Source code for pyscf.mp.dfump2_native

#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

'''
native implementation of DF-MP2/RI-MP2 with a UHF reference
'''

import numpy as np
import scipy

from pyscf import lib
from pyscf import scf
from pyscf import df
from pyscf.scf import ucphf
from pyscf.mp.dfmp2_native import DFRMP2, ints3c_cholesky, orbgrad_from_Gamma


[docs] class DFUMP2(DFRMP2): ''' native implementation of DF-MP2/RI-MP2 with a UHF reference ''' def __init__(self, mf, frozen=None, auxbasis=None): ''' Args: mf : UHF instance frozen : number of frozen orbitals or list of frozen orbitals auxbasis : name of auxiliary basis set, otherwise determined automatically ''' # UHF quantities are stored as numpy arrays self.mo_coeff = np.array(mf.mo_coeff) self.mo_energy = np.array(mf.mo_energy) self.nocc = np.array([np.count_nonzero(mf.mo_occ[0]), np.count_nonzero(mf.mo_occ[1])]) # UHF MO coefficient matrix shape: (2, number of AOs, number of MOs) self.nmo = self.mo_coeff.shape[2] self.e_scf = mf.e_tot self._scf = mf # Process the frozen core option correctly as either an integer or two lists (alpha, beta). # self.frozen_mask sets a flag for each orbital if it is frozen (True) or not (False). # Only occupied orbitals can be frozen. self.frozen_mask = np.zeros((2, self.nmo), dtype=bool) if frozen is None: pass elif lib.isinteger(frozen): if frozen > min(self.nocc): raise ValueError('only occupied orbitals can be frozen') self.frozen_mask[:, :frozen] = True else: try: if len(frozen) != 2: raise ValueError for s in 0, 1: if not lib.isintsequence(frozen[s]): raise TypeError except (TypeError, ValueError): raise TypeError('frozen must be an integer or two integer lists') if len(frozen[0]) != len(frozen[1]): raise ValueError('frozen orbital lists not of equal length') for s in 0, 1: self.frozen_mask[s, frozen[s]] = True # mask for occupied orbitals that are not frozen self.occ_mask = np.zeros((2, self.nmo), dtype=bool) for s in 0, 1: self.occ_mask[s, :self.nocc[s]] = True self.occ_mask[self.frozen_mask] = False self.mol = mf.mol if not auxbasis: auxbasis = df.make_auxbasis(self.mol, mp2fit=True) self.auxmol = df.make_auxmol(self.mol, auxbasis) self.verbose = self.mol.verbose self.stdout = self.mol.stdout self.max_memory = self.mol.max_memory # _intsfile will be a list with two elements for the alpha and beta integrals self._intsfile = [] self.e_corr = None # Spin component scaling factors self.ps = 1.0 self.pt = 1.0 self.cphf_max_cycle = 100 self.cphf_tol = mf.conv_tol
[docs] def dump_flags(self, logger=None): ''' Prints selected information. Args: logger : Logger object ''' if not logger: logger = lib.logger.new_logger(self) logger.info('') logger.info('******** {0:s} ********'.format(repr(self.__class__))) logger.info('nmo = {0:d}'.format(self.nmo)) logger.info('nocc = {0:d}, {1:d}'.format(self.nocc[0], self.nocc[1])) nfrozen = np.count_nonzero(self.frozen_mask[0]) logger.info('no. of frozen = {0:d}'.format(nfrozen)) frozen_tmp = np.arange(self.nmo)[self.frozen_mask[0]] logger.debug('frozen (alpha) = {0}'.format(frozen_tmp)) frozen_tmp = np.arange(self.nmo)[self.frozen_mask[1]] logger.debug('frozen (beta) = {0}'.format(frozen_tmp)) logger.info('basis = {0:s}'.format(repr(self.mol.basis))) logger.info('auxbasis = {0:s}'.format(repr(self.auxmol.basis))) logger.info('max_memory = {0:.1f} MB (current use {1:.1f} MB)'. format(self.max_memory, lib.current_memory()[0]))
