Source code for pyscf.pbc.adc.kadc_rhf_ip

# Copyright 2014-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Samragni Banerjee <samragnibanerjee4@gmail.com>
#         Alexander Sokolov <alexander.y.sokolov@gmail.com>
#

import time
import numpy as np
import pyscf.ao2mo as ao2mo
import pyscf.adc
import pyscf.adc.radc
from pyscf.adc import radc_ao2mo
import itertools

from itertools import product
from pyscf import lib
from pyscf.pbc import scf
from pyscf.pbc import df
from pyscf.pbc import mp
from pyscf.lib import logger
from pyscf.pbc.adc import kadc_rhf
from pyscf.pbc.adc import kadc_ao2mo
from pyscf.pbc.adc import dfadc
from pyscf import __config__
from pyscf.pbc.mp.kmp2 import (get_nocc, get_nmo, padding_k_idx,_padding_k_idx,
                               padded_mo_coeff, get_frozen_mask, _add_padding)
from pyscf.pbc.cc.kccsd_rhf import _get_epq
from pyscf.pbc.cc.kccsd_t_rhf import _get_epqr
from pyscf.pbc.lib import kpts_helper
from pyscf.lib.parameters import LOOSE_ZERO_TOL, LARGE_DENOM  # noqa

from pyscf.pbc import tools
import h5py
import tempfile

[docs] def vector_size(adc): nkpts = adc.nkpts nocc = adc.nocc nvir = adc.nmo - adc.nocc n_singles = nocc n_doubles = nkpts * nkpts * nvir * nocc * nocc size = n_singles + n_doubles return size
[docs] def get_imds(adc, eris=None): cput0 = (time.process_time(), time.time()) log = logger.Logger(adc.stdout, adc.verbose) if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) method = adc.method nkpts = adc.nkpts mo_energy = adc.mo_energy mo_coeff = adc.mo_coeff nocc = adc.nocc kconserv = adc.khelper.kconserv mo_coeff, mo_energy = _add_padding(adc, mo_coeff, mo_energy) e_occ = [mo_energy[k][:nocc] for k in range(nkpts)] e_vir = [mo_energy[k][nocc:] for k in range(nkpts)] e_occ = np.array(e_occ) e_vir = np.array(e_vir) idn_occ = np.identity(nocc) M_ij = np.empty((nkpts,nocc,nocc),dtype=mo_coeff.dtype) if eris is None: eris = adc.transform_integrals() # i-j block # Zeroth-order terms t2_1 = adc.t2[0] eris_ovov = eris.ovov for ki in range(nkpts): kj = ki M_ij[ki] = lib.einsum('ij,j->ij', idn_occ , e_occ[kj]) for kl in range(nkpts): for kd in range(nkpts): ke = kconserv[kj,kd,kl] t2_1 = adc.t2[0] t2_1_ild = adc.t2[0][ki,kl,kd] M_ij[ki] += 0.5 * 0.5 * \ lib.einsum('ilde,jdle->ij',t2_1_ild, eris_ovov[kj,kd,kl],optimize=True) M_ij[ki] -= 0.5 * 0.5 * \ lib.einsum('ilde,jeld->ij',t2_1_ild, eris_ovov[kj,ke,kl],optimize=True) M_ij[ki] += 0.5 * lib.einsum('ilde,jdle->ij',t2_1_ild, eris_ovov[kj,kd,kl],optimize=True) del t2_1_ild t2_1_lid = adc.t2[0][kl,ki,kd] M_ij[ki] -= 0.5 * 0.5 * \ lib.einsum('lide,jdle->ij',t2_1_lid, eris_ovov[kj,kd,kl],optimize=True) M_ij[ki] += 0.5 * 0.5 * \ lib.einsum('lide,jeld->ij',t2_1_lid, eris_ovov[kj,ke,kl],optimize=True) del t2_1_lid t2_1_jld = adc.t2[0][kj,kl,kd] M_ij[ki] += 0.5 * 0.5 * \ lib.einsum('jlde,idle->ij',t2_1_jld.conj(), eris_ovov[ki,kd,kl].conj(),optimize=True) M_ij[ki] -= 0.5 * 0.5 * \ lib.einsum('jlde,ield->ij',t2_1_jld.conj(), eris_ovov[ki,ke,kl].conj(),optimize=True) M_ij[ki] += 0.5 * lib.einsum('jlde,idle->ij',t2_1_jld.conj(), eris_ovov[ki,kd,kl].conj(),optimize=True) del t2_1_jld t2_1_ljd = adc.t2[0][kl,kj,kd] M_ij[ki] -= 0.5 * 0.5 * \ lib.einsum('ljde,idle->ij',t2_1_ljd.conj(), eris_ovov[ki,kd,kl].conj(),optimize=True) M_ij[ki] += 0.5 * 0.5 * \ lib.einsum('ljde,ield->ij',t2_1_ljd.conj(), eris_ovov[ki,ke,kl].conj(),optimize=True) del t2_1_ljd del t2_1 cput0 = log.timer_debug1("Completed M_ij second-order terms ADC(2) calculation", *cput0) if (method == "adc(3)"): t1_2 = adc.t1[0] eris_ovoo = eris.ovoo eris_ovvo = eris.ovvo eris_oovv = eris.oovv eris_oooo = eris.oooo for ki in range(nkpts): kj = ki for kl in range(nkpts): kd = kconserv[kj,ki,kl] M_ij[ki] += 2. * lib.einsum('ld,ldji->ij',t1_2[kl], eris_ovoo[kl,kd,kj],optimize=True) M_ij[ki] -= lib.einsum('ld,jdli->ij',t1_2[kl], eris_ovoo[kj,kd,kl],optimize=True) kd = kconserv[ki,kj,kl] M_ij[ki] += 2. * lib.einsum('ld,ldij->ij',t1_2[kl].conj(), eris_ovoo[kl,kd,ki].conj(),optimize=True) M_ij[ki] -= lib.einsum('ld,idlj->ij',t1_2[kl].conj(), eris_ovoo[ki,kd,kl].conj(),optimize=True) for kd in range(nkpts): t2_1 = adc.t2[0] ke = kconserv[kj,kd,kl] t2_2_ild = adc.t2[1][ki,kl,kd] M_ij[ki] += 0.5 * 0.5* \ lib.einsum('ilde,jdle->ij',t2_2_ild, eris_ovov[kj,kd,kl],optimize=True) M_ij[ki] -= 0.5 * 0.5* \ lib.einsum('ilde,jeld->ij',t2_2_ild, eris_ovov[kj,ke,kl],optimize=True) M_ij[ki] += 0.5 * \ lib.einsum('ilde,jdle->ij',t2_2_ild, eris_ovov[kj,kd,kl],optimize=True) del t2_2_ild t2_2_lid = adc.t2[1][kl,ki,kd] M_ij[ki] -= 0.5 * 0.5* \ lib.einsum('lide,jdle->ij',t2_2_lid, eris_ovov[kj,kd,kl],optimize=True) M_ij[ki] += 0.5 * 0.5* \ lib.einsum('lide,jeld->ij',t2_2_lid, eris_ovov[kj,ke,kl],optimize=True) t2_2_jld = adc.t2[1][kj,kl,kd] M_ij[ki] += 0.5 * 0.5* \ lib.einsum('jlde,leid->ij',t2_2_jld.conj(), eris_ovov[kl,ke,ki].conj(),optimize=True) M_ij[ki] -= 0.5 * 0.5* \ lib.einsum('jlde,ield->ij',t2_2_jld.conj(), eris_ovov[ki,ke,kl].conj(),optimize=True) M_ij[ki] += 0.5 * lib.einsum('jlde,leid->ij',t2_2_jld.conj(), eris_ovov[kl,ke,ki].conj(),optimize=True) t2_2_ljd = adc.t2[1][kl,kj,kd] M_ij[ki] -= 0.5 * 0.5* \ lib.einsum('ljde,leid->ij',t2_2_ljd.conj(), eris_ovov[kl,ke,ki].conj(),optimize=True) M_ij[ki] += 0.5 * 0.5* \ lib.einsum('ljde,ield->ij',t2_2_ljd.conj(), eris_ovov[ki,ke,kl].conj(),optimize=True) for km, ke, kd in kpts_helper.loop_kkk(nkpts): t2_1 = adc.t2[0] kl = kconserv[kd,km,ke] kf = kconserv[kj,kd,kl] temp_t2_v_1 = lib.einsum( 'lmde,jldf->mejf',t2_1[kl,km,kd].conj(), t2_1[kj,kl,kd],optimize=True) M_ij[ki] -= 0.5 * 2 * lib.einsum('mejf,ifem->ij', temp_t2_v_1, eris_ovvo[ki,kf,ke],optimize=True) M_ij[ki] -= 0.5 * 2 * lib.einsum('meif,jfem->ij',temp_t2_v_1.conj(), eris_ovvo[kj,kf,ke].conj(),optimize=True) M_ij[ki] += 0.5 * lib.einsum('mejf,imef->ij', temp_t2_v_1, eris_oovv[ki,km,ke],optimize=True) M_ij[ki] += 0.5 * lib.einsum('meif,jmef->ij',temp_t2_v_1.conj(), eris_oovv[kj,km,ke].conj(),optimize=True) temp_t2_v_new = lib.einsum( 'mlde,ljdf->mejf',t2_1[km,kl,kd].conj(), t2_1[kl,kj,kd],optimize=True) M_ij[ki] -= 0.5 * 2 * lib.einsum('mejf,ifem->ij', temp_t2_v_new, eris_ovvo[ki,kf,ke],optimize=True) M_ij[ki] += 0.5 * lib.einsum('mejf,imef->ij', temp_t2_v_new, eris_oovv[ki,km,ke],optimize=True) M_ij[ki] -= 0.5 * 2 * lib.einsum('meif,jfem->ij',temp_t2_v_new.conj(), eris_ovvo[kj,kf,ke].conj(),optimize=True) M_ij[ki] += 0.5 * lib.einsum('meif,jmef->ij',temp_t2_v_new.conj(), eris_oovv[kj,km,ke].conj(),optimize=True) del temp_t2_v_new temp_t2_v_2 = lib.einsum( 'lmde,ljdf->mejf',t2_1[kl,km,kd].conj(), t2_1[kl,kj,kd],optimize=True) M_ij[ki] += 0.5 * 4 * lib.einsum('mejf,ifem->ij', temp_t2_v_2, eris_ovvo[ki,kf,ke],optimize=True) M_ij[ki] += 0.5 * 4 * lib.einsum('meif,jfem->ij',temp_t2_v_2.conj(), eris_ovvo[kj,kf,ke].conj(),optimize=True) M_ij[ki] -= 0.5 * 2 * lib.einsum('meif,jmef->ij',temp_t2_v_2.conj(), eris_oovv[kj,km,ke].conj(),optimize=True) M_ij[ki] -= 0.5 * 2 * lib.einsum('mejf,imef->ij', temp_t2_v_2, eris_oovv[ki,km,ke],optimize=True) del temp_t2_v_2 temp_t2_v_3 = lib.einsum( 'mlde,jldf->mejf',t2_1[km,kl,kd].conj(), t2_1[kj,kl,kd],optimize=True) M_ij[ki] += 0.5 * lib.einsum('mejf,ifem->ij', temp_t2_v_3, eris_ovvo[ki,kf,ke],optimize=True) M_ij[ki] += 0.5 * lib.einsum('meif,jfem->ij',temp_t2_v_3.conj(), eris_ovvo[kj,kf,ke].conj(),optimize=True) M_ij[ki] -= 0.5 *2 * lib.einsum('meif,jmef->ij',temp_t2_v_3.conj(), eris_oovv[kj,km,ke].conj(),optimize=True) M_ij[ki] -= 0.5 *2 * lib.einsum('mejf,imef->ij', temp_t2_v_3, eris_oovv[ki,km,ke],optimize=True) del temp_t2_v_3 for km, ke, kd in kpts_helper.loop_kkk(nkpts): kl = kconserv[kd,km,ke] kf = kconserv[kl,kd,km] temp_t2_v_8 = lib.einsum( 