Source code for pyscf.pbc.ci.kcis_rhf

#!/usr/bin/env python
# Copyright 2017-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: James D. McClain
#          Timothy Berkelbach <tim.berkelbach@gmail.com>
#


from functools import reduce
import numpy as np
import h5py

from pyscf import lib
from pyscf.lib import logger
from pyscf import __config__

from pyscf.pbc import scf
from pyscf.pbc.lib import kpts_helper
from pyscf.pbc.mp.kmp2 import (get_nocc, get_nmo, padding_k_idx,
                               padded_mo_coeff, get_frozen_mask)

from pyscf.pbc.df import df
from pyscf.pbc import tools
from pyscf.pbc.cc.ccsd import _adjust_occ

# einsum = np.einsum
einsum = lib.einsum
direct_sum = lib.direct_sum

[docs] def kernel(cis, nroots=1, eris=None, kptlist=None, **kargs): """CIS excitation energy with k-point sampling. Arguments: cis {KCIS} -- A KCIS instance Keyword Arguments: nroots {int} -- Number of requested excitation energies (default: {1}) eris {_CIS_ERIS} -- Depending on cis.direct, eris may contain 4-center (cis.direct=False) or 3-center (cis.direct=True) electron repulsion integrals (default: {None}) kptlist {list} -- A list of indices for k-shift, i.e. the exciton momentum. Available k-shift indices depend on the k-point mesh. For example, a 2 by 2 by 2 k-point mesh allows at most 8 k-shift values, which can be targeted by [0, 1, 2, 3, 4, 5, 6, 7]. When kptlist=None, all k-shift will be computed. (default: {None}) Returns: tuple -- A tuple of excitation energies and corresponding eigenvectors """ cpu0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(cis.stdout, cis.verbose) cis.dump_flags() if eris is None: eris = cis.ao2mo() nkpts = cis.nkpts nocc = cis.nocc nvir = cis.nmo - nocc dtype = eris.dtype if kptlist is None: kptlist = range(nkpts) r_size = nkpts * nocc * nvir nroots = min(nroots, r_size) evals = [None] * len(kptlist) evecs = [None] * len(kptlist) cpu1 = (logger.process_clock(), logger.perf_counter()) for k, kshift in enumerate(kptlist): print("\nkshift =", kshift) if cis.davidson: # Davidson diagonalization matvec, diag = cis.gen_matvec(kshift, eris=eris) if diag.size != r_size: raise ValueError("Number of diagonal elements in H does not match r vector size") guess = cis.get_init_guess(nroots, diag=diag) def precond(r, e0, x0): return r/(e0-diag+1e-12) eig = lib.davidson_nosym1 conv, eigval, eigvec = eig(matvec, guess, precond, tol=cis.conv_tol, max_cycle=cis.max_cycle, max_space=cis.max_space, max_memory=cis.max_memory, nroots=nroots, verbose=cis.verbose) else: # Exact diagonalization if not cis.build_full_H: H = np.zeros([r_size, r_size], dtype=dtype) for col in range(r_size): vec = np.zeros(r_size, dtype=dtype) vec[col] = 1.0 H[:, col] = cis_matvec_singlet(cis, vec, kshift, eris=eris) else: H = cis_H(cis, kshift, eris=eris) eigval, eigvec = np.linalg.eig(H) idx = eigval.argsort()[:nroots] eigval = eigval[idx] eigvec = eigvec[:, idx] for n in range(nroots): logger.info(cis, "CIS root %d E = %.16g", n, eigval[n]) evals[k] = eigval evecs[k] = eigvec log.timer("CIS diagonalization", *cpu1) log.timer("CIS", *cpu0) return evals, evecs
