Source code for pyscf.pbc.cc.kccsd_rhf

#!/usr/bin/env python
# Copyright 2017-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: James D. McClain
#          Timothy Berkelbach <tim.berkelbach@gmail.com>
#


from functools import reduce
import numpy as np
import h5py

from pyscf import lib
import pyscf.ao2mo
from pyscf.lib import logger
import pyscf.cc
import pyscf.cc.ccsd
from pyscf.pbc import scf
from pyscf.pbc.mp.kmp2 import (get_frozen_mask, get_nocc, get_nmo,
                               padded_mo_coeff, padding_k_idx)  # noqa
from pyscf.pbc.cc import kintermediates_rhf as imdk
from pyscf.lib.parameters import LOOSE_ZERO_TOL, LARGE_DENOM  # noqa
from pyscf.pbc.lib import kpts_helper
from pyscf.pbc.lib.kpts_helper import gamma_point
from pyscf.pbc.df import GDF, RSGDF
from pyscf.pbc.df import df
from pyscf import __config__

# einsum = np.einsum
einsum = lib.einsum

# This is restricted (R)CCSD
# Ref: Hirata, et al., J. Chem. Phys. 120, 2581 (2004)

kernel = pyscf.cc.ccsd.kernel


[docs] def get_normt_diff(cc, t1, t2, t1new, t2new): '''Calculates norm(t1 - t1new) + norm(t2 - t2new).''' return np.linalg.norm(t1new - t1) + np.linalg.norm(t2new - t2)
[docs] def update_amps(cc, t1, t2, eris): time0 = time1 = logger.process_clock(), logger.perf_counter() log = logger.Logger(cc.stdout, cc.verbose) nkpts, nocc, nvir = t1.shape fock = eris.fock mo_e_o = [e[:nocc] for e in eris.mo_energy] mo_e_v = [e[nocc:] + cc.level_shift for e in eris.mo_energy] # Get location of padded elements in occupied and virtual space nonzero_opadding, nonzero_vpadding = padding_k_idx(cc, kind="split") fov = fock[:, :nocc, nocc:] #foo = fock[:, :nocc, :nocc] #fvv = fock[:, nocc:, nocc:] kconserv = cc.khelper.kconserv Foo = imdk.cc_Foo(t1, t2, eris, kconserv) Fvv = imdk.cc_Fvv(t1, t2, eris, kconserv) Fov = imdk.cc_Fov(t1, t2, eris, kconserv) Loo = imdk.Loo(t1, t2, eris, kconserv) Lvv = imdk.Lvv(t1, t2, eris, kconserv) # Move energy terms to the other side for k in range(nkpts): Foo[k][np.diag_indices(nocc)] -= mo_e_o[k] Fvv[k][np.diag_indices(nvir)] -= mo_e_v[k] Loo[k][np.diag_indices(nocc)] -= mo_e_o[k] Lvv[k][np.diag_indices(nvir)] -= mo_e_v[k] time1 = log.timer_debug1('intermediates', *time1) # T1 equation t1new = np.array(fov).astype(t1.dtype).conj() for ka in range(nkpts): ki = ka # kc == ki; kk == ka t1new[ka] += -2. * einsum('kc,ka,ic->ia', fov[ki], t1[ka], t1[ki]) t1new[ka] += einsum('ac,ic->ia', Fvv[ka], t1[ki]) t1new[ka] += -einsum('ki,ka->ia', Foo[ki], t1[ka]) tau_term = np.empty((nkpts, nocc, nocc, nvir, nvir), dtype=t1.dtype) for kk in range(nkpts): tau_term[kk] = 2 * t2[kk, ki, kk] - t2[ki, kk, kk].transpose(1, 0, 2, 3) tau_term[ka] += einsum('ic,ka->kica', t1[ki], t1[ka]) for kk in range(nkpts): kc = kk t1new[ka] += einsum('kc,kica->ia', Fov[kc], tau_term[kk]) t1new[ka] += einsum('akic,kc->ia', 2 * eris.voov[ka, kk, ki], t1[kc]) t1new[ka] += einsum('kaic,kc->ia', -eris.ovov[kk, ka, ki], t1[kc]) for kc in range(nkpts): kd = kconserv[ka, kc, kk] Svovv = 2 * eris.vovv[ka, kk, kc] - eris.vovv[ka, kk, kd].transpose(0, 1, 3, 2) tau_term_1 = t2[ki, kk, kc].copy() if ki == kc and kk == kd: tau_term_1 += einsum('ic,kd->ikcd', t1[ki], t1[kk]) t1new[ka] += einsum('akcd,ikcd->ia', Svovv, tau_term_1) # kk - ki + kl = kc # => kl = ki - kk + kc kl = kconserv[ki, kk, kc] Sooov = 2 * eris.ooov[kk, kl, ki] - eris.ooov[kl, kk, ki].transpose(1, 0, 2, 3) tau_term_1 = t2[kk, kl, ka].copy() if kk == ka and kl == kc: tau_term_1 += einsum('ka,lc->klac', t1[ka], t1[kc]) t1new[ka] += -einsum('klic,klac->ia', Sooov, tau_term_1) time1 = log.timer_debug1('t1', *time1) # T2 equation t2new = np.empty_like(t2) for ki, kj, ka in kpts_helper.loop_kkk(nkpts): t2new[ki, kj, ka] = eris.oovv[ki, kj, ka].conj() mem_now = lib.current_memory()[0] if (nocc ** 4 * nkpts ** 3) * 16 / 1e6 + mem_now < cc.max_memory * .9: Woooo = imdk.cc_Woooo(t1, t2, eris, kconserv) else: fimd = lib.H5TmpFile() Woooo = fimd.create_dataset('oooo', (nkpts, nkpts, nkpts, nocc, nocc, nocc, nocc), t1.dtype.char) Woooo = imdk.cc_Woooo(t1, t2, eris, kconserv, Woooo) for ki, kj, ka in kpts_helper.loop_kkk(nkpts): # Chemist's notation for momentum conserving t2(ki,kj,ka,kb) kb = kconserv[ki, ka, kj] t2new_tmp = np.zeros((nocc, nocc, nvir, nvir), dtype=t2.dtype) for kl in range(nkpts): kk = kconserv[kj, kl, ki] tau_term = t2[kk, kl, ka].copy() if kl == kb and kk == ka: tau_term += einsum('ic,jd->ijcd', t1[ka], t1[kb]) t2new_tmp += 0.5 * einsum('klij,klab->ijab', Woooo[kk, kl, ki], tau_term) t2new[ki, kj, ka] += t2new_tmp t2new[kj, ki, kb] += t2new_tmp.transpose(1, 0, 3, 2) Woooo = None fimd = None time1 = log.timer_debug1('t2 oooo', *time1) # einsum('abcd,ijcd->ijab', Wvvvv, tau) add_vvvv_(cc, t2new, t1, t2, eris) time1 = log.timer_debug1('t2 vvvv', *time1) for ki, kj, ka in kpts_helper.loop_kkk(nkpts): kb = kconserv[ki, ka, kj] t2new_tmp = einsum('ac,ijcb->ijab', Lvv[ka], t2[ki, kj, ka]) t2new_tmp += einsum('ki,kjab->ijab', -Loo[ki], t2[ki, kj, ka]) kc = kconserv[ka, ki, kb] tmp2 = np.asarray(eris.vovv[kc, ki, kb]).transpose(3, 2, 1, 0).conj() \ - einsum('kbic,ka->abic', eris.ovov[ka, kb, ki], t1[ka]) t2new_tmp += einsum('abic,jc->ijab', tmp2, t1[kj]) kk = kconserv[ki, ka, kj] tmp2 = np.asarray(eris.ooov[kj, ki, kk]).transpose(3, 2, 1, 0).conj() \ + einsum('akic,jc->akij', eris.voov[ka, kk, ki], t1[kj]) t2new_tmp -= einsum('akij,kb->ijab', tmp2, t1[kb]) t2new[ki, kj, ka] += t2new_tmp t2new[kj, ki, kb] += t2new_tmp.transpose(1, 0, 3, 2) mem_now = lib.current_memory()[0] if (nocc ** 2 * nvir ** 2 * nkpts ** 3) * 16 / 1e6 * 2 + mem_now < cc.max_memory * .9: Wvoov = imdk.cc_Wvoov(t1, t2, eris, kconserv) Wvovo = imdk.cc_Wvovo(t1, t2, eris, kconserv) else: fimd = lib.H5TmpFile() Wvoov = fimd.create_dataset('voov', (nkpts, nkpts, nkpts, nvir, nocc, nocc, nvir), t1.dtype.char) Wvovo = fimd.create_dataset('vovo', (nkpts, nkpts, nkpts, nvir, nocc, nvir, nocc), t1.dtype.char) Wvoov = imdk.cc_Wvoov(t1, t2, eris, kconserv, Wvoov) Wvovo = imdk.cc_Wvovo(t1, t2, eris, kconserv, Wvovo) for ki, kj, ka in kpts_helper.loop_kkk(nkpts): kb = kconserv[ki, ka, kj] t2new_tmp = np.zeros((nocc, nocc, nvir, nvir), dtype=t2.dtype) for kk in range(nkpts): kc = kconserv[ka, ki, kk] tmp_voov = 2. * Wvoov[ka, kk, ki] - Wvovo[ka, kk, kc].transpose(0, 1, 3, 2) t2new_tmp += einsum('akic,kjcb->ijab', tmp_voov, t2[kk, kj, kc]) kc = kconserv[ka, ki, kk] t2new_tmp -= einsum('akic,kjbc->ijab', Wvoov[ka, kk, ki], t2[kk, kj, kb]) kc = kconserv[kk, ka, kj] t2new_tmp -= einsum('bkci,kjac->ijab', Wvovo[kb, kk, kc], t2[kk, kj, ka]) t2new[ki, kj, ka] += t2new_tmp t2new[kj, ki, kb] += t2new_tmp.transpose(1, 0, 3, 2) Wvoov = Wvovo = None fimd = None time1 = log.timer_debug1('t2 voov', *time1) for ki in range(nkpts): ka = ki # Remove zero/padded elements from denominator eia = _get_epq([0,nocc,ki,mo_e_o,nonzero_opadding], [0,nvir,ka,mo_e_v,nonzero_vpadding], fac=[1.0,-1.0]) t1new[ki] /= eia for ki, kj, ka in kpts_helper.loop_kkk(nkpts): kb = kconserv[ki, ka, kj] eia = _get_epq([0,nocc,ki,mo_e_o,nonzero_opadding], [0,nvir,ka,mo_e_v,nonzero_vpadding], fac=[1.0,-1.0]) ejb = _get_epq([0,nocc,kj,mo_e_o,nonzero_opadding], [0,nvir,kb,mo_e_v,nonzero_vpadding], fac=[1.0,-1.0]) eijab = eia[:, None, :, None] + ejb[:, None, :] t2new[ki, kj, ka] /= eijab time0 = log.timer_debug1('update t1 t2', *time0) return t1new, t2new
def _get_epq(pindices,qindices,fac=[1.0,1.0],large_num=LARGE_DENOM): '''Create a denominator fac[0]*e[kp,p0:p1] + fac[1]*e[kq,q0:q1] where padded elements have been replaced by a large number. Args: pindices (5-list of object): A list of p0, p1, kp, orbital values, and non-zero indices for the first denominator indices. qindices (5-list of object): A list of q0, q1, kq, orbital values, and non-zero indices for the second denominator element. fac (3-list of float): Factors to multiply the first and second denominator elements. large_num (float): Number to replace the padded elements. ''' def get_idx(x0,x1,kx,n0_p): return np.logical_and(n0_p[kx] >= x0, n0_p[kx] < x1) assert (all(len(x) == 5 for x in [pindices,qindices])) p0,p1,kp,mo_e_p,nonzero_p = pindices q0,q1,kq,mo_e_q,nonzero_q = qindices fac_p, fac_q = fac epq = large_num * np.ones((p1-p0,q1-q0), dtype=mo_e_p[0].dtype) idxp = get_idx(p0,p1,kp,nonzero_p) idxq = get_idx(q0,q1,kq,nonzero_q) n0_ovp_pq = np.ix_(nonzero_p[kp][idxp], nonzero_q[kq][idxq]) epq[n0_ovp_pq] = lib.direct_sum('p,q->pq', fac_p*mo_e_p[kp][p0:p1], fac_q*mo_e_q[kq][q0:q1])[n0_ovp_pq] return epq # TODO: pull these 3 methods to pyscf.util and make tests
[docs] def describe_nested(data): """ Retrieves the description of a nested array structure. Args: data (iterable): a nested structure to describe; Returns: - A nested structure where numpy arrays are replaced by their shapes; - The overall number of scalar elements; - The common data type; """ if isinstance(data, np.ndarray): return data.shape, data.size, data.dtype elif isinstance(data, (list, tuple)): total_size = 0 struct = [] dtype = None for i in data: i_struct, i_size, i_dtype = describe_nested(i) struct.append(i_struct) total_size += i_size if dtype is not None and i_dtype is not None and i_dtype != dtype: raise ValueError("Several different numpy dtypes encountered: %s and %s" % (str(dtype), str(i_dtype))) dtype = i_dtype return struct, total_size, dtype else: raise ValueError("Unknown object to describe: %s" % str(data))
[docs] def nested_to_vector(data, destination=None, offset=0): """ Puts any nested iterable into a vector. Args: data (Iterable): a nested structure of numpy arrays; destination (array): array to store the data to; offset (int): array offset; Returns: If destination is not specified, returns a vectorized data and the original nested structure to restore the data into its original form. Otherwise returns a new offset. """ if destination is None: struct, total_size, dtype = describe_nested(data) destination = np.empty(total_size, dtype=dtype) rtn = True else: rtn = False if isinstance(data, np.ndarray): destination[offset:offset + data.size] = data.ravel() offset += data.size elif isinstance(data, (list, tuple)): for i in data: offset = nested_to_vector(i, destination, offset) else: raise ValueError("Unknown object to vectorize: %s" % str(data)) if rtn: return destination, struct else: return offset