'lmdf,lmde->fe',t2_1[kl,km,kd], t2_1[kl,km,kd].conj(),optimize=True) M_ij[ki] += 3.0 * lib.einsum('fe,jief->ij',temp_t2_v_8, eris_oovv[kj,ki,ke], optimize=True) M_ij[ki] -= 1.5 * lib.einsum('fe,jfei->ij',temp_t2_v_8, eris_ovvo[kj,kf,ke], optimize=True) M_ij[ki] += lib.einsum('ef,jief->ij',temp_t2_v_8.T, eris_oovv[kj,ki,ke], optimize=True) M_ij[ki] -= 0.5 * lib.einsum('ef,jfei->ij',temp_t2_v_8.T, eris_ovvo[kj,kf,ke], optimize=True) del temp_t2_v_8 temp_t2_v_9 = lib.einsum( 'lmdf,mlde->fe',t2_1[kl,km,kd], t2_1[km,kl,kd].conj(),optimize=True) M_ij[ki] -= 1.0 * lib.einsum('fe,jief->ij',temp_t2_v_9, eris_oovv[kj,ki,ke], optimize=True) M_ij[ki] -= 1.0 * lib.einsum('ef,jief->ij',temp_t2_v_9.T, eris_oovv[kj,ki,ke], optimize=True) M_ij[ki] += 0.5 * lib.einsum('fe,jfei->ij',temp_t2_v_9, eris_ovvo[kj,kf,ke], optimize=True) M_ij[ki] += 0.5 * lib.einsum('ef,jfei->ij',temp_t2_v_9.T, eris_ovvo[kj,kf,ke], optimize=True) del temp_t2_v_9 kl = kconserv[kd,km,ke] kn = kconserv[kd,kl,ke] temp_t2_v_10 = lib.einsum( 'lnde,lmde->nm',t2_1[kl,kn,kd], t2_1[kl,km,kd].conj(),optimize=True) M_ij[ki] -= 3.0 * lib.einsum('nm,jinm->ij',temp_t2_v_10, eris_oooo[kj,ki,kn], optimize=True) M_ij[ki] -= 1.0 * lib.einsum('mn,jinm->ij',temp_t2_v_10.T, eris_oooo[kj,ki,kn], optimize=True) M_ij[ki] += 1.5 * lib.einsum('nm,jmni->ij',temp_t2_v_10, eris_oooo[kj,km,kn], optimize=True) M_ij[ki] += 0.5 * lib.einsum('mn,jmni->ij',temp_t2_v_10.T, eris_oooo[kj,km,kn], optimize=True) del temp_t2_v_10 temp_t2_v_11 = lib.einsum( 'lnde,mlde->nm',t2_1[kl,kn,kd], t2_1[km,kl,kd].conj(),optimize=True) M_ij[ki] += 1.0 * lib.einsum('nm,jinm->ij',temp_t2_v_11, eris_oooo[kj,ki,kn], optimize=True) M_ij[ki] -= 0.5 * lib.einsum('nm,jmni->ij',temp_t2_v_11, eris_oooo[kj,km,kn], optimize=True) M_ij[ki] -= 0.5 * lib.einsum('mn,jmni->ij',temp_t2_v_11.T, eris_oooo[kj,km,kn], optimize=True) M_ij[ki] += 1.0 * lib.einsum('mn,jinm->ij',temp_t2_v_11.T, eris_oooo[kj,ki,kn], optimize=True) del temp_t2_v_11 for km, ke, kd in kpts_helper.loop_kkk(nkpts): t2_1 = adc.t2[0] kl = kconserv[kd,km,ke] kn = kconserv[kd,ki,ke] temp_t2_v_12 = lib.einsum( 'inde,lmde->inlm',t2_1[ki,kn,kd].conj(), t2_1[kl,km,kd],optimize=True) M_ij[ki] += 0.5 * 1.25 * \ lib.einsum('inlm,jlnm->ij',temp_t2_v_12, eris_oooo[kj,kl,kn].conj(), optimize=True) M_ij[ki] -= 0.5 * 0.25 * \ lib.einsum('inlm,jmnl->ij',temp_t2_v_12, eris_oooo[kj,km,kn].conj(), optimize=True) M_ij[ki] += 0.5 * 1.25 * \ lib.einsum('jnlm,ilnm->ij',temp_t2_v_12.conj(), eris_oooo[ki,kl,kn], optimize=True) M_ij[ki] -= 0.5 * 0.25 * \ lib.einsum('jnlm,imnl->ij',temp_t2_v_12.conj(), eris_oooo[ki,km,kn], optimize=True) del temp_t2_v_12 temp_t2_v_12_1 = lib.einsum( 'nide,mlde->inlm',t2_1[kn,ki,kd].conj(), t2_1[km,kl,kd],optimize=True) M_ij[ki] += 0.5 * 0.25 * \ lib.einsum('inlm,jlnm->ij',temp_t2_v_12_1, eris_oooo[kj,kl,kn].conj(), optimize=True) M_ij[ki] -= 0.5 * 0.25 * \ lib.einsum('inlm,jmnl->ij',temp_t2_v_12_1, eris_oooo[kj,km,kn].conj(), optimize=True) M_ij[ki] += 0.5 * 0.25 * \ lib.einsum('jnlm,ilnm->ij',temp_t2_v_12_1.conj(), eris_oooo[ki,kl,kn], optimize=True) M_ij[ki] -= 0.5 * 0.25 * \ lib.einsum('jnlm,imnl->ij',temp_t2_v_12_1.conj(), eris_oooo[ki,km,kn], optimize=True) temp_t2_v_13 = lib.einsum( 'inde,mlde->inml',t2_1[ki,kn,kd].conj(), t2_1[km,kl,kd],optimize=True) M_ij[ki] -= 0.5 * 0.5 * \ lib.einsum('inml,jlnm->ij',temp_t2_v_13, eris_oooo[kj,kl,kn].conj(), optimize=True) M_ij[ki] += 0.5 * 0.25 * \ lib.einsum('inml,jmnl->ij',temp_t2_v_13, eris_oooo[kj,km,kn].conj(), optimize=True) M_ij[ki] -= 0.5 * 0.5 * \ lib.einsum('jnml,ilnm->ij',temp_t2_v_13.conj(), eris_oooo[ki,kl,kn], optimize=True) M_ij[ki] += 0.5 * 0.25 * \ lib.einsum('jnml,imnl->ij',temp_t2_v_13.conj(), eris_oooo[ki,km,kn], optimize=True) del temp_t2_v_13 temp_t2_v_13_1 = lib.einsum( 'nide,lmde->inml',t2_1[kn,ki,kd].conj(), t2_1[kl,km,kd],optimize=True) M_ij[ki] += 0.5 * 0.25 * \ lib.einsum('inml,jmnl->ij',temp_t2_v_13_1, eris_oooo[kj,km,kn].conj(), optimize=True) M_ij[ki] += 0.5 * 0.25 * \ lib.einsum('jnml,imnl->ij',temp_t2_v_13_1.conj(), eris_oooo[ki,km,kn], optimize=True) del temp_t2_v_13_1 return M_ij