[docs] def cis_matvec_singlet(cis, vector, kshift, eris=None): """Compute matrix-vector product of the Hamiltonian matrix and a CIS c oefficient vector, in the space of single excitation. Arguments: cis {KCIS} -- A KCIS instance vector {1D array} -- CIS coefficient vector kshift {int} -- k-shift index. A k-shift vector is an exciton momentum. Available k-shift indices depend on the k-point mesh. For example, a 2 by 2 by 2 k-point mesh allows at most 8 k-shift values, which can be targeted by 0, 1, 2, 3, 4, 5, 6, or 7. Keyword Arguments: eris {_CIS_ERIS} -- Depending on cis.direct, eris may contain 4-center (cis.direct=False) or 3-center (cis.direct=True) electron repulsion integrals (default: {None}) Returns: 1D array -- matrix-vector product of the Hamiltonian matrix and the input vector. """ if eris is None: eris = cis.ao2mo() nkpts = cis.nkpts nocc = cis.nocc kconserv_r = cis.get_kconserv_r(kshift) r = cis.vector_to_amplitudes(vector) # Should use Fock diagonal elements to build (e_a - e_i) matrix epsilons = [eris.fock[k].diagonal().real for k in range(nkpts)] Hr = np.zeros_like(r) for ki in range(nkpts): ka = kconserv_r[ki] Hr[ki] += einsum('ia,a->ia', r[ki], epsilons[ka][nocc:]) Hr[ki] -= einsum('ia,i->ia', r[ki], epsilons[ki][:nocc]) if not cis.direct: for ki in range(nkpts): ka = kconserv_r[ki] # x: kj Hr[ki] += 2.0 * einsum("xjb,xajib->ia", r, eris.voov[ka, :, ki]) Hr[ki] -= einsum("xjb,xjaib->ia", r, eris.ovov[:, ka, ki]) else: for ki in range(nkpts): ka = kconserv_r[ki] for kj in range(nkpts): kb = kconserv_r[kj] # r_ia <- 2 r_jb (ai|jb) = 2 r_jb B^L_jb B^L_ai L = 2.0 * einsum("jb,Ljb->L", r[kj], eris.Lpq_mo[kj,kb][:, :nocc, nocc:]) tmp = einsum("L,Lai->ia", L, eris.Lpq_mo[ka,ki][:, nocc:, :nocc]) # r_ia <- - r_jb (ab|ji) = -r_jb B^L_ab B^L_ji Lja = -1.0 * einsum("jb,Lab->Lja", r[kj], eris.Lpq_mo[ka,kb][:, nocc:, nocc:]) tmp += einsum("Lja,Lji->ia", Lja, eris.Lpq_mo[kj,ki][:, :nocc, :nocc]) Hr[ki] += (1. / nkpts) * tmp vector = cis.amplitudes_to_vector(Hr) return vector
[docs] def cis_H(cis, kshift, eris=None): """Build full Hamiltonian matrix in the space of single excitation, i.e. CIS Hamiltonian. Arguments: cis {KCIS} -- A KCIS instance kshift {int} -- k-shift index. A k-shift vector is an exciton momentum. Available k-shift indices depend on the k-point mesh. For example, a 2 by 2 by 2 k-point mesh allows at most 8 k-shift values, which can be targeted by 0, 1, 2, 3, 4, 5, 6, or 7. Keyword Arguments: eris {_CIS_ERIS} -- Depending on cis.direct, eris may contain 4-center (cis.direct=False) or 3-center (cis.direct=True) electron repulsion integrals (default: {None}) Raises: MemoryError: MemoryError will be raise if there is not enough space to store the full Hamiltonian matrix, which scales as Nk^2 O^2 V^2 Returns: 2D array -- the Hamiltonian matrix reshaped into (ki,i,a) by (kj,j,b) """ cpu0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(cis.stdout, cis.verbose) if eris is None: eris = cis.ao2mo() nkpts = cis.nkpts nocc = cis.nocc nmo = cis.nmo nvir = nmo - nocc nov = nocc * nvir r_size = nkpts * nov memory_needed = (r_size ** 2) * 16 / 1e6 memory_now = lib.current_memory()[0] if memory_needed + memory_now >= cis.max_memory: raise MemoryError("Not enough memory to store full CIS Hamiltonian") kconserv_r = cis.get_kconserv_r(kshift) dtype = eris.dtype epsilons = [eris.fock[k].diagonal().real for k in range(nkpts)] H = np.zeros((nkpts, nkpts, nov, nov), dtype=dtype) # <ia|H|jb> <- (esp_a - esp_i) \delta{i,j} \delta{a,b} for ki in range(nkpts): ka = kconserv_r[ki] diag_ia = direct_sum("a-i->ia", epsilons[ka][nocc:], epsilons[ki][:nocc]) diag_ia = np.ravel(diag_ia) np.fill_diagonal(H[ki, ki], diag_ia) # <ia|H|jb> <- 2<ja|bi> - <ja|ib> if not cis.direct: for ki in range(nkpts): ka = kconserv_r[ki] for kj in range(nkpts): kb = kconserv_r[kj] # contribution from 2 <ja|bi> = 2 <aj|ib> tmp = 2. * eris.voov[ka, kj, ki].transpose(2,0,1,3) # contribution from -<ja|ib> tmp -= eris.ovov[kj, ka, ki].transpose(2,1,0,3) H[ki, kj] += tmp.reshape(nov, nov) else: for ki in range(nkpts): ka = kconserv_r[ki] for kj in range(nkpts): kb = kconserv_r[kj] # contribution from 2 (ai|jb) = 2 B^L_ai B^L_jb tmp = 2. * einsum("Lai,Ljb->iajb", eris.Lpq_mo[ka,ki][:, nocc:, :nocc], eris.Lpq_mo[kj,kb][:, :nocc, nocc:]) # contribution from -(ab|ji) = - B^L_ab B^L_ji tmp -= einsum("Lab,Lji->iajb", eris.Lpq_mo[ka,kb][:, nocc:, nocc:], eris.Lpq_mo[kj,ki][:, :nocc, :nocc]) tmp *= 1. / nkpts H[ki, kj] += tmp.reshape(nov, nov) H = H.reshape(nkpts, nkpts, nocc, nvir, nocc, nvir).transpose(0,2,3,1,4,5).reshape(r_size, r_size) log.timer("build full CIS Hamiltonian", *cpu0) return H
[docs] def cis_diag(cis, kshift, eris=None): """Diagonal elements of CIS Hamiltonian. Arguments: cis {KCIS} -- A KCIS instance kshift {int} -- k-shift index. A k-shift vector is an exciton momentum. Available k-shift indices depend on the k-point mesh. For example, a 2 by 2 by 2 k-point mesh allows at most 8 k-shift values, which can be targeted by 0, 1, 2, 3, 4, 5, 6, or 7. Keyword Arguments: eris {_CIS_ERIS} -- Depending on cis.direct, eris may contain 4-center (cis.direct=False) or 3-center (cis.direct=True) electron repulsion integrals (default: {None}) Returns: 1D array -- an array formed by diagonal elements of CIS Hamiltonian """ if eris is None: eris = cis.ao2mo() nkpts = cis.nkpts nocc = cis.nocc nmo = cis.nmo nvir = nmo - nocc kconserv_r = cis.get_kconserv_r(kshift) dtype = eris.dtype epsilons = [eris.fock[k].diagonal().real for k in range(nkpts)] Hdiag = np.zeros((nkpts, nocc, nvir), dtype=dtype) for ki in range(nkpts): ka = kconserv_r[ki] Hdiag[ki] = direct_sum("a-i->ia", epsilons[ka][nocc:], epsilons[ki][:nocc]) if not cis.direct: for ki in range(nkpts): ka = kconserv_r[ki] Hdiag[ki] += 2. * einsum("aiia->ia", eris.voov[ka, ki, ki]) Hdiag[ki] -= einsum("iaia->ia", eris.ovov[ki, ka, ki]) else: for ki in range(nkpts): ka = kconserv_r[ki] tmp = 2. * einsum("Lai,Lia->ia", eris.Lpq_mo[ka, ki][:, nocc:, :nocc], eris.Lpq_mo[ki,ka][:, :nocc, nocc:]) tmp -= einsum("Laa,Lii->ia", eris.Lpq_mo[ka, ka][:, nocc:, nocc:], eris.Lpq_mo[ki, ki][:, :nocc, :nocc]) Hdiag[ki] += (1. / nkpts) * tmp return np.ravel(Hdiag)
[docs] class KCIS(lib.StreamObject): def __init__(self, mf, frozen=None, mo_coeff=None, mo_occ=None): assert isinstance(mf, scf.khf.KSCF) if mo_coeff is None: mo_coeff = mf.mo_coeff if mo_occ is None: mo_occ = mf.mo_occ self._scf = mf self.kpts = mf.kpts self.verbose = mf.verbose self.max_memory = mf.max_memory self.max_space = getattr(__config__, 'kcis_rhf_max_space', 20) self.max_cycle = getattr(__config__, 'kcis_rhf_max_cycle', 50) self.conv_tol = getattr(__config__, 'kcis_rhf_conv_tol', 1e-7) ################################################## # don't modify the following attributes, unless you know what you are doing self.keep_exxdiv = False self.direct = False self.build_full_H = False self.davidson = True self.khelper = kpts_helper.KptsHelper(mf.cell, mf.kpts) self.mo_coeff = mo_coeff self.mo_occ = mo_occ self.frozen = frozen self._nocc = None self._nmo = None self.voov = None self.ovov = None