[docs] def vector_to_nested(vector, struct, copy=True, ensure_size_matches=True): """ Retrieves the original nested structure from the vector. Args: vector (array): a vector to decompose; struct (Iterable): a nested structure with arrays' shapes; copy (bool): whether to copy arrays; ensure_size_matches (bool): if True, ensures all elements from the vector are used; Returns: A nested structure with numpy arrays and, if `ensure_size_matches=False`, the number of vector elements used. """ if len(vector.shape) != 1: raise ValueError("Only vectors accepted, got: %s" % repr(vector.shape)) if isinstance(struct, tuple): expected_size = np.prod(struct) if ensure_size_matches: if vector.size != expected_size: raise ValueError("Structure size mismatch: expected %s = %d, found %d" % (repr(struct), expected_size, vector.size,)) if len(vector) < expected_size: raise ValueError("Additional %d = (%d = %s) - %d vector elements are required" % (expected_size - len(vector), expected_size, repr(struct), len(vector),)) a = vector[:expected_size].reshape(struct) if copy: a = a.copy() if ensure_size_matches: return a else: return a, expected_size elif isinstance(struct, list): offset = 0 result = [] for i in struct: nested, size = vector_to_nested(vector[offset:], i, copy=copy, ensure_size_matches=False) offset += size result.append(nested) if ensure_size_matches: if vector.size != offset: raise ValueError("%d additional elements found" % (vector.size - offset)) return result else: return result, offset else: raise ValueError("Unknown object to compose: %s" % (str(struct)))
[docs] def energy(cc, t1, t2, eris): nkpts, nocc, nvir = t1.shape kconserv = cc.khelper.kconserv fock = eris.fock e = 0.0 + 1j * 0.0 for ki in range(nkpts): e += 2 * einsum('ia,ia', fock[ki, :nocc, nocc:], t1[ki]) tau = np.zeros(shape=t2.shape, dtype=t2.dtype) for ki in range(nkpts): ka = ki for kj in range(nkpts): # kb = kj tau[ki, kj, ka] = einsum('ia,jb->ijab', t1[ki], t1[kj]) tau += t2 for ki in range(nkpts): for kj in range(nkpts): for ka in range(nkpts): kb = kconserv[ki, ka, kj] e += 2 * einsum('ijab,ijab', tau[ki, kj, ka], eris.oovv[ki, kj, ka]) e += -einsum('ijab,ijba', tau[ki, kj, ka], eris.oovv[ki, kj, kb]) e /= nkpts if abs(e.imag) > 1e-4: logger.warn(cc, 'Non-zero imaginary part found in KRCCSD energy %s', e) return e.real
[docs] def add_vvvv_(cc, Ht2, t1, t2, eris): nocc = cc.nocc nmo = cc.nmo nvir = nmo - nocc nkpts = cc.nkpts kconserv = cc.khelper.kconserv mem_now = lib.current_memory()[0] if cc.direct and getattr(eris, 'Lpv', None) is not None: #: If memory is not enough to hold eris.Lpv #:def get_Wvvvv(ka, kb, kc): #: kd = kconserv[ka,kc,kb] #: v = cc._scf.with_df.ao2mo([eris.mo_coeff[k] for k in [ka,kc,kb,kd]], #: cc.kpts[[ka,kc,kb,kd]]).reshape([nmo]*4) #: Wvvvv = lib.einsum('kcbd,ka->abcd', v[:nocc,nocc:,nocc:,nocc:], -t1[ka]) #: Wvvvv += lib.einsum('ackd,kb->abcd', v[nocc:,nocc:,:nocc,nocc:], -t1[kb]) #: Wvvvv += v[nocc:,nocc:,nocc:,nocc:].transpose(0,2,1,3) #: Wvvvv *= (1./nkpts) #: return Wvvvv def get_Wvvvv(ka, kb, kc): Lpv = eris.Lpv kd = kconserv[ka, kc, kb] Lbd = (Lpv[kb,kd][:,nocc:] - lib.einsum('Lkd,kb->Lbd', Lpv[kb,kd][:,:nocc], t1[kb])) Wvvvv = lib.einsum('Lac,Lbd->abcd', Lpv[ka,kc][:,nocc:], Lbd) Lbd = None kcbd = lib.einsum('Lkc,Lbd->kcbd', Lpv[ka,kc][:,:nocc], Lpv[kb,kd][:,nocc:]) Wvvvv -= lib.einsum('kcbd,ka->abcd', kcbd, t1[ka]) Wvvvv *= (1. / nkpts) return Wvvvv elif (nvir ** 4 * nkpts ** 3) * 16 / 1e6 + mem_now < cc.max_memory * .9: _Wvvvv = imdk.cc_Wvvvv(t1, t2, eris, kconserv) def get_Wvvvv(ka, kb, kc): return _Wvvvv[ka, kb, kc] else: fimd = lib.H5TmpFile() _Wvvvv = fimd.create_dataset('vvvv', (nkpts, nkpts, nkpts, nvir, nvir, nvir, nvir), t1.dtype.char) _Wvvvv = imdk.cc_Wvvvv(t1, t2, eris, kconserv, _Wvvvv) def get_Wvvvv(ka, kb, kc): return _Wvvvv[ka, kb, kc] #:Ps = kconserve_pmatrix(cc.nkpts, cc.khelper.kconserv) #:Wvvvv = einsum('xyzakcd,ykb->xyzabcd', eris.vovv, -t1) #:Wvvvv = Wvvvv + einsum('xyzabcd,xyzw->yxwbadc', Wvvvv, Ps) #:Wvvvv += eris.vvvv #: #:tau = t2.copy() #:idx = np.arange(nkpts) #:tau[idx,:,idx] += einsum('xic,yjd->xyijcd', t1, t1) #:Ht2 += einsum('xyuijcd,zwuabcd,xyuv,zwuv->xyzijab', tau, Wvvvv, Ps, Ps) for ka, kb, kc in kpts_helper.loop_kkk(nkpts): kd = kconserv[ka, kc, kb] Wvvvv = get_Wvvvv(ka, kb, kc) for ki in range(nkpts): kj = kconserv[ka, ki, kb] tau = t2[ki, kj, kc].copy() if ki == kc and kj == kd: tau += np.einsum('ic,jd->ijcd', t1[ki], t1[kj]) Ht2[ki, kj, ka] += lib.einsum('abcd,ijcd->ijab', Wvvvv, tau) fimd = None return Ht2