[docs] def get_diag(adc,kshift,M_ij=None,eris=None): log = logger.Logger(adc.stdout, adc.verbose) if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) if M_ij is None: M_ij = adc.get_imds() nkpts = adc.nkpts kconserv = adc.khelper.kconserv nocc = adc.nocc n_singles = nocc nvir = adc.nmo - adc.nocc n_doubles = nkpts * nkpts * nvir * nocc * nocc dim = n_singles + n_doubles s1 = 0 f1 = n_singles s2 = f1 f2 = s2 + n_doubles mo_energy = adc.mo_energy mo_coeff = adc.mo_coeff nocc = adc.nocc mo_coeff, mo_energy = _add_padding(adc, mo_coeff, mo_energy) e_occ = [mo_energy[k][:nocc] for k in range(nkpts)] e_vir = [mo_energy[k][nocc:] for k in range(nkpts)] e_vir = np.array(e_vir) e_occ = np.array(e_occ) diag = np.zeros((dim), dtype=np.complex128) doubles = np.zeros((nkpts,nkpts,nvir*nocc*nocc),dtype=np.complex128) # Compute precond in h1-h1 block M_ij_diag = np.diagonal(M_ij[kshift]) diag[s1:f1] = M_ij_diag.copy() # Compute precond in 2p1h-2p1h block for ka in range(nkpts): for ki in range(nkpts): kj = kconserv[kshift,ki,ka] d_ij = e_occ[ki][:,None] + e_occ[kj] d_a = e_vir[ka][:,None] D_n = -d_a + d_ij.reshape(-1) doubles[ka,ki] += D_n.reshape(-1) diag[s2:f2] = doubles.reshape(-1) diag = -diag log.timer_debug1("Completed ea_diag calculation") return diag
[docs] def matvec(adc, kshift, M_ij=None, eris=None): if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) method = adc.method nkpts = adc.nkpts nocc = adc.nocc kconserv = adc.khelper.kconserv n_singles = nocc nvir = adc.nmo - adc.nocc n_doubles = nkpts * nkpts * nvir * nocc * nocc s_singles = 0 f_singles = n_singles s_doubles = f_singles f_doubles = s_doubles + n_doubles mo_energy = adc.mo_energy mo_coeff = adc.mo_coeff mo_coeff, mo_energy = _add_padding(adc, mo_coeff, mo_energy) e_occ = [mo_energy[k][:nocc] for k in range(nkpts)] e_vir = [mo_energy[k][nocc:] for k in range(nkpts)] e_vir = np.array(e_vir) e_occ = np.array(e_occ) if M_ij is None: M_ij = adc.get_imds() #Calculate sigma vector def sigma_(r): cput0 = (time.process_time(), time.time()) log = logger.Logger(adc.stdout, adc.verbose) r1 = r[s_singles:f_singles] r2 = r[s_doubles:f_doubles] r2 = r2.reshape(nkpts,nkpts,nvir,nocc,nocc) s2 = np.zeros((nkpts,nkpts,nvir,nocc,nocc), dtype=np.complex128) cell = adc.cell kpts = adc.kpts madelung = tools.madelung(cell, kpts) eris_ovoo = eris.ovoo ############ ADC(2) ij block ############################ s1 = lib.einsum('ij,j->i',M_ij[kshift],r1) ########### ADC(2) i - kja block ######################### for kj in range(nkpts): for kk in range(nkpts): ka = kconserv[kk, kshift, kj] ki = kconserv[kj, kk, ka] s1 += 2. * lib.einsum('jaki,ajk->i', eris_ovoo[kj,ka,kk].conj(), r2[ka,kj], optimize=True) s1 -= lib.einsum('kaji,ajk->i', eris_ovoo[kk,ka,kj].conj(), r2[ka,kj], optimize=True) #################### ADC(2) ajk - i block ############################ s2[ka,kj] += lib.einsum('jaki,i->ajk', eris_ovoo[kj,ka,kk], r1, optimize=True) ################# ADC(2) ajk - bil block ############################ s2[ka, kj] -= lib.einsum('a,ajk->ajk', e_vir[ka], r2[ka, kj]) s2[ka, kj] += lib.einsum('j,ajk->ajk', e_occ[kj], r2[ka, kj]) s2[ka, kj] += lib.einsum('k,ajk->ajk', e_occ[kk], r2[ka, kj]) ############### ADC(3) ajk - bil block ############################ if (method == "adc(2)-x" or method == "adc(3)"): eris_oooo = eris.oooo eris_oovv = eris.oovv eris_ovvo = eris.ovvo for kj in range(nkpts): for kk in range(nkpts): ka = kconserv[kk, kshift, kj] for kl in range(nkpts): ki = kconserv[kj, kl, kk] s2[ka,kj] -= 0.5*lib.einsum('kijl,ali->ajk', eris_oooo[kk,ki,kj], r2[ka,kl], optimize=True) s2[ka,kj] -= 