[docs] def calculate_energy(self): ''' Calculates the MP2 correlation energy. ''' if not self.has_ints: self.calculate_integrals_() logger = lib.logger.new_logger(self) logger.info('') logger.info('Calculating DF-MP2 energy') self.e_corr = emp2_uhf(self._intsfile, self.mo_energy, self.frozen_mask, logger, ps=self.ps, pt=self.pt) logger.note('DF-MP2 correlation energy: {0:.14f}'.format(self.e_corr)) return self.e_corr
[docs] def make_rdm1(self, relaxed=False, ao_repr=False): ''' Calculates the MP2 1-RDM. - The relaxed density matrix can be used to calculate properties of systems for which MP2 is well-behaved. - The unrelaxed density is less suited to calculate properties accurately, but it can be used to calculate CASSCF starting orbitals. Args: relaxed : relaxed density if True, unrelaxed density if False ao_repr : density in AO or in MO basis Returns: the 1-RDM ''' logger = lib.logger.new_logger(self) if relaxed: logger.info('') logger.info('DF-MP2 relaxed density calculation') else: logger.info('') logger.info('DF-MP2 unrelaxed density calculation') rdm1_mo = make_rdm1(self, relaxed, logger) if ao_repr: return lib.einsum('sxp,spq,syq->sxy', self.mo_coeff, rdm1_mo, self.mo_coeff) else: return rdm1_mo
[docs] def make_natorbs(self, rdm1_mo=None, relaxed=False): ''' Calculate natural orbitals. Note: the most occupied orbitals come first (left) and the least occupied orbitals last (right). Args: rdm1_mo : 1-RDM in MO basis the function calculates a density matrix if none is provided relaxed : calculated relaxed or unrelaxed density matrix Returns: natural occupation numbers, natural orbitals ''' if rdm1_mo is None: dm = self.make_rdm1(ao_repr=False, relaxed=relaxed) elif isinstance(rdm1_mo, np.ndarray): dm = rdm1_mo else: raise TypeError('rdm1_mo must be a 3-D array') # Transform the beta component to the alpha basis and sum both together. SAO = self.mol.intor_symmetric('int1e_ovlp') Sab = lib.einsum('xp,xy,yq->pq', self.mo_coeff[0, :, :], SAO, self.mo_coeff[1, :, :]) rdm1_abas = dm[0, :, :] + lib.einsum('pr,rs,qs->pq', Sab, dm[1, :, :], Sab) # Diagonalize the spin-traced 1-RDM in alpha basis to get the natural orbitals. eigval, eigvec = np.linalg.eigh(rdm1_abas) natocc = np.flip(eigval) natorb = lib.dot(self.mo_coeff[0, :, :], np.fliplr(eigvec)) return natocc, natorb
[docs] def calculate_integrals_(self): ''' Calculates the three center integrals for MP2. ''' if not isinstance(self._scf, scf.uhf.UHF): raise TypeError('Class initialization with non-UHF object') intsfile = [] logger = lib.logger.new_logger(self) logger.info('') logger.info('Calculating integrals') for s in [0, 1]: Co = self.mo_coeff[s][:, self.occ_mask[s]] Cv = self.mo_coeff[s][:, self.nocc[s]:] f = ints3c_cholesky(self.mol, self.auxmol, Co, Cv, self.max_memory, logger) intsfile.append(f) self._intsfile = intsfile logger.info('Stored in files:\n{0:s}\n{1:s}'. format(self._intsfile[0].filename, self._intsfile[1].filename))
[docs] def delete(self): ''' Delete the temporary file(s). ''' self._intsfile = []
[docs] def nuc_grad_method(self): raise NotImplementedError
to_gpu = lib.to_gpu
MP2 = UMP2 = DFMP2 = DFUMP2
[docs] class SCSDFUMP2(DFUMP2): ''' UHF-DF-MP2 with spin-component scaling S. Grimme, J. Chem. Phys. 118 (2003), 9095 https://doi.org/10.1063/1.1569242 ''' def __init__(self, mf, ps=6/5, pt=1/3, *args, **kwargs): ''' mf : UHF instance ps : opposite-spin (singlet) scaling factor pt : same-spin (triplet) scaling factor ''' super().__init__(mf, *args, **kwargs) self.ps = ps self.pt = pt