[docs] def dump_flags(self, verbose=None): log = logger.new_logger(self, verbose) log.info("") log.info("******** %s ********", self.__class__) log.info("nkpts = %d", self.nkpts) log.info("CIS nocc = %d, nmo = %d", self.nocc, self.nmo) if self.frozen is not None: log.info("frozen orbitals = %s", self.frozen) log.info("max_memory %d MB (current use %d MB)", self.max_memory, lib.current_memory()[0]) if self.direct: log.info("cis.direct = True; voov and ovov will not be computed") return self
@property def nkpts(self): return len(self.kpts) @property def nocc(self): return self.get_nocc() @property def nmo(self): return self.get_nmo() get_nocc = get_nocc get_nmo = get_nmo get_frozen_mask = get_frozen_mask get_diag = cis_diag matvec = cis_matvec_singlet kernel = kernel
[docs] def vector_size(self): nocc = self.nocc nvir = self.nmo - nocc nkpts = self.nkpts return nkpts * nocc * nvir
[docs] def vector_to_amplitudes(self, vector, nkpts=None, nmo=None, nocc=None): if nmo is None: nmo = self.nmo if nocc is None: nocc = self.nocc if nkpts is None: nkpts = self.nkpts nvir = nmo - nocc return vector[: nkpts * nocc * nvir].copy().reshape(nkpts, nocc, nvir)
[docs] def amplitudes_to_vector(self, r): return r.ravel()
[docs] def ao2mo(self, mo_coeff=None): return _CIS_ERIS(self, mo_coeff)
[docs] def gen_matvec(self, kshift, eris=None, **kwargs): if eris is None: eris = self.ao2mo() diag = self.get_diag(kshift, eris) matvec = lambda xs: [self.matvec(x, kshift, eris) for x in xs] return matvec, diag
[docs] def get_init_guess(self, nroots=1, diag=None): idx = diag.argsort() size = self.vector_size() dtype = getattr(diag, 'dtype', self.mo_coeff[0].dtype) nroots = min(nroots, size) guess = [] for i in idx[:nroots]: g = np.zeros(size, dtype) g[i] = 1.0 guess.append(g) return guess
[docs] def get_kconserv_r(self, kshift): r"""Get the momentum conservation array for a set of k-points. Given k-point index m the array kconserv_r1[m] returns the index n that satisfies momentum conservation, (k(m) - k(n) - kshift) \dot a = 2n\pi This is used for symmetry of 1p-1h excitation operator vector R_{m k_m}^{n k_n} is zero unless n satisfies the above. Note that this method is adapted from `kpts_helper.get_kconserv()`. Arguments: kshift {int} -- index of momentum vector. It can be chosen as any of the available k-point index based on the specified kpt mesh. E.g. int from 0 to 7 can be chosen for a [2,2,2] grid. Returns: list -- a list of k(n) corresponding to k(m) that ranges from 0 to max_k_index """ kconserv = self.khelper.kconserv kconserv_r = kconserv[:, kshift, 0].copy() return kconserv_r
# TODO Merge this with kccsd_rhf._ERIS, which contains more ints (e.g. oooo, # ooov, etc.) than we need here class _CIS_ERIS: def __init__(self, cis, mo_coeff=None, method="incore"): log = logger.Logger(cis.stdout, cis.verbose) cput0 = (logger.process_clock(), logger.perf_counter()) cell = cis._scf.cell nocc = cis.nocc nmo = cis.nmo nvir = nmo - nocc nkpts = cis.nkpts kpts = cis.kpts if mo_coeff is None: mo_coeff = cis.mo_coeff dtype = mo_coeff[0].dtype mo_coeff = self.mo_coeff = padded_mo_coeff(cis, mo_coeff) # Re-make our fock MO matrix elements from density and fock AO dm = cis._scf.make_rdm1(cis.mo_coeff, cis.mo_occ) exxdiv = cis._scf.exxdiv if cis.keep_exxdiv else None