0.5*lib.einsum('klji,ail->ajk', eris_oooo[kk,kl,kj],r2[ka,ki], optimize=True) for kl in range(nkpts): kb = kconserv[ka, kk, kl] s2[ka,kj] += 0.5*lib.einsum('klba,bjl->ajk', eris_oovv[kk,kl,kb],r2[kb,kj],optimize=True) kb = kconserv[kl, kj, ka] s2[ka,kj] += 0.5*lib.einsum('jabl,bkl->ajk', eris_ovvo[kj,ka,kb],r2[kb,kk],optimize=True) s2[ka,kj] -= lib.einsum('jabl,blk->ajk', eris_ovvo[kj,ka,kb],r2[kb,kl],optimize=True) kb = kconserv[ka, kj, kl] s2[ka,kj] += 0.5*lib.einsum('jlba,blk->ajk', eris_oovv[kj,kl,kb],r2[kb,kl],optimize=True) for ki in range(nkpts): kb = kconserv[ka, kk, ki] s2[ka,kj] += 0.5*lib.einsum('kiba,bji->ajk', eris_oovv[kk,ki,kb],r2[kb,kj],optimize=True) kb = kconserv[ka, kj, ki] s2[ka,kj] += 0.5*lib.einsum('jiba,bik->ajk', eris_oovv[kj,ki,kb],r2[kb,ki],optimize=True) s2[ka,kj] -= lib.einsum('jabi,bik->ajk',eris_ovvo[kj, ka,kb],r2[kb,ki],optimize=True) kb = kconserv[ki, kj, ka] s2[ka,kj] += 0.5*lib.einsum('jabi,bki->ajk', eris_ovvo[kj,ka,kb],r2[kb,kk],optimize=True) if adc.exxdiv is not None: s2 += madelung * r2 if (method == "adc(3)"): eris_ovoo = eris.ovoo ################# ADC(3) i - kja block and ajk - i ############################ for kj in range(nkpts): for kk in range(nkpts): ka = kconserv[kj,kshift,kk] for kb in range(nkpts): kc = kconserv[kj,kb,kk] t2_1 = adc.t2[0] temp_1 = lib.einsum( 'jkbc,ajk->abc',t2_1[kj,kk,kb], r2[ka,kj], optimize=True) temp = 0.25 * lib.einsum('jkbc,ajk->abc', t2_1[kj,kk,kb], r2[ka,kj], optimize=True) temp -= 0.25 * lib.einsum('jkbc,akj->abc', t2_1[kj,kk,kb], r2[ka,kk], optimize=True) temp -= 0.25 * lib.einsum('kjbc,ajk->abc', t2_1[kk,kj,kb], r2[ka,kj], optimize=True) temp += 0.25 * lib.einsum('kjbc,akj->abc', t2_1[kk,kj,kb], r2[ka,kk], optimize=True) ki = kconserv[kc,ka,kb] if isinstance(eris.ovvv, type(None)): chnk_size = adc.chnk_size if chnk_size > nocc: chnk_size = nocc a = 0 for p in range(0,nocc,chnk_size): eris_ovvv = dfadc.get_ovvv_df( adc, eris.Lov[ki,kc], eris.Lvv[ka,kb], p, chnk_size).reshape(-1,nvir,nvir,nvir)/nkpts k = eris_ovvv.shape[0] s1[a:a+k] += lib.einsum('abc,icab->i',temp_1, eris_ovvv, optimize=True) s1[a:a+k] += lib.einsum('abc,icab->i',temp, eris_ovvv, optimize=True) del eris_ovvv eris_ovvv = dfadc.get_ovvv_df( adc, eris.Lov[ki,kb], eris.Lvv[ka,kc], p, chnk_size).reshape(-1,nvir,nvir,nvir)/nkpts s1[a:a+k] -= lib.einsum('abc,ibac->i',temp, eris_ovvv, optimize=True) del eris_ovvv a += k else : eris_ovvv = eris.ovvv[:] s1 += lib.einsum('abc,icab->i',temp_1, eris_ovvv[ki,kc,ka], optimize=True) s1 += lib.einsum('abc,icab->i',temp, eris_ovvv[ki,kc,ka], optimize=True) s1 -= lib.einsum('abc,ibac->i',temp, eris_ovvv[ki,kb,ka], optimize=True) del eris_ovvv del temp del temp_1 t2_1 = adc.t2[0] for kj in range(nkpts): for kk in range(nkpts): ka = kconserv[kj, kshift, kk] for kc in range(nkpts): kb = kconserv[kj, kc, kk] ki = kconserv[kb,ka,kc] if isinstance(eris.ovvv, type(None)): chnk_size = adc.chnk_size if chnk_size > nocc: chnk_size = nocc a = 0 for p in range(0,nocc,chnk_size): eris_ovvv = dfadc.get_ovvv_df( adc, eris.Lov[ki,kc], eris.Lvv[ka,kb], p, chnk_size).reshape(-1,nvir,nvir,nvir)/nkpts k = eris_ovvv.shape[0] temp = lib.einsum( 'i,icab->cba',r1[a:a+k],eris_ovvv.conj(), optimize=True) del eris_ovvv a += k else : eris_ovvv = eris.ovvv[:] temp = lib.einsum( 'i,icab->cba',r1,eris_ovvv[ki,kc,ka].conj(),optimize=True) del eris_ovvv s2[ka,kj] += lib.einsum('cba,jkbc->ajk',temp, t2_1[kj,kk,kb].conj(), optimize=True) del temp for kj in range(nkpts): for kk in range(nkpts): ka = kconserv[kj, kshift, kk] for kb in range(nkpts): kl = kconserv[ka, kj, kb] t2_1 = adc.t2[0] temp = lib.einsum('ljba,ajk->blk',t2_1[kl,kj,kb],r2[ka,kj],optimize=True) temp_2 = lib.einsum('jlba,akj->blk',t2_1[kj,kl,kb],r2[ka,kk], optimize=True) del t2_1 t2_1_jla = adc.t2[0][kj,kl,ka] temp += lib.einsum('jlab,ajk->blk',t2_1_jla,r2[ka,kj],optimize=True) temp -= lib.einsum('jlab,akj->blk',t2_1_jla,r2[ka,kk],optimize=True) temp_1 = lib.einsum('jlab,ajk->blk',t2_1_jla,r2[ka,kj],optimize=True) temp_1 -= lib.einsum('jlab,akj->blk',t2_1_jla,r2[ka,kk],optimize=True) temp_1 += lib.einsum('jlab,ajk->blk',t2_1_jla,r2[ka,kj],optimize=True) del t2_1_jla t2_1_lja = adc.t2[0][kl,kj,ka] temp -= lib.einsum('ljab,ajk->blk',t2_1_lja,r2[ka,kj],optimize=True) temp += lib.einsum('ljab,akj->blk',t2_1_lja,r2[ka,kk],optimize=True) temp_1 -= lib.einsum('ljab,ajk->blk',t2_1_lja,r2[ka,kj],optimize=True) del t2_1_lja ki = kconserv[kk, kl, kb] s1 += 0.5*lib.einsum('blk,lbik->i',temp, eris_ovoo[kl,kb,ki],optimize=True) s1 -= 0.5*lib.einsum('blk,iblk->i',temp, eris_ovoo[ki,kb,kl],optimize=True) s1 += 0.5*lib.einsum('blk,lbik->i',temp_1,eris_ovoo[kl,kb,ki],optimize=True) s1 -= 0.5*lib.einsum('blk,iblk->i',temp_2,eris_ovoo[ki,kb,kl],optimize=True) del temp del temp_1 del temp_2 for kb in range(nkpts): kl = kconserv[ka, kk, kb] t2_1 = adc.t2[0] temp = -lib.einsum('lkba,akj->blj',t2_1[kl,kk,kb],r2[ka,kk],optimize=True) temp_2 = -lib.einsum('klba,ajk->blj',t2_1[kk,kl,kb],r2[ka,kj],optimize=True) del t2_1 t2_1_kla = adc.t2[0][kk,kl,ka] temp -= lib.einsum('klab,akj->blj',t2_1_kla,r2[ka,kk],optimize=True) temp += lib.einsum('klab,ajk->blj',t2_1_kla,r2[ka,kj],optimize=True) temp_1 = -2.0 * lib.einsum('klab,akj->blj', t2_1_kla,r2[ka,kk],optimize=True) temp_1 += lib.einsum('klab,ajk->blj',t2_1_kla,r2[ka,kj],optimize=True) del t2_1_kla t2_1_lka = adc.t2[0][kl,kk,ka] temp += lib.einsum('lkab,akj->blj',t2_1_lka,r2[ka,kk],optimize=True) temp -= lib.einsum('lkab,ajk->blj',t2_1_lka,r2[ka,kj],optimize=True) temp_1 += lib.einsum('lkab,akj->blj',t2_1_lka,r2[ka,kk],optimize=True) del t2_1_lka ki = kconserv[kj, kl, kb] s1 -= 0.5*lib.einsum('blj,lbij->i',temp, eris_ovoo[kl,kb,ki],optimize=True) s1 += 0.5*lib.einsum('blj,iblj->i',temp, eris_ovoo[ki,kb,kl],optimize=True) s1 -= 0.5*lib.einsum('blj,lbij->i',temp_1,eris_ovoo[kl,kb,ki],optimize=True) s1 += 0.5*lib.einsum('blj,iblj->i',temp_2,eris_ovoo[ki,kb,kl],optimize=True) del temp del temp_1 del temp_2 for kj in range(nkpts): for kk in range(nkpts): ka = kconserv[kk, kshift, kj] for kl in range(nkpts): kb = kconserv[kj, ka, kl] ki = kconserv[kk,kl,kb] temp_1 = lib.einsum( 'i,lbik->kbl',r1,eris_ovoo[kl,kb,ki].conj(), optimize=True) temp = lib.einsum( 'i,lbik->kbl',r1,eris_ovoo[kl,kb,ki].conj(), optimize=True) temp -= lib.einsum('i,iblk->kbl',r1, eris_ovoo[ki,kb,kl].conj(), optimize=True) t2_1 = adc.t2[0] s2[ka,kj] += lib.einsum('kbl,ljba->ajk',temp, t2_1[kl,kj,kb].conj(), optimize=True) s2[ka,kj] += lib.einsum('kbl,jlab->ajk',temp_1, t2_1[kj,kl,ka].conj(), optimize=True) s2[ka,kj] -= lib.einsum('kbl,ljab->ajk',temp_1, t2_1[kl,kj,ka].conj(), optimize=True) kb = kconserv[kk, ka, kl] ki = kconserv[kj,kl,kb] temp_2 = -lib.einsum('i,iblj->jbl',r1, eris_ovoo[ki,kb,kl].conj(), optimize=True) s2[ka,kj] += lib.einsum('jbl,klba->ajk',temp_2, t2_1[kk,kl,kb].conj(), optimize=True) del t2_1 s2 = s2.reshape(-1) s = np.hstack((s1,s2)) del s1 del s2 cput0 = log.timer_debug1("completed sigma vector calculation", *cput0) s *= -1.0 return s return sigma_
[docs] def get_trans_moments(adc,kshift): nmo = adc.nmo T = [] for orb in range(nmo): T_a = get_trans_moments_orbital(adc,orb,kshift) T.append(T_a) T = np.array(T) return T