[docs] def dump_flags(self, logger=None): if not logger: logger = lib.logger.new_logger(self) super().dump_flags(logger=logger) logger.info('pt(scs) = {0:.6f}'.format(self.pt)) logger.info('ps(scs) = {0:.6f}'.format(self.ps))
SCSMP2 = SCSUMP2 = SCSDFMP2 = SCSDFUMP2
[docs] def emp2_uhf(intsfiles, mo_energy, frozen_mask, logger, ps=1.0, pt=1.0): ''' Calculates the DF-MP2 energy with an UHF reference. Args: intsfiles : contains the three center integrals in MO basis mo_energy : energies of the molecular orbitals frozen_mask : boolean mask for frozen orbitals logger : Logger instance ps : SCS factor for opposite-spin contributions pt : SCS factor for same-spin contributions Returns: the MP2 correlation energy ''' ints_a = intsfiles[0]['ints_cholesky'] ints_b = intsfiles[1]['ints_cholesky'] nocc_act = np.array([ints_a.shape[0], ints_b.shape[0]]) nfrozen = np.count_nonzero(frozen_mask[0]) if np.count_nonzero(frozen_mask[1]) != nfrozen: raise ValueError('number of frozen alpha and beta orbitals differs') nocc = nocc_act + nfrozen nvirt = np.array([ints_a.shape[2], ints_b.shape[2]]) logger.debug(' UHF-DF-MP2 energy routine') logger.debug(' Occupied orbitals: {0:d}, {1:d}'.format(nocc[0], nocc[1])) logger.debug(' Virtual orbitals: {0:d}, {1:d}'.format(nvirt[0], nvirt[1])) logger.debug(' Frozen orbitals: {0:d}'.format(nfrozen)) logger.debug(' Integrals (alpha) from file: {0:s}'.format(intsfiles[0].filename)) logger.debug(' Integrals (beta) from file: {0:s}'.format(intsfiles[1].filename)) mo_energy_masked = mo_energy[~frozen_mask].reshape((2, -1)) energy_total = 0.0 # loop over spins to calculate same-spin energies for s in 0, 1: energy_contrib = 0.0 if s == 0: logger.debug(' alpha-alpha pairs') ints = ints_a else: logger.debug(' beta-beta pairs') ints = ints_b # precompute Eab[a, b] = mo_energy[a] + mo_energy[b] for the denominator Eab = np.zeros((nvirt[s], nvirt[s])) for a in range(nvirt[s]): Eab[a, :] += mo_energy[s, nocc[s]+a] Eab[:, a] += mo_energy[s, nocc[s]+a] # loop over j < i for i in range(nocc_act[s]): ints3c_ia = ints[i, :, :] for j in range(i): ints3c_jb = ints[j, :, :] Kab = lib.dot(ints3c_ia.T, ints3c_jb) DE = mo_energy_masked[s, i] + mo_energy_masked[s, j] - Eab Tab = (Kab - Kab.T) / DE energy_contrib += pt * lib.einsum('ab,ab', Tab, Kab) logger.debug(' E = {0:.14f}'.format(energy_contrib)) energy_total += energy_contrib # opposite-spin energy logger.debug(' alpha-beta pairs') # precompute Eab[a, b] = mo_energy[a] + mo_energy[b] for the denominator Eab = np.zeros((nvirt[0], nvirt[1])) for a in range(nvirt[0]): Eab[a, :] += mo_energy[0, nocc[0]+a] for b in range(nvirt[1]): Eab[:, b] += mo_energy[1, nocc[1]+b] # loop over i(alpha), j(beta) energy_contrib = 0.0 for i in range(nocc_act[0]): ints3c_ia = ints_a[i, :, :] for j in range(nocc_act[1]): ints3c_jb = ints_b[j, :, :] Kab = lib.dot(ints3c_ia.T, ints3c_jb) DE = mo_energy_masked[0, i] + mo_energy_masked[1, j] - Eab Tab = Kab / DE energy_contrib += ps * lib.einsum('ab,ab', Tab, Kab) logger.debug(' E = {0:.14f}'.format(energy_contrib)) energy_total += energy_contrib logger.debug(' DF-MP2 correlation energy: {0:.14f}'.format(energy_total)) return energy_total