with lib.temporary_env(cis._scf, exxdiv=exxdiv): # _scf.exxdiv affects eris.fock. HF exchange correction should be # excluded from the Fock matrix. fockao = cis._scf.get_hcore() + cis._scf.get_veff(cell, dm) self.fock = np.asarray([reduce(np.dot, (mo.T.conj(), fockao[k], mo)) for k, mo in enumerate(mo_coeff)]) self.mo_energy = [self.fock[k].diagonal().real for k in range(nkpts)] if not cis.keep_exxdiv: # Add HFX correction in the self.mo_energy to improve convergence in # CCSD iteration. It is useful for the 2D systems since their occupied and # the virtual orbital energies may overlap which may lead to numerical # issue in the CCSD iterations. # FIXME: Whether to add this correction for other exxdiv treatments? # Without the correction, MP2 energy may be largely off the correct value. madelung = tools.madelung(cell, kpts) self.mo_energy = [ _adjust_occ(mo_e, nocc, -madelung) for k, mo_e in enumerate(self.mo_energy) ] # Get location of padded elements in occupied and virtual space. nocc_per_kpt = get_nocc(cis, per_kpoint=True) nonzero_padding = padding_k_idx(cis, kind="joint") # Check direct and indirect gaps for possible issues with CCSD convergence. mo_e = [self.mo_energy[kp][nonzero_padding[kp]] for kp in range(nkpts)] mo_e = np.sort([y for x in mo_e for y in x]) # Sort de-nested array gap = mo_e[np.sum(nocc_per_kpt)] - mo_e[np.sum(nocc_per_kpt) - 1] if gap < 1e-5: logger.warn( cis, "HOMO-LUMO gap %s too small for KCCSD. " "May cause issues in convergence.", gap, ) memory_needed = (nkpts ** 3 * nocc ** 2 * nvir ** 2) * 16 / 1e6 # CIS only needs two terms: <aj|ib> and <aj|bi>; another factor of two for safety memory_needed *= 4 memory_now = lib.current_memory()[0] fao2mo = cis._scf.with_df.ao2mo kconserv = cis.khelper.kconserv khelper = cis.khelper if cis.direct and type(cis._scf.with_df) is not df.GDF: raise ValueError("CIS direct method must be used with GDF") if (cis.direct and type(cis._scf.with_df) is df.GDF and cell.dimension != 2): # cis._scf.with_df needs to be df.GDF only (not MDF) _init_cis_df_eris(cis, self) else: if ( method == "incore" and (memory_needed + memory_now < cis.max_memory) or cell.incore_anyway ): log.info("using incore ERI storage") self.ovov = np.empty( (nkpts, nkpts, nkpts, nocc, nvir, nocc, nvir), dtype=dtype ) self.voov = np.empty( (nkpts, nkpts, nkpts, nvir, nocc, nocc, nvir), dtype=dtype ) for (ikp, ikq, ikr) in khelper.symm_map.keys(): iks = kconserv[ikp, ikq, ikr] eri_kpt = fao2mo( (mo_coeff[ikp], mo_coeff[ikq], mo_coeff[ikr], mo_coeff[iks]), (kpts[ikp], kpts[ikq], kpts[ikr], kpts[iks]), compact=False, ) if dtype == np.double: eri_kpt = eri_kpt.real eri_kpt = eri_kpt.reshape(nmo, nmo, nmo, nmo) for (kp, kq, kr) in khelper.symm_map[(ikp, ikq, ikr)]: eri_kpt_symm = khelper.transform_symm( eri_kpt, kp, kq, kr ).transpose(0, 2, 1, 3) self.ovov[kp, kr, kq] = ( eri_kpt_symm[:nocc, nocc:, :nocc, nocc:] / nkpts ) self.voov[kp, kr, kq] = ( eri_kpt_symm[nocc:, :nocc, :nocc, nocc:] / nkpts ) self.dtype = dtype else: log.info("using HDF5 ERI storage") self.feri1 = lib.H5TmpFile() self.ovov = self.feri1.create_dataset( "ovov", (nkpts, nkpts, nkpts, nocc, nvir, nocc, nvir), dtype.char ) self.voov = self.feri1.create_dataset( "voov", (nkpts, nkpts, nkpts, nvir, nocc, nocc, nvir), dtype.char ) # <ia|pq> = (ip|aq) cput1 = logger.process_clock(), logger.perf_counter() for kp in range(nkpts): for kq