[docs] def get_trans_moments_orbital(adc, orb, kshift): if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) method = adc.method nkpts = adc.nkpts nocc = adc.nocc nvir = adc.nmo - adc.nocc t2_1 = adc.t2[0] idn_occ = np.identity(nocc) T1 = np.zeros((nocc), dtype=np.complex128) T2 = np.zeros((nkpts,nkpts,nvir,nocc,nocc), dtype=np.complex128) ######## ADC(2) 1h part ############################################ if orb < nocc: T1 += idn_occ[orb, :] for kk in range(nkpts): for kc in range(nkpts): kd = adc.khelper.kconserv[kk, kc, kshift] ki = adc.khelper.kconserv[kc, kk, kd] T1 += 0.25*lib.einsum('kdc,ikdc->i',t2_1[kk,kshift,kd] [:,orb,:,:].conj(), t2_1[ki,kk,kd], optimize=True) T1 -= 0.25*lib.einsum('kcd,ikdc->i',t2_1[kk,kshift,kc] [:,orb,:,:].conj(), t2_1[ki,kk,kd], optimize=True) T1 -= 0.25*lib.einsum('kdc,ikcd->i',t2_1[kk,kshift,kd] [:,orb,:,:].conj(), t2_1[ki,kk,kc], optimize=True) T1 += 0.25*lib.einsum('kcd,ikcd->i',t2_1[kk,kshift,kc] [:,orb,:,:].conj(), t2_1[ki,kk,kc], optimize=True) T1 -= 0.25*lib.einsum('kdc,ikdc->i',t2_1[kshift,kk,kd] [orb,:,:,:].conj(), t2_1[ki,kk,kd], optimize=True) T1 -= 0.25*lib.einsum('kcd,ikcd->i',t2_1[kshift,kk,kc] [orb,:,:,:].conj(), t2_1[ki,kk,kc], optimize=True) else : if (adc.approx_trans_moments is False or adc.method == "adc(3)"): t1_2 = adc.t1[0] T1 += t1_2[kshift][:,(orb-nocc)] ######## ADC(2) 2h-1p part ############################################ for ki in range(nkpts): for kj in range(nkpts): ka = adc.khelper.kconserv[kj, kshift, ki] t2_1_t = -t2_1[ki,kj,ka].transpose(2,3,1,0) T2[ka,kj] += t2_1_t[:,(orb-nocc),:,:].conj() del t2_1_t ####### ADC(3) 2h-1p part ############################################ if (adc.method == "adc(2)-x" and adc.approx_trans_moments is False) or (adc.method == "adc(3)"): t2_2 = adc.t2[1] if orb >= nocc: for ki in range(nkpts): for kj in range(nkpts): ka = adc.khelper.kconserv[kj, kshift, ki] t2_2_t = -t2_2[ki,kj,ka].transpose(2,3,1,0) T2[ka,kj] += t2_2_t[:,(orb-nocc),:,:].conj() ######### ADC(3) 1h part ############################################ if(method=='adc(3)'): if orb < nocc: for kk in range(nkpts): for kc in range(nkpts): kd = adc.khelper.kconserv[kk, kc, kshift] ki = adc.khelper.kconserv[kd, kk, kc] T1 += 0.25* \ lib.einsum('kdc,ikdc->i',t2_1[kk,ki,kd][:,orb, :,:].conj(), t2_2[ki,kk,kd], optimize=True) T1 -= 0.25* \ lib.einsum('kcd,ikdc->i',t2_1[kk,ki,kc][:,orb, :,:].conj(), t2_2[ki,kk,kd], optimize=True) T1 -= 0.25* \ lib.einsum('kdc,ikcd->i',t2_1[kk,ki,kd][:,orb, :,:].conj(), t2_2[ki,kk,kc], optimize=True) T1 += 0.25* \ lib.einsum('kcd,ikcd->i',t2_1[kk,ki,kc][:,orb, :,:].conj(), t2_2[ki,kk,kc], optimize=True) T1 -= 0.25* \ lib.einsum('kdc,ikdc->i',t2_1[ki,kk,kd][orb,:, :,:].conj(), t2_2[ki,kk,kd], optimize=True) T1 -= 0.25* \ lib.einsum('kcd,ikcd->i',t2_1[ki,kk,kc][orb,:, :,:].conj(), t2_2[ki,kk,kc], optimize=True) T1 += 0.25* \ lib.einsum('ikdc,kdc->i',t2_1[ki,kk,kd], t2_2[kk,ki,kd][:,orb,:,:].conj(),optimize=True) T1 -= 0.25* \ lib.einsum('ikcd,kdc->i',t2_1[ki,kk,kc], t2_2[kk,ki,kd][:,orb,:,:].conj(),optimize=True) T1 -= 0.25* \ lib.einsum('ikdc,kcd->i',t2_1[ki,kk,kd], t2_2[kk,ki,kc][:,orb,:,:].conj(),optimize=True) T1 += 0.25* \ lib.einsum('ikcd,kcd->i',t2_1[ki,kk,kc], t2_2[kk,ki,kc][:,orb,:,:].conj(),optimize=True) T1 -= 0.25* \ lib.einsum('ikcd,kcd->i',t2_1[ki,kk,kc], t2_2[ki,kk,kc][orb,:,:,:].conj(),optimize=True) T1 -= 0.25* \ lib.einsum('ikdc,kdc->i',t2_1[ki,kk,kd], t2_2[ki,kk,kd][orb,:,:,:].conj(),optimize=True) else: for kk in range(nkpts): for kc in range(nkpts): ki = adc.khelper.kconserv[kshift,kk,kc] T1 += 0.5 * lib.einsum('kic,kc->i', t2_1[kk,ki,kc][:,:,:,(orb-nocc)], t1_2[kk],optimize=True) T1 -= 0.5*lib.einsum('ikc,kc->i',t2_1[ki,kk,kc] [:,:,:,(orb-nocc)], t1_2[kk],optimize=True) T1 += 0.5*lib.einsum('kic,kc->i',t2_1[kk,ki,kc] [:,:,:,(orb-nocc)], t1_2[kk],optimize=True) del t2_2 del t2_1 for ki in range(nkpts): for kj in range(nkpts): ka = adc.khelper.kconserv[kj,kshift, ki] T2[ka,kj] += T2[ka,kj] - T2[ka,ki].transpose(0,2,1) T2 = T2.reshape(-1) T = np.hstack((T1,T2)) return T
[docs] def renormalize_eigenvectors(adc, kshift, U, nroots=1): nkpts = adc.nkpts nocc = adc.t2[0].shape[3] n_singles = nocc nvir = adc.nmo - adc.nocc for I in range(U.shape[1]): U1 = U[:n_singles,I] U2 = U[n_singles:,I].reshape(nkpts,nkpts,nvir,nocc,nocc) UdotU = np.dot(U1.conj().ravel(),U1.ravel()) for kj in range(nkpts): for kk in range(nkpts): ka = adc.khelper.kconserv[kj, kshift, kk] UdotU += 2.*np.dot(U2[ka,kj].conj().ravel(), U2[ka,kj].ravel()) - \ np.dot(U2[ka,kj].conj().ravel(), U2[ka,kk].transpose(0,2,1).ravel()) U[:,I] /= np.sqrt(UdotU) U = U.reshape(-1,nroots) return U