[docs] def make_rdm1(mp2, relaxed, logger=None): ''' Calculates the unrelaxed or relaxed MP2 density matrix. Args: mp2 : DFUMP2 instance relaxed : relaxed density if True, unrelaxed density if False logger : Logger instance Returns: the 1-RDM in MO basis ''' if not mp2.has_ints: mp2.calculate_integrals_() # Calculate the unrelaxed 1-RDM. if logger is None: logger = lib.logger.new_logger(mp2) rdm1, GammaFile = \ ump2_densities_contribs(mp2._intsfile, mp2.mo_energy, mp2.frozen_mask, mp2.max_memory, logger, calcGamma=relaxed, auxmol=mp2.auxmol, ps=mp2.ps, pt=mp2.pt) if relaxed: Lvo = [None, None] for s, sstr in [(0, 'alpha'), (1, 'beta')]: # right-hand side for the CPHF equation Gamma = GammaFile['Gamma_'+sstr] Lvo[s], Lfo_s = \ orbgrad_from_Gamma(mp2.mol, mp2.auxmol, Gamma, mp2.mo_coeff[s], mp2.frozen_mask[s], mp2.max_memory, logger) # frozen core orbital relaxation contribution frozen_list = np.arange(mp2.nmo)[mp2.frozen_mask[s]] for fm, f in enumerate(frozen_list): for i in np.arange(mp2.nmo)[mp2.occ_mask[s]]: zfo = Lfo_s[fm, i] / (mp2.mo_energy[s, f] - mp2.mo_energy[s, i]) rdm1[s, f, i] += 0.5 * zfo rdm1[s, i, f] += 0.5 * zfo # Fock response Lvo_a, Lvo_b = fock_response_uhf(mp2._scf, rdm1) Lvo[0] -= Lvo_a Lvo[1] -= Lvo_b # solving the CPHF equations minusLvo = [-Lvo[0], -Lvo[1]] zvo = solve_cphf_uhf(mp2._scf, minusLvo, mp2.cphf_max_cycle, mp2.cphf_tol, logger) # add the relaxation contribution to the density for s in 0, 1: rdm1[s, mp2.nocc[s]:, :mp2.nocc[s]] += 0.5 * zvo[s] rdm1[s, :mp2.nocc[s], mp2.nocc[s]:] += 0.5 * zvo[s].T # HF contribution for s in 0, 1: rdm1[s, :mp2.nocc[s], :mp2.nocc[s]] += np.eye(mp2.nocc[s]) return rdm1
[docs] def ump2_densities_contribs(intsfiles, mo_energy, frozen_mask, max_memory, logger, calcGamma=False, auxmol=None, ps=1.0, pt=1.0): ''' Calculates the unrelaxed DF-MP2 density matrix contribution with a UHF reference. Note: this is the difference density, i.e. without HF contribution.A lso calculates the three-center two-particle density if requested. Args: intsfile : contains the three center integrals mo_energy : molecular orbital energies frozen_mask : boolean mask for frozen orbitals max_memory : memory threshold in MB logger : Logger instance calcGamma : if True, calculate 3c2e density auxmol : required if relaxed is True ps : SCS factor for opposite-spin contributions pt : SCS factor for same-spin contributions Returns: matrix containing the 1-RDM contribution, file with 3c2e density if requested ''' ints = [intsfiles[s]['ints_cholesky'] for s in (0, 1)] nocc_act = np.array([ints[s].shape[0] for s in (0, 1)]) naux = ints[0].shape[1] if ints[1].shape[1] != naux: raise ValueError('integrals have inconsistent aux dimensions') nvirt = np.array([ints[s].shape[2] for s in (0, 1)]) nmo = mo_energy.shape[1] nfrozen = np.count_nonzero(frozen_mask[0]) if np.count_nonzero(frozen_mask[0]) != nfrozen: raise ValueError('unequal numbers of frozen orbitals for alpha and beta') nocc = nfrozen + nocc_act if np.any(nocc + nvirt != nmo): raise ValueError('numbers of frozen, occupied and virtual orbitals inconsistent') logger.debug(' Density matrix contributions for DF-MP2') logger.debug(' Occupied orbitals: {0:d}, {1:d}'.format(nocc[0], nocc[1])) logger.debug(' Virtual orbitals: {0:d}, {1:d}'.format(nvirt[0], nvirt[1])) logger.debug(' Frozen orbitals: {0:d}'.format(nfrozen)) logger.debug(' Three center integrals (alpha) from file: {0:s}'.format(intsfiles[0].filename)) logger.debug(' Three center