in range(nkpts): for kr in range(nkpts): ks = kconserv[kp, kq, kr] orbo_p = mo_coeff[kp][:, :nocc] orbv_r = mo_coeff[kr][:, nocc:] buf_kpt = fao2mo( (orbo_p, mo_coeff[kq], orbv_r, mo_coeff[ks]), (kpts[kp], kpts[kq], kpts[kr], kpts[ks]), compact=False, ) if mo_coeff[0].dtype == np.double: buf_kpt = buf_kpt.real buf_kpt = buf_kpt.reshape(nocc, nmo, nvir, nmo).transpose( 0, 2, 1, 3 ) self.dtype = buf_kpt.dtype self.ovov[kp, kr, kq, :, :, :, :] = ( buf_kpt[:, :, :nocc, nocc:] / nkpts ) self.voov[kr, kp, ks, :, :, :, :] = ( buf_kpt[:, :, nocc:, :nocc].transpose(1, 0, 3, 2) / nkpts ) cput1 = log.timer_debug1("transforming ovpq", *cput1) log.timer("CIS integral transformation", *cput0) def _init_cis_df_eris(cis, eris): """Add 3-center electron repulsion integrals, i.e. (L|pq), in `eris`, where `L` denotes DF auxiliary basis functions and `p` and `q` canonical crystalline orbitals. Note that `p` and `q` contain kpt indices `kp` and `kq`, and the third kpt index `kL` is determined by the conservation of momentum. Arguments: cis {KCIS} -- A KCIS instance eris {_CIS_ERIS} -- A _CIS_ERIS instance to which we want to add 3c ints Returns: _CIS_ERIS -- A _CIS_ERIS instance with 3c ints """ from pyscf.ao2mo import _ao2mo from pyscf.pbc.lib.kpts_helper import gamma_point log = logger.Logger(cis.stdout, cis.verbose) if cis._scf.with_df._cderi is None: cis._scf.with_df.build() cell = cis._scf.cell if cell.dimension == 2: # 2D ERIs are not positive definite. The 3-index tensors are stored in # two part. One corresponds to the positive part and one corresponds # to the negative part. The negative part is not considered in the # DF-driven CCSD implementation. raise NotImplementedError nmo = cis.nmo nao = cell.nao_nr() kpts = cis.kpts nkpts = len(kpts) if gamma_point(kpts): dtype = np.double else: dtype = np.complex128 eris.dtype = dtype = np.result_type(dtype, *eris.mo_coeff) eris.Lpq_mo = Lpq_mo = np.empty((nkpts, nkpts), dtype=object) cput0 = (logger.process_clock(), logger.perf_counter()) with df.CDERIArray(cis._scf.with_df._cderi) as cderi_array: tao = [] ao_loc = None for ki in range(nkpts): for kj in range(nkpts): Lpq_ao = cderi_array[ki,kj] mo = np.hstack((eris.mo_coeff[ki], eris.mo_coeff[kj])) mo = np.asarray(mo, dtype=dtype, order='F') if dtype == np.double: out = _ao2mo.nr_e2(Lpq_ao, mo, (0, nmo, nmo, nmo+nmo), aosym='s2') else: #Note: Lpq.shape[0] != naux if linear dependency is found in auxbasis if Lpq_ao[0].size != nao**2: # aosym = 's2' Lpq_ao = lib.unpack_tril(Lpq_ao).astype(np.complex128) out = _ao2mo.r_e2(Lpq_ao, mo, (0, nmo, nmo, nmo+nmo), tao, ao_loc) Lpq_mo[ki, kj] = out.reshape(-1, nmo, nmo) log.timer_debug1("transforming DF-CIS integrals", *cput0) return eris if __name__ == "__main__": from pyscf.pbc import gto, ci cell = gto.Cell() cell.atom = """ C 0.000000000000 0.000000000000 0.000000000000 C 1.685068664391 1.685068664391 1.685068664391 """ cell.basis = "gth-szv" cell.pseudo = "gth-pade" cell.a = """ 0.000000000, 3.370137329, 3.370137329 3.370137329, 0.000000000, 3.370137329 3.370137329, 3.370137329, 0.000000000""" cell.unit = "B" cell.verbose = 7 cell.build() # Running HF and MP2 with 1x1x2 Monkhorst-Pack k-point mesh kmf = scf.KRHF(cell, kpts=cell.make_kpts([1, 1, 2]), exxdiv=None) ehf = kmf.kernel() mycis = ci.KCIS(kmf) e_cis, v_cis = mycis.kernel(nroots=1, kptlist=[0]) print(e_cis[0] - 0.2239201285373249)