d,*)'%k2, *t1) # Function _ewald_exxdiv_for_G0 to add back in the G=0 component to vk_kpts # Note in the _ewald_exxdiv_for_G0 implementation, the G=0 treatments are # different for 1D/2D and 3D systems. The special treatments for 1D and 2D # can only be used with AFTDF/GDF/MDF method. In the FFTDF method, 1D, 2D # and 3D should use the ewald probe charge correction. if exxdiv == 'ewald': _ewald_exxdiv_for_G0(cell, kpts, dms, vk_kpts, kpts_band=kpts_band) return _format_jks(vk_kpts, dm_kpts, input_band, kpts)
[docs] def get_k_e1_kpts(mydf, dm_kpts, kpts=np.zeros((1,3)), kpts_band=None, exxdiv=None): '''Derivatives of exchange (K) AO matrix at sampled k-points. ''' cell = mydf.cell mesh = mydf.mesh assert cell.low_dim_ft_type != 'inf_vacuum' assert cell.dimension > 1 coords = cell.gen_uniform_grids(mesh) ngrids = coords.shape[0] if getattr(dm_kpts, 'mo_coeff', None) is not None: mo_coeff = dm_kpts.mo_coeff mo_occ = dm_kpts.mo_occ else: mo_coeff = None kpts = np.asarray(kpts) dm_kpts = lib.asarray(dm_kpts, order='C') dms = _format_dms(dm_kpts, kpts) nset, nkpts, nao = dms.shape[:3] weight = 1./nkpts * (cell.vol/ngrids) kpts_band, input_band = _format_kpts_band(kpts_band, kpts), kpts_band nband = len(kpts_band) if is_zero(kpts_band) and is_zero(kpts): vk_kpts = np.zeros((3,nset,nband,nao,nao), dtype=dms.dtype) else: vk_kpts = np.zeros((3,nset,nband,nao,nao), dtype=np.complex128) coords = mydf.grids.coords if input_band is None: ao2_kpts = [np.asarray(ao.transpose(0,2,1), order='C') for ao in mydf._numint.eval_ao(cell, coords, kpts=kpts, deriv=1)] ao1_kpts = ao2_kpts ao2_kpts = [ao2_kpt[0] for ao2_kpt in ao2_kpts] else: ao2_kpts = [np.asarray(ao.T, order='C') for ao in mydf._numint.eval_ao(cell, coords, kpts=kpts)] ao1_kpts = [np.asarray(ao.transpose(0,2,1), order='C') for ao in mydf._numint.eval_ao(cell, coords, kpts=kpts_band, deriv=1)] if mo_coeff is not None and nset == 1: mo_coeff = [mo_coeff[k][:,occ>0] * np.sqrt(occ[occ>0]) for k, occ in enumerate(mo_occ)] ao2_kpts = [np.dot(mo_coeff[k].T, ao) for k, ao in enumerate(ao2_kpts)] mem_now = lib.current_memory()[0] max_memory = mydf.max_memory - mem_now blksize = int(min(nao, max(1, (max_memory-mem_now)*1e6/16/4/3/ngrids/nao))) logger.debug1(mydf, 'fft_jk: get_k_kpts max_memory %s blksize %d', max_memory, blksize) vR_dm = np.empty((3,nset,nao,ngrids), dtype=vk_kpts.dtype) t1 = (logger.process_clock(), logger.perf_counter()) for k2, ao2T in enumerate(ao2_kpts): if ao2T.size == 0: continue kpt2 = kpts[k2] naoj = ao2T.shape[0] if mo_coeff is None or nset > 1: ao_dms = [lib.dot(dms[i,k2], ao2T.conj()) for i in range(nset)] else: ao_dms = [ao2T.conj()] for k1, ao1T in enumerate(ao1_kpts): kpt1 = kpts_band[k1] # If we have an ewald exxdiv, we add the G=0 correction near the # end of the function to bypass any discretization errors # that arise from the FFT. if exxdiv == 'ewald' or exxdiv is None: coulG = tools.get_coulG(cell, kpt2-kpt1, False, mydf, mesh) else: coulG = tools.get_coulG(cell, kpt2-kpt1, exxdiv, mydf, mesh) if is_zero(kpt1-kpt2): expmikr = np.array(1.) else: expmikr = np.exp(-1j * np.dot(coords, kpt2-kpt1)) for p0, p1 in lib.prange(0, nao, blksize): rho1 = np.einsum('aig,jg->aijg', ao1T[1:,p0:p1].conj()*expmikr, ao2T) vG = tools.fft(rho1.reshape(-1,ngrids), mesh) rho1 = None vG *= coulG vR = tools.ifft(vG, mesh).reshape(3,p1-p0,naoj,ngrids) vG = None if vR_dm.dtype == np.double: vR = vR.real for i in range(nset): np.einsum('aijg,jg->aig', vR, ao_dms[i], out=vR_dm[:,i,p0:p1]) vR = None vR_dm *= expmikr.conj() for i in range(nset): vk_kpts[:,i,k1] -= weight * np.einsum('aig,jg->aij', vR_dm[:,i], ao1T[0]) t1 = logger.timer_debug1(mydf, 'get_k_kpts: make_kpt (%d,*)'%k2, *t1) # Ewald correction has no contribution to nuclear gradient unless range separated Coulomb is used # The gradient correction part is not added in the vk matrix if exxdiv == 'ewald' and cell.omega!