integrals (beta) from file: {0:s}'.format(intsfiles[1].filename)) GammaFile, LT = None, None if calcGamma: if not auxmol: raise RuntimeError('auxmol needs to be specified for relaxed density computation') # create temporary file to store the two-body density Gamma GammaFile = lib.H5TmpFile(libver='latest') GammaFile.create_dataset('Gamma_alpha', (nocc_act[0], naux, nvirt[0]), dtype='f8') GammaFile.create_dataset('Gamma_beta', (nocc_act[1], naux, nvirt[1]), dtype='f8') logger.debug(' Storing 3c2e density in file: {0:s}'.format(GammaFile.filename)) # We will need LT = L^T, where L L^T = V LT = scipy.linalg.cholesky(auxmol.intor('int2c2e'), lower=False) # We start forming P with contiguous frozen, occupied, virtual subblocks. P = np.zeros((2, nmo, nmo)) mo_energy_masked = mo_energy[~frozen_mask].reshape(2, nmo-nfrozen) # Loop over all the spin variants for s1, s2 in [(0, 0), (0, 1), (1, 0), (1, 1)]: with lib.H5TmpFile(libver='latest') as tfile: tiset = \ tfile.create_dataset('amplitudes', (nocc_act[s2], nvirt[s1], nvirt[s2]), dtype='f8') s1_str = ('alpha', 'beta')[s1] s2_str = ('alpha', 'beta')[s2] logger.debug(' {0:s}-{1:s} pairs'.format(s1_str, s2_str)) logger.debug(' Storing amplitudes in temporary file: {0:s}'.format(tfile.filename)) # Precompute Eab[a, b] = mo_energy[a] + mo_energy[b] for division with numpy. Eab = np.zeros((nvirt[s1], nvirt[s2])) for a in range(nvirt[s1]): Eab[a, :] += mo_energy[s1, nocc[s1]+a] for b in range(nvirt[s2]): Eab[:, b] += mo_energy[s2, nocc[s2]+b] # For each occupied spin orbital i, all amplitudes are calculated once and # stored on disk. The occupied 1-RDM contribution is calculated in a batched # algorithm. More memory -> more efficient I/O. # The virtual contribution to the 1-RDM is calculated in memory. for i in range(nocc_act[s1]): ints3c_ia = ints[s1][i, :, :] # Amplitudes T^ij_ab are calculated for a given orbital i with spin s1, # and all j (s2), a (s1) and b (s2). These amplitudes are stored on disk. for j in range(nocc_act[s2]): ints3c_jb = ints[s2][j, :, :] Kab = lib.dot(ints3c_ia.T, ints3c_jb) DE = mo_energy_masked[s1, i] + mo_energy_masked[s2, j] - Eab if s1 == s2: numerator = Kab - Kab.T prefactor = 0.5 * pt else: numerator = Kab prefactor = ps Tab = numerator / DE tiset[j, :, :] = Tab # virtual 1-RDM contribution P[s1, nocc[s1]:, nocc[s1]:] += prefactor * lib.dot(Tab, Tab.T) del ints3c_jb, Kab, DE, numerator, Tab # Batches of amplitudes are read from disk to calculate the occupied # 1-RDM contribution. batchsize = int((max_memory - lib.current_memory()[0]) * 1e6 / (nocc_act[s2] * nvirt[s2] * 8)) batchsize = min(nvirt[s1], batchsize) if batchsize < 1: raise MemoryError('Insufficient memory (PYSCF_MAX_MEMORY).') logger.debug2(' Batch size: {0:d} (of {1:d})'.format(batchsize, nvirt[s1])) logger.debug2(' Pij formation - MO {0:d} ({1:s}), batch size {2:d} (of {3:d})'. format(i, s1_str, batchsize, nvirt[s1])) for astart in range(0, nvirt[s1], batchsize): aend = min(astart+batchsize, nvirt[s1]) tbatch = tiset[:, astart:aend, :] if s1 == s2: prefactor = 0.5 * pt else: prefactor = ps P[s2, nfrozen:nocc[s2], nfrozen:nocc[s2]] -= \ prefactor * lib.einsum('iab,jab->ij', tbatch, tbatch) del tbatch if calcGamma: # This produces (P | Q)^-1 (Q | i a) ints3cV1_ia = scipy.linalg.solve_triangular(LT, ints3c_ia, lower=False) # Here, we construct Gamma for spin s2 Gamma = GammaFile['Gamma_'+s2_str] # Read batches of