# Ps is Permutation transformation matrix # The physical meaning of Ps matrix is the conservation of moment. # Given the four indices in Ps, the element shows whether moment conservation # holds (1) or not (0)
[docs] def kconserve_pmatrix(nkpts, kconserv): Ps = np.zeros((nkpts, nkpts, nkpts, nkpts)) for ki in range(nkpts): for kj in range(nkpts): for ka in range(nkpts): # Chemist's notation for momentum conserving t2(ki,kj,ka,kb) kb = kconserv[ki, ka, kj] Ps[ki, kj, ka, kb] = 1 return Ps
[docs] class RCCSD(pyscf.cc.ccsd.CCSD): max_space = getattr(__config__, 'pbc_cc_kccsd_rhf_KRCCSD_max_space', 20) _keys = { 'kpts', 'khelper', 'ip_partition', 'ea_partition', 'max_space', 'direct', 'keep_exxdiv', } def __init__(self, mf, frozen=None, mo_coeff=None, mo_occ=None): assert (isinstance(mf, scf.khf.KSCF)) # mf.to_khf converts mf to a non-symmetry object pyscf.cc.ccsd.CCSD.__init__(self, mf.to_khf(), frozen, mo_coeff, mo_occ) self.kpts = mf.kpts self.khelper = kpts_helper.KptsHelper(mf.cell, mf.kpts, init_symm_map=False) self.ip_partition = None self.ea_partition = None self.direct = True # If possible, use GDF to compute Wvvvv on-the-fly ################################################## # don't modify the following attributes, unless you know what you are doing self.keep_exxdiv = False self.__imds__ = None @property def nkpts(self): return getattr(self.kpts, 'nkpts', len(self.kpts)) get_normt_diff = get_normt_diff get_nocc = get_nocc get_nmo = get_nmo get_frozen_mask = get_frozen_mask
[docs] def dump_flags(self, verbose=None): return pyscf.cc.ccsd.CCSD.dump_flags(self, verbose)
@property def ccsd_vector_desc(self): """Description of the ground-state vector.""" nvir = self.nmo - self.nocc return [(self.nkpts, self.nocc, nvir), (self.nkpts,) * 3 + (self.nocc,) * 2 + (nvir,) * 2]
[docs] def amplitudes_to_vector(self, t1, t2): """Ground state amplitudes to a vector.""" return nested_to_vector((t1, t2))[0]
[docs] def vector_to_amplitudes(self, vec): """Ground state vector to apmplitudes.""" return vector_to_nested(vec, self.ccsd_vector_desc)
[docs] def init_amps(self, eris): time0 = logger.process_clock(), logger.perf_counter() nocc = self.nocc nvir = self.nmo - nocc nkpts = self.nkpts t1 = np.zeros((nkpts,nocc,nvir), dtype=eris.fock.dtype) t2 = np.empty((nkpts,nkpts,nkpts,nocc,nocc,nvir,nvir), dtype=eris.fock.dtype) mo_e_o = [eris.mo_energy[k][:nocc] for k in range(nkpts)] mo_e_v = [eris.mo_energy[k][nocc:] for k in range(nkpts)] # Get location of padded elements in occupied and virtual space nonzero_opadding, nonzero_vpadding = padding_k_idx(self, kind="split") emp2 = 0 kconserv = self.khelper.kconserv touched = np.zeros((nkpts, nkpts, nkpts), dtype=bool) for ki, kj, ka in kpts_helper.loop_kkk(nkpts): if touched[ki, kj, ka]: continue kb = kconserv[ki, ka, kj] # For discussion of LARGE_DENOM, see t1new update above eia = _get_epq([0,nocc,ki,mo_e_o,nonzero_opadding], [0,nvir,ka,mo_e_v,nonzero_vpadding], fac=[1.0,-1.0]) ejb = _get_epq([0,nocc,kj,mo_e_o,nonzero_opadding], [0,nvir,kb,mo_e_v,nonzero_vpadding], fac=[1.0,-1.0]) eijab = eia[:, None, :, None] + ejb[:, None, :] eris_ijab = eris.oovv[ki, kj, ka] eris_ijba = eris.oovv[ki, kj, kb] t2[ki, kj, ka] = eris_ijab.conj() / eijab woovv = 2 * eris_ijab - eris_ijba.transpose(0, 1, 3, 2) emp2 += np.einsum('ijab,ijab', t2[ki, kj, ka], woovv) if ka != kb: eijba = eijab.transpose(0, 1, 3, 2) t2[ki, kj, kb] = eris_ijba.conj() / eijba woovv = 2 * eris_ijba - eris_ijab.transpose(0, 1, 3, 2) emp2 += np.einsum('ijab,ijab', t2[ki, kj, kb], woovv) touched[ki, kj, ka] = touched[ki, kj, kb] = True self.emp2 = emp2.real / nkpts logger.info(self, 'Init t2, MP2 energy (with fock eigenvalue shift) = %.15g', self.emp2) logger.timer(self, 'init mp2', *time0) return self.emp2, t1, t2
energy = energy update_amps = update_amps
[docs] def kernel(self, t1=None, t2=None, eris=None, mbpt2=False): return self.ccsd(t1, t2, eris, mbpt2=mbpt2)
[docs] def ccsd(self, t1=None, t2=None, eris=None, mbpt2=False): '''Ground-state CCSD. Kwargs: mbpt2 : bool Use one-shot MBPT2 approximation to CCSD. ''' self.dump_flags() self.e_hf = self.get_e_hf() if eris is None: # eris = self.ao2mo() eris = self.ao2mo(self.mo_coeff) self.eris = eris if mbpt2: self.e_corr, self.t1, self.t2 = self.init_amps(eris) return self.e_corr, self.t1, self.t2 self.converged, self.e_corr, self.t1, self.t2 = \ kernel(self, eris, t1, t2, max_cycle=self.max_cycle, tol=self.conv_tol, tolnormt=self.conv_tol_normt, verbose=self.verbose) self._finalize() return self.e_corr, self.t1, self.t2
[docs] def ccsd_t(self, t1=None, t2=None, eris=None): from pyscf.pbc.cc import kccsd_t_rhf if t1 is None: t1 = self.t1 if t2 is None: t2 = self.t2 if eris is None: eris = self.ao2mo(self.mo_coeff) return kccsd_t_rhf.kernel(self, eris, t1, t2, self.verbose)
[docs] def ipccsd(self, nroots=1, left=False, koopmans=False, guess=None, partition=None, eris=None, kptlist=None): from pyscf.pbc.cc import eom_kccsd_rhf return eom_kccsd_rhf.EOMIP(self).kernel(nroots=nroots, left=left, koopmans=koopmans, guess=guess, partition=partition, eris=eris, kptlist=kptlist)