=0: raise NotImplementedError("Range Separated Coulomb") # when cell.omega !=0: madelung constant will have a non-zero derivative vk_kpts = np.asarray([_format_jks(vk, dm_kpts, input_band, kpts) for vk in vk_kpts]) return vk_kpts
[docs] def get_jk(mydf, dm, hermi=1, kpt=np.zeros(3), kpts_band=None, with_j=True, with_k=True, exxdiv=None): '''Get the Coulomb (J) and exchange (K) AO matrices for the given density matrix. Args: dm : ndarray or list of ndarrays A density matrix or a list of density matrices Kwargs: hermi : int Whether J, K matrix is hermitian | 0 : no hermitian or symmetric | 1 : hermitian | 2 : anti-hermitian kpt : (3,) ndarray The "inner" dummy k-point at which the DM was evaluated (or sampled). kpts_band : (3,) ndarray or (*,3) ndarray The "outer" primary k-point at which J and K are evaluated. Returns: The function returns one J and one K matrix, corresponding to the input density matrix (both order and shape). ''' dm = np.asarray(dm, order='C') vj = vk = None if with_j: vj = get_j(mydf, dm, hermi, kpt, kpts_band) if with_k: vk = get_k(mydf, dm, hermi, kpt, kpts_band, exxdiv) return vj, vk
[docs] def get_j(mydf, dm, hermi=1, kpt=np.zeros(3), kpts_band=None): '''Get the Coulomb (J) AO matrix for the given density matrix. Args: dm : ndarray or list of ndarrays A density matrix or a list of density matrices Kwargs: hermi : int Whether J, K matrix is hermitian | 0 : no hermitian or symmetric | 1 : hermitian | 2 : anti-hermitian kpt : (3,) ndarray The "inner" dummy k-point at which the DM was evaluated (or sampled). kpts_band : (3,) ndarray or (*,3) ndarray The "outer" primary k-point at which J and K are evaluated. Returns: The function returns one J matrix, corresponding to the input density matrix (both order and shape). ''' dm = np.asarray(dm, order='C') nao = dm.shape[-1] dm_kpts = dm.reshape(-1,1,nao,nao) vj = get_j_kpts(mydf, dm_kpts, hermi, kpt.reshape(1,3), kpts_band) if kpts_band is None: vj = vj[:,0,:,:] if dm.ndim == 2: vj = vj[0] return vj
[docs] def get_k(mydf, dm, hermi=1, kpt=np.zeros(3), kpts_band=None, exxdiv=None): '''Get the Coulomb (J) and exchange (K) AO matrices for the given density matrix. Args: dm : ndarray or list of ndarrays A density matrix or a list of density matrices Kwargs: hermi : int Whether J, K matrix is hermitian | 0 : no hermitian or symmetric | 1 : hermitian | 2 : anti-hermitian kpt : (3,) ndarray The "inner" dummy k-point at which the DM was evaluated (or sampled). kpts_band : (3,) ndarray or (*,3) ndarray The "outer" primary k-point at which J and K are evaluated. Returns: The function returns one J and one K matrix, corresponding to the input density matrix (both order and shape). ''' dm = np.asarray(dm, order='C') nao = dm.shape[-1] dm_kpts = dm.reshape(-1,1,nao,nao) vk = get_k_kpts(mydf, dm_kpts, hermi, kpt.reshape(1,3), kpts_band, exxdiv) if kpts_band is None: vk = vk[:,0,:,:] if dm.ndim == 2: vk = vk[0] return vk