[docs] def get_properties(adc, kshift, U, nroots=1): #Transition moments T = adc.get_trans_moments(kshift) #Spectroscopic amplitudes U = adc.renormalize_eigenvectors(kshift,U,nroots) X = np.dot(T, U).reshape(-1, nroots) #Spectroscopic factors P = 2.0*lib.einsum("pi,pi->i", X.conj(), X) P = P.real return P,X
[docs] class RADCIP(kadc_rhf.RADC): '''restricted ADC for IP energies and spectroscopic amplitudes Attributes: verbose : int Print level. Default value equals to :class:`Mole.verbose` max_memory : float or int Allowed memory in MB. Default value equals to :class:`Mole.max_memory` incore_complete : bool Avoid all I/O. Default is False. method : string nth-order ADC method. Options are : ADC(2), ADC(2)-X, ADC(3). Default is ADC(2). conv_tol : float Convergence threshold for Davidson iterations. Default is 1e-12. max_cycle : int Number of Davidson iterations. Default is 50. max_space : int Space size to hold trial vectors for Davidson iterative diagonalization. Default is 12. Kwargs: nroots : int Number of roots (eigenvalues) requested. Default value is 1. >>> myadc = adc.RADC(mf).run() >>> myadcip = adc.RADC(myadc).run() Saved results e_ip : float or list of floats IP energy (eigenvalue). For nroots = 1, it is a single float number. If nroots > 1, it is a list of floats for the lowest nroots eigenvalues. v_ip : array Eigenvectors for each IP transition. p_ip : float Spectroscopic amplitudes for each IP transition. ''' _keys = { 'tol_residual','conv_tol', 'e_corr', 'method', 'mo_coeff', 'mo_energy_b', 't1', 'mo_energy_a', 'max_space', 't2', 'max_cycle', 'kpts', 'exxdiv', 'khelper', 'cell', 'nkop_chk', 'kop_npick', 'chnk_size', } def __init__(self, adc): self.verbose = adc.verbose self.stdout = adc.stdout self.max_memory = adc.max_memory self.max_space = adc.max_space self.max_cycle = adc.max_cycle self.conv_tol = adc.conv_tol self.tol_residual = adc.tol_residual self.t1 = adc.t1 self.t2 = adc.t2 self.method = adc.method self.method_type = adc.method_type self._scf = adc._scf self.compute_properties = adc.compute_properties self.approx_trans_moments = adc.approx_trans_moments self.kpts = adc._scf.kpts self.exxdiv = adc.exxdiv self.verbose = adc.verbose self.max_memory = adc.max_memory self.method = adc.method self.khelper = adc.khelper self.cell = adc.cell self.mo_coeff = adc.mo_coeff self.mo_occ = adc.mo_occ self.frozen = adc.frozen self._nocc = adc._nocc self._nmo = adc._nmo self._nvir = adc._nvir self.nkop_chk = adc.nkop_chk self.kop_npick = adc.kop_npick self.t2 = adc.t2 self.e_corr = adc.e_corr self.mo_energy = adc.mo_energy self.imds = adc.imds self.chnk_size = adc.chnk_size kernel = kadc_rhf.kernel get_imds = get_imds get_diag = get_diag matvec = matvec vector_size = vector_size get_trans_moments = get_trans_moments renormalize_eigenvectors = renormalize_eigenvectors get_properties = get_properties
[docs] def get_init_guess(self, nroots=1, diag=None, ascending=True): if diag is None : diag = self.get_diag() idx = None dtype = getattr(diag, 'dtype', np.complex128) if ascending: idx = np.argsort(diag) else: idx = np.argsort(diag)[::-1] guess = np.zeros((diag.shape[0], nroots), dtype=dtype) min_shape = min(diag.shape[0], nroots) guess[:min_shape,:min_shape] = np.identity(min_shape) g = np.zeros((diag.shape[0], nroots), dtype=dtype) g[idx] = guess.copy() guess = [] for p in range(g.shape[1]): guess.append(g[:,p]) return guess
[docs] def gen_matvec(self,kshift,imds=None, eris=None): if imds is None: imds = self.get_imds(eris) diag = self.get_diag(kshift,imds,eris) matvec = self.matvec(kshift, imds, eris) return matvec, diag
#return diag