[docs] def eaccsd(self, nroots=1, left=False, koopmans=False, guess=None, partition=None, eris=None, kptlist=None): from pyscf.pbc.cc import eom_kccsd_rhf return eom_kccsd_rhf.EOMEA(self).kernel(nroots=nroots, left=left, koopmans=koopmans, guess=guess, partition=partition, eris=eris, kptlist=kptlist)
[docs] def ao2mo(self, mo_coeff=None): return _ERIS(self, mo_coeff)
to_gpu = lib.to_gpu ##################################### # Wrapper functions for IP/EA-EOM ##################################### # TODO: ip/ea _matvec and _diag functions are not needed in pyscf-1.7 or # higher. Remove these wrapper functions in future release
[docs] def ipccsd_matvec(self, vector, kshift): from pyscf.pbc.cc import eom_kccsd_rhf if not self.imds.made_ip_imds: self.imds.make_ip(self.ip_partition) imds = self.imds myeom = eom_kccsd_rhf.EOMIP(self) return myeom.matvec(vector, kshift, imds=imds)
[docs] def ipccsd_diag(self, kshift): from pyscf.pbc.cc import eom_kccsd_rhf if not self.imds.made_ip_imds: self.imds.make_ip(self.ip_partition) imds = self.imds myeom = eom_kccsd_rhf.EOMIP(self) return myeom.get_diag(kshift, imds=imds)
[docs] def eaccsd_matvec(self, vector, kshift): from pyscf.pbc.cc import eom_kccsd_rhf if not self.imds.made_ea_imds: self.imds.make_ea(self.ea_partition) imds = self.imds myeom = eom_kccsd_rhf.EOMEA(self) return myeom.matvec(vector, kshift, imds=imds)
[docs] def eaccsd_diag(self, kshift): from pyscf.pbc.cc import eom_kccsd_rhf if not self.imds.made_ea_imds: self.imds.make_ea(self.ea_partition) imds = self.imds myeom = eom_kccsd_rhf.EOMEA(self) return myeom.get_diag(kshift, imds=imds)
@property def imds(self): if self.__imds__ is None: self.__imds__ = _IMDS(self) return self.__imds__
########################################### # End of Wrapper functions for IP/EA-EOM ########################################### KRCCSD = RCCSD ####################################### # # _ERIS. # # Note the two electron integrals are stored in different orders from # kccsd_uhf._ERIS. Integrals (ab|cd) are stored as [ka,kc,kb,a,c,b,d] here # while the order is [ka,kb,kc,a,b,c,d] in kccsd_uhf._ERIS # # TODO: use the same convention as kccsd_uhf # class _ERIS: # (pyscf.cc.ccsd._ChemistsERIs): def __init__(self, cc, mo_coeff=None, method='incore'): from pyscf.pbc import tools from pyscf.pbc.cc.ccsd import _adjust_occ log = logger.Logger(cc.stdout, cc.verbose) cput0 = (logger.process_clock(), logger.perf_counter()) cell = cc._scf.cell kpts = cc.kpts nkpts = cc.nkpts nocc = cc.nocc nmo = cc.nmo nvir = nmo - nocc # if any(nocc != np.count_nonzero(cc._scf.mo_occ[k]>0) # for k in range(nkpts)): # raise NotImplementedError('Different occupancies found for different k-points') if mo_coeff is None: mo_coeff = cc.mo_coeff dtype = mo_coeff[0].dtype mo_coeff = self.mo_coeff = padded_mo_coeff(cc, mo_coeff) # Re-make our fock MO matrix elements from density and fock AO dm = cc._scf.make_rdm1(cc.mo_coeff, cc.mo_occ) exxdiv = cc._scf.exxdiv if cc.keep_exxdiv else None with lib.temporary_env(cc._scf, exxdiv=exxdiv): # _scf.exxdiv affects eris.fock. HF exchange correction should be # excluded from the Fock matrix. vhf = cc._scf.get_veff(cell, dm) fockao = cc._scf.get_hcore() + vhf self.fock = np.asarray([reduce(np.dot, (mo.T.conj(), fockao[k], mo)) for k, mo in enumerate(mo_coeff)]) self.mo_energy = [self.fock[k].diagonal().real for k in range(nkpts)] if not cc.keep_exxdiv: self.mo_energy = [self.fock[k].diagonal().real for k in range(nkpts)] # Add HFX correction in the self.mo_energy to improve convergence in # CCSD iteration. It is useful for the 2D systems since their occupied and # the virtual orbital energies may overlap which may lead to numerical # issue in the CCSD iterations. # FIXME: Whether to add this correction for other exxdiv treatments? # Without the correction, MP2 energy may be largely off the correct value. madelung = tools.madelung(cell, kpts) self.mo_energy = [_adjust_occ(mo_e, nocc, -madelung) for k, mo_e in enumerate(self.mo_energy)] # Get location of padded elements in occupied and virtual space. nocc_per_kpt = get_nocc(cc, per_kpoint=True) nonzero_padding = padding_k_idx(cc, kind="joint") # Check direct and indirect gaps for possible issues with CCSD convergence. mo_e = [self.mo_energy[kp][nonzero_padding[kp]] for kp in range(nkpts)] mo_e = np.sort([y for x in mo_e for y in x]) # Sort de-nested array gap = mo_e[np.sum(nocc_per_kpt)] - mo_e[np.sum(nocc_per_kpt)-1] if gap < 1e-5: logger.warn(cc, 'HOMO-LUMO gap %s too small for KCCSD. ' 'May cause issues in convergence.', gap) mem_incore, mem_outcore, mem_basic = _mem_usage(nkpts, nocc, nvir) mem_now = lib.current_memory()[0] fao2mo = cc._scf.with_df.ao2mo khelper = cc.khelper kconserv = khelper.kconserv khelper.build_symm_map() orbv = np.asarray(mo_coeff[:,:,nocc:], order='C') if (method == 'incore' and (mem_incore + mem_now < cc.max_memory) or cell.incore_anyway): log.info('using incore ERI storage') self.oooo = np.empty((nkpts,nkpts,nkpts,nocc,nocc,nocc,nocc), dtype=dtype) self.ooov = np.empty((nkpts,nkpts,nkpts,nocc,nocc,nocc,nvir), dtype=dtype) self.oovv = np.empty((nkpts,nkpts,nkpts,nocc,nocc,nvir,nvir), dtype=dtype) self.ovov = np.empty((nkpts,nkpts,nkpts,nocc,nvir,nocc,nvir), dtype=dtype) self.voov = np.empty((nkpts,nkpts,nkpts,nvir,nocc,nocc,nvir), dtype=dtype) self.vovv = np.empty((nkpts,nkpts,nkpts,nvir,nocc,nvir,nvir), dtype=dtype) #self.vvvv = np.empty((nkpts,nkpts,nkpts,nvir,nvir,nvir,nvir), dtype=dtype) self.vvvv = cc._scf.with_df.ao2mo_7d(orbv, factor=1./nkpts).transpose(0,2,1,3,5,4,6) for (ikp,ikq,ikr) in khelper.symm_map.keys(): iks = kconserv[ikp,ikq,ikr] eri_kpt = fao2mo((mo_coeff[ikp],mo_coeff[ikq],mo_coeff[ikr],mo_coeff[iks]), (kpts[ikp],kpts[ikq],kpts[ikr],kpts[iks]), compact=False) if dtype == np.double: eri_kpt = eri_kpt.real eri_kpt = eri_kpt.reshape(nmo, nmo, nmo, nmo) for (kp, kq, kr) in khelper.symm_map[(ikp, ikq, ikr)]: eri_kpt_symm = khelper.transform_symm(eri_kpt, kp, kq, kr).transpose(0, 2, 1, 3) self.oooo[kp, kr, kq] = eri_kpt_symm[:nocc, :nocc, :nocc, :nocc] / nkpts self.ooov[kp, kr, kq] = eri_kpt_symm[:nocc, :nocc, :nocc, nocc:] / nkpts self.oovv[kp, kr, kq] = eri_kpt_symm[:nocc, :nocc, nocc:, nocc:] / nkpts self.ovov[kp, kr, kq] = eri_kpt_symm[:nocc, nocc:, :nocc, nocc:] / nkpts self.voov[kp, kr, kq] = eri_kpt_symm[nocc:, :nocc, :nocc, nocc:] / nkpts self.vovv[kp, kr, kq] = eri_kpt_symm[nocc:, :nocc, nocc:, nocc:] / nkpts #self.vvvv[kp, kr, kq] = eri_kpt_symm[nocc:, nocc:, nocc:, nocc:] / nkpts self.dtype = dtype else: log.info('using HDF5 ERI storage') self.feri1 = lib.H5TmpFile() self.oooo = self.feri1.create_dataset('oooo', (nkpts, nkpts, nkpts, nocc, nocc, nocc, nocc), dtype.char) self.ooov = self.feri1.create_dataset('ooov', (nkpts, nkpts, nkpts, nocc, nocc, nocc, nvir), dtype.char) self.oovv = self.feri1.create_dataset('oovv', (nkpts, nkpts, nkpts, nocc, nocc, nvir, nvir), dtype.char) self.ovov = self.feri1.create_dataset('ovov', (nkpts, nkpts, nkpts, nocc, nvir, nocc, nvir), dtype.char) self.voov = self.feri1.create_dataset('voov', (nkpts, nkpts, nkpts, nvir, nocc, nocc, nvir), dtype.char) self.vovv = self.feri1.create_dataset('vovv', (nkpts, nkpts, nkpts, nvir, nocc, nvir, nvir), dtype.char) vvvv_required = ((not cc.direct) # cc._scf.with_df needs to be df.GDF only (not MDF) or not isinstance(cc._scf.with_df, (GDF, RSGDF)) # direct-vvvv for pbc-2D is not supported so far or cell.dimension == 2) if vvvv_required: self.vvvv = self.feri1.create_dataset('vvvv', (nkpts,nkpts,nkpts,nvir,nvir,nvir,nvir), dtype.char) else: self.vvvv = None # <ij|pq> = (ip|jq) cput1 = logger.process_clock(), logger.perf_counter() for kp in range(nkpts): for kq in range(nkpts): for kr in range(nkpts): ks = kconserv[kp, kq, kr] orbo_p = mo_coeff[kp][:, :nocc] orbo_r = mo_coeff[kr][:, :nocc] buf_kpt = fao2mo((orbo_p, mo_coeff[kq], orbo_r, mo_coeff[ks]), (kpts[kp], kpts[kq], kpts[kr], kpts[ks]), compact=False) if mo_coeff[0].dtype == np.double: buf_kpt = buf_kpt.real buf_kpt = buf_kpt.reshape(nocc, nmo, nocc, nmo).transpose(0, 2, 1, 3) self.dtype = buf_kpt.dtype self.oooo[kp, kr, kq, :, :, :, :] = buf_kpt[:, :, :nocc, :nocc] / nkpts self.ooov[kp, kr, kq, :, :, :, :] = buf_kpt[:, :, :nocc, nocc:] / nkpts self.oovv[kp, kr, kq, :, :, :, :] = buf_kpt[:, :, nocc:, nocc:] / nkpts cput1 = log.timer_debug1('transforming oopq', *cput1) # <ia|pq> = (ip|aq) cput1 = logger.process_clock(), logger.perf_counter() for kp in range(nkpts): for kq in range(nkpts): for kr in range(nkpts): ks = kconserv[kp, kq, kr] orbo_p = mo_coeff[kp][:, :nocc] orbv_r = mo_coeff[kr][:, nocc:] buf_kpt = fao2mo((orbo_p, mo_coeff[kq], orbv_r, mo_coeff[ks]), (kpts[kp], kpts[kq], kpts[kr], kpts[ks]), compact=False) if mo_coeff[0].dtype == np.double: buf_kpt = buf_kpt.real buf_kpt = buf_kpt.reshape(nocc, nmo, nvir, nmo).transpose(0, 2, 1, 3) self.ovov[kp, kr, kq, :, :, :, :] = buf_kpt[:, :, :nocc, nocc:] / nkpts # TODO: compute vovv on the fly self.vovv[kr, kp, ks, :, :, :, :] = buf_kpt[:, :, nocc:, nocc:].transpose(1, 0, 3, 2) / nkpts self.voov[kr, kp, ks, :, :, :, :] = buf_kpt[:, :, nocc:, :nocc].transpose(1, 0, 3, 2) / nkpts cput1 = log.timer_debug1('transforming ovpq', *cput1) ## Without k-point symmetry # cput1 = logger.process_clock(), logger.perf_counter() # for kp in range(nkpts): # for kq in range(nkpts): # for kr in range(nkpts): # ks = kconserv[kp,kq,kr] # orbv_p = mo_coeff[kp][:,nocc:] # orbv_q = mo_coeff[kq][:,nocc:] # orbv_r = mo_coeff[kr][:,nocc:] # orbv_s = mo_coeff[ks][:,nocc:] # for a in range(nvir): # orbva_p = orbv_p[:,a].reshape(-1,1) # buf_kpt = fao2mo((orbva_p,orbv_q,orbv_r,orbv_s), # (kpts[kp],kpts[kq],kpts[kr],kpts[ks]), compact=False) # if mo_coeff[0].dtype == np.double: buf_kpt = buf_kpt.real # buf_kpt = buf_kpt.reshape((1,nvir,nvir,nvir)).transpose(0,2,1,3) # self.vvvv[kp,kr,kq,a,:,:,:] = buf_kpt[:] / nkpts # cput1 = log.timer_debug1('transforming vvvv', *cput1) cput1 = logger.process_clock(), logger.perf_counter() mem_now = lib.current_memory()[0] if not vvvv_required: _init_df_eris(cc, self) elif nvir ** 4 * 16 / 1e6 + mem_now < cc.max_memory: for (ikp, ikq, ikr) in khelper.symm_map.keys(): iks = kconserv[ikp, ikq, ikr] orbv_p = mo_coeff[ikp][:, nocc:] orbv_q = mo_coeff[ikq][:, nocc:] orbv_r = mo_coeff[ikr][:, nocc:] orbv_s = mo_coeff[iks][:, nocc:] # unit cell is small enough to handle vvvv in-core buf_kpt = fao2mo((orbv_p,orbv_q,orbv_r,orbv_s), kpts[[ikp,ikq,ikr,iks]], compact=False) if dtype == np.double: buf_kpt = buf_kpt.real buf_kpt = buf_kpt.reshape((nvir, nvir, nvir, nvir)) for (kp, kq, kr) in khelper.symm_map[(ikp, ikq, ikr)]: buf_kpt_symm = khelper.transform_symm(buf_kpt, kp, kq, kr).transpose(0, 2, 1, 3) self.vvvv[kp, kr, kq] = buf_kpt_symm / nkpts else: raise MemoryError('Minimal memory requirements %s MB' % (mem_now + nvir ** 4 / 1e6 * 16 * 2)) for (ikp, ikq, ikr) in khelper.symm_map.keys(): for a in range(nvir): orbva_p = orbv_p[:, a].reshape(-1, 1) buf_kpt = fao2mo((orbva_p, orbv_q, orbv_r, orbv_s), (kpts[ikp], kpts[ikq], kpts[ikr], kpts[iks]), compact=False) if mo_coeff[0].dtype == np.double: buf_kpt = buf_kpt.real buf_kpt = buf_kpt.reshape((1, nvir, nvir, nvir)).transpose(0, 2, 1, 3) self.vvvv[ikp, ikr, ikq, a, :, :, :] = buf_kpt[0, :, :, :] / nkpts # Store symmetric permutations self.vvvv[ikr, ikp, iks, :, a, :, :] = buf_kpt.transpose(1, 0, 3, 2)[:, 0, :, :] / nkpts self.vvvv[ikq, iks, ikp, :, :, a, :] = buf_kpt.transpose(2, 3, 0, 1).conj()[:, :, 0, :] / nkpts self.vvvv[iks, ikq, ikr, :, :, :, a] = buf_kpt.transpose(3, 2, 1, 0).conj()[:, :, :, 0] / nkpts cput1 = log.timer_debug1('transforming vvvv', *cput1) log.timer('CCSD integral transformation', *cput0) def _init_df_eris(cc, eris): from pyscf.ao2mo import _ao2mo if cc._scf.with_df._cderi is None: cc._scf.with_df.build() cell = cc._scf.cell if cell.dimension == 2: # 2D ERIs are not positive definite. The 3-index tensors are stored in # two part. One corresponds to the positive part and one corresponds # to the negative part. The negative part is not considered in the # DF-driven CCSD implementation. raise NotImplementedError nocc = cc.nocc nmo = cc.nmo nvir = nmo - nocc nao = cell.nao_nr() kpts = getattr(cc.kpts, 'kpts', cc.kpts) nkpts = len(kpts) #naux = cc._scf.with_df.get_naoaux() if gamma_point(kpts): dtype = np.double else: dtype = np.complex128 dtype = np.result_type(dtype, *eris.mo_coeff) eris.Lpv = Lpv = np.empty((nkpts,nkpts), dtype=object) tao = [] ao_loc = None # with df.CDERIArray(cc._scf.with_df._cderi) as cderi_array: # for ki in range(nkpts): # for kj in range(nkpts): # Lpq = cderi_array[ki,kj] for ki, kpti in enumerate(kpts): for kj, kptj in enumerate(kpts): kpti_kptj = np.array((kpti, kptj)) # This loader is compatible with the old GDF format with df._load3c(cc._scf.with_df._cderi, 'j3c', kpti_kptj) as j3c: Lpq = np.asarray(j3c) mo = np.hstack((eris.mo_coeff[ki], eris.mo_coeff[kj][:, nocc:])) mo = np.asarray(mo, dtype=dtype, order='F') if dtype == np.double: out = _ao2mo.nr_e2(Lpq, mo, (0, nmo, nmo, nmo + nvir), aosym='s2') else: #Note: Lpq.shape[0] != naux if linear dependency is found in auxbasis if Lpq[0].size != nao**2: # aosym = 's2' Lpq = lib.unpack_tril(Lpq).astype(np.complex128) out = _ao2mo.r_e2(Lpq, mo, (0, nmo, nmo, nmo + nvir), tao, ao_loc) Lpv[ki,kj] = out.reshape(-1,nmo,nvir) return eris # TODO: Remove _IMDS imd = imdk class _IMDS: # Identical to molecular rccsd_slow def __init__(self, cc): self.verbose = cc.verbose self.stdout = cc.stdout self.t1 = cc.t1 self.t2 = cc.t2 self.eris = cc.eris self.kconserv = cc.khelper.kconserv self.made_ip_imds = False self.made_ea_imds = False self._made_shared_2e = False # TODO: check whether to hold all stuff in memory if getattr(self.eris, "feri1", None): self._fimd = lib.H5TmpFile() else: self._fimd = None def _make_shared_1e(self): cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(self.stdout, self.verbose) t1, t2, eris = self.t1, self.t2, self.eris kconserv = self.kconserv self.Loo = imd.Loo(t1, t2, eris, kconserv) self.Lvv = imd.Lvv(t1, t2, eris, kconserv) self.Fov = imd.cc_Fov(t1, t2, eris, kconserv) log.timer('EOM-CCSD shared one-electron intermediates', *cput0) def _make_shared_2e(self): cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(self.stdout, self.verbose) t1, t2, eris = self.t1, self.t2, self.eris kconserv = self.kconserv if self._fimd is not None: nkpts, nocc, nvir = t1.shape ovov_dest = self._fimd.create_dataset('ovov', (nkpts, nkpts, nkpts, nocc, nvir, nocc, nvir), t1.dtype.char) ovvo_dest = self._fimd.create_dataset('ovvo', (nkpts, nkpts, nkpts, nocc, nvir, nvir, nocc), t1.dtype.char) else: ovov_dest = ovvo_dest = None # 2 virtuals self.Wovov = imd.Wovov(t1, t2, eris, kconserv, ovov_dest) self.Wovvo = imd.Wovvo(t1, t2, eris, kconserv, ovvo_dest) self.Woovv = eris.oovv log.timer('EOM-CCSD shared two-electron intermediates', *cput0) def make_ip(self, ip_partition=None): self._make_shared_1e() if self._made_shared_2e is False and ip_partition != 'mp': self._make_shared_2e() self._made_shared_2e = True cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(self.stdout, self.verbose) t1, t2, eris = self.t1, self.t2, self.eris kconserv = self.kconserv if self._fimd is not None: nkpts, nocc, nvir = t1.shape oooo_dest = self._fimd.create_dataset('oooo', (nkpts, nkpts, nkpts, nocc, nocc, nocc, nocc), t1.dtype.char) ooov_dest = self._fimd.create_dataset('ooov', (nkpts, nkpts, nkpts, nocc, nocc, nocc, nvir), t1.dtype.char) ovoo_dest = self._fimd.create_dataset('ovoo', (nkpts, nkpts, nkpts, nocc, nvir, nocc, nocc), t1.dtype.char) else: oooo_dest = ooov_dest = ovoo_dest = None # 0 or 1 virtuals if ip_partition != 'mp': self.Woooo = imd.Woooo(t1, t2, eris, kconserv, oooo_dest) self.Wooov = imd.Wooov(t1, t2, eris, kconserv, ooov_dest) self.Wovoo = imd.Wovoo(t1, t2, eris, kconserv, ovoo_dest) self.made_ip_imds = True log.timer('EOM-CCSD IP intermediates', *cput0) def make_ea(self, ea_partition=None): self._make_shared_1e() if self._made_shared_2e is False and ea_partition != 'mp': self._make_shared_2e() self._made_shared_2e = True cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(self.stdout, self.verbose) t1, t2, eris = self.t1, self.t2, self.eris kconserv = self.kconserv if self._fimd is not None: nkpts, nocc, nvir = t1.shape vovv_dest = self._fimd.create_dataset('vovv', (nkpts, nkpts, nkpts, nvir, nocc, nvir, nvir), t1.dtype.char) vvvo_dest = self._fimd.create_dataset('vvvo', (nkpts, nkpts, nkpts, nvir, nvir, nvir, nocc), t1.dtype.char) vvvv_dest = self._fimd.create_dataset('vvvv', (nkpts, nkpts, nkpts, nvir, nvir, nvir, nvir), t1.dtype.char) else: vovv_dest = vvvo_dest = vvvv_dest = None # 3 or 4 virtuals self.Wvovv = imd.Wvovv(t1, t2, eris, kconserv, vovv_dest) if ea_partition == 'mp' and np.all(t1 == 0): self.Wvvvo = imd.Wvvvo(t1, t2, eris, kconserv, vvvo_dest) else: self.Wvvvv = imd.Wvvvv(t1, t2, eris, kconserv, vvvv_dest) self.Wvvvo = imd.Wvvvo(t1, t2, eris, kconserv, self.Wvvvv, vvvo_dest) self.made_ea_imds = True log.timer('EOM-CCSD EA intermediates', *cput0) def make_ee(self): raise NotImplementedError def _mem_usage(nkpts, nocc, nvir): incore = nkpts ** 3 * (nocc + nvir) ** 4 # Roughly, factor of two for intermediates and factor of two # for safety (temp arrays, copying, etc) incore *= 4 # TODO: Improve incore estimate and add outcore estimate outcore = basic = incore return incore * 16 / 1e6, outcore * 16 / 1e6, basic * 16 / 1e6 scf.khf.KRHF.CCSD = lib.class_as_method(KRCCSD) scf.krohf.KROHF.CCSD = None if __name__ == '__main__': from pyscf.pbc import gto, cc cell = gto.Cell() cell.atom = ''' C 0.000000000000 0.000000000000 0.000000000000 C 1.685068664391 1.685068664391 1.685068664391 ''' cell.basis = 'gth-szv' cell.pseudo = 'gth-pade' cell.a = ''' 0.000000000, 3.370137329, 3.370137329 3.370137329, 0.000000000, 3.370137329 3.370137329, 3.370137329, 0.000000000''' cell.unit = 'B' cell.verbose = 5 cell.build() # Running HF and CCSD with 1x1x2 Monkhorst-Pack k-point mesh kmf = scf.KRHF(cell, kpts=cell.make_kpts([1, 1, 2]), exxdiv=None) kmf.conv_tol_grad = 1e-8 ehf = kmf.kernel() mycc = cc.KRCCSD(kmf) #mycc.conv_tol = 1e-10 #mycc.conv_tol_normt = 1e-10 ecc, t1, t2 = mycc.kernel() print(ecc - -0.155298393321855) #e_ip, _ = mycc.ipccsd(nroots=3, kptlist=(0,)) mycc.max_cycle = 100 e_ea, _ = mycc.eaccsd(nroots=1, koopmans=True, kptlist=(0,)) #print(e_ip, e_ea) #### cell = gto.Cell() cell.atom = ''' He 0.000000000000 0.000000000000 0.000000000000 He 1.685068664391 1.685068664391 1.685068664391 ''' cell.basis = [[0, (1., 1.)], [0, (.5, 1.)]] cell.a = ''' 0.000000000, 3.370137329, 3.370137329 3.370137329, 0.000000000, 3.370137329 3.370137329, 3.370137329, 0.000000000''' cell.unit = 'B' cell.build() np.random.seed(2) # Running HF and CCSD with 1x1x2 Monkhorst-Pack k-point mesh kmf = scf.KRHF(cell, kpts=cell.make_kpts([1, 1, 3]), exxdiv=None) nmo = cell.nao_nr() kmf.mo_occ = np.zeros((3, nmo)) kmf.mo_occ[:, :2] = 2 kmf.mo_energy = np.arange(nmo) + np.random.random((3, nmo)) * .3 kmf.mo_energy[kmf.mo_occ == 0] += 2 kmf.mo_coeff = (np.random.random((3, nmo, nmo)) + np.random.random((3, nmo, nmo)) * 1j - .5 - .5j) def rand_t1_t2(mycc): nkpts = mycc.nkpts nocc = mycc.nocc nmo = mycc.nmo nvir = nmo - nocc np.random.seed(1) t1 = (np.random.random((nkpts, nocc, nvir)) + np.random.random((nkpts, nocc, nvir)) * 1j - .5 - .5j) t2 = (np.random.random((nkpts, nkpts, nkpts, nocc, nocc, nvir, nvir)) + np.random.random((nkpts, nkpts, nkpts, nocc, nocc, nvir, nvir)) * 1j - .5 - .5j) kconserv = kpts_helper.get_kconserv(kmf.cell, kmf.kpts) Ps = kconserve_pmatrix(nkpts, kconserv) t2 = t2 + np.einsum('xyzijab,xyzw->yxwjiba', t2, Ps) return t1, t2 mycc = KRCCSD(kmf) eris = mycc.ao2mo() t1, t2 = rand_t1_t2(mycc) Ht1, Ht2 = mycc.update_amps(t1, t2, eris) print(lib.finger(Ht1) - (6.63584725357554 -0.1886803958548149j)) print(lib.finger(Ht2) - (-23.10640514550505 -142.54473917246457j)) kmf = kmf.density_fit(auxbasis=[[0, (2., 1.)], [0, (1., 1.)], [0, (.5, 1.)]]) mycc = KRCCSD(kmf) eris = _ERIS(mycc, mycc.mo_coeff, method='outcore') t1, t2 = rand_t1_t2(mycc) Ht1, Ht2 = mycc.update_amps(t1, t2, eris) print(lib.finger(Ht1) - (6.608150224325518 -0.2219476427503148j)) print(lib.finger(Ht2) - (-23.253955060531297-137.76211601171295j))