amplitudes from disk and calculate the two-body density Gamma size = nvirt[s1] * nvirt[s2] * 8 + naux * nvirt[s2] * 8 batchsize = int((max_memory - lib.current_memory()[0]) * 1e6 / size) batchsize = min(nocc_act[s2], batchsize) if batchsize < 1: raise MemoryError('Insufficient memory (PYSCF_MAX_MEMORY).') logger.debug2(' Gamma ({0:s}) formation - MO {1:d} ({2:s}), batch size {3:d} (of {4:d})'. format(s2_str, i, s1_str, batchsize, nocc_act[s2])) if s1 == s2: prefactor = 2.0 * pt else: prefactor = 2.0 * ps for jstart in range(0, nocc_act[s2], batchsize): jend = min(jstart+batchsize, nocc_act[s2]) tbatch = tiset[jstart:jend, :, :] # Here, we collect two-body density contributions for spin s2 Gbatch = Gamma[jstart:jend, :, :] for jj in range(jend-jstart): Tijab = tbatch[jj] Gbatch[jj] += prefactor * lib.dot(ints3cV1_ia, Tijab) Gamma[jstart:jend, :, :] = Gbatch del tbatch, Gbatch # now reorder P such that the frozen orbitals correspond to frozen_mask for s in 0, 1: idx_reordered = \ np.concatenate([np.arange(nmo)[frozen_mask[s]], np.arange(nmo)[~frozen_mask[s]]]) P[s][idx_reordered, :] = P[s].copy() P[s][:, idx_reordered] = P[s].copy() logger.debug(' Density matrix contributions calculation finished') return P, GammaFile
[docs] def fock_response_uhf(mf, dm, full=True): ''' Calculate the unrestricted Fock response function for a given density matrix. Args: mf : UHF instance dm : density matrix in MO basis full : full MO density matrix if True, [virt. x occ., virt. x occ.] if False Returns: Fock response in MO basis. Shape: [virt. x occ., virt. x occ.] ''' mo_coeff = mf.mo_coeff mo_occ = mf.mo_occ nao = mf.mol.nao dmao = np.zeros((2, nao, nao)) for s in 0, 1: if full: dmao[s, :, :] = lib.einsum('xp,pq,yq->xy', mo_coeff[s], dm[s], mo_coeff[s]) else: Ci = mo_coeff[s][:, mo_occ[s]>0] Ca = mo_coeff[s][:, mo_occ[s]==0] dmao[s, :, :] = lib.einsum('xa,ai,yi->xy', Ca, dm[s], Ci) rao = mf.get_veff(dm=dmao+dmao.transpose((0, 2, 1))) rvo = [None, None] for s in 0, 1: Ci = mo_coeff[s][:, mo_occ[s]>0] Ca = mo_coeff[s][:, mo_occ[s]==0] rvo[s] = lib.einsum('xa,xy,yi->ai', Ca, rao[s], Ci) return rvo
[docs] def solve_cphf_uhf(mf, Lvo, max_cycle, tol, logger): ''' Solve the CPHF equations. Args: mf : a UHF object Lvo : right-hand side the the response equation max_cycle : number of iterations for the CPHF solver tol : convergence tolerance for the CPHF solver logger : Logger object ''' logger.info('Solving the CPHF response equations') logger.info('Max. iterations: {0:d}'.format(max_cycle)) logger.info('Convergence tolerance: {0:.3g}'.format(tol)) # Currently we need to make the CPHF solver somewhat more talkative to see anything at all. cphf_verbose = logger.verbose if logger.verbose == lib.logger.INFO: cphf_verbose = lib.logger.DEBUG nva, noa = Lvo[0].shape nvb, nob = Lvo[1].shape def fvind(zflat): za = zflat[0, :noa*nva].reshape(nva, noa) zb = zflat[0, -nob*nvb:].reshape(nvb, nob) ra, rb = fock_response_uhf(mf, [za, zb], full=False) rflat = np.hstack([ra.reshape((1, noa*nva)), rb.reshape((1, nob*nvb))]) return rflat zvo = ucphf.solve(fvind, mf.mo_energy, mf.mo_occ, Lvo, max_cycle=max_cycle, tol=tol, verbose=cphf_verbose)[0] logger.info('CPHF iterations finished') return zvo
if __name__ == '__main__': from pyscf import gto mol = gto.Mole() mol.atom = [['O', (0., 0., 0.)], ['O', (1.21, 0., 0.)]] mol.spin = 2 mol.basis = 'def2-SVP' mol.verbose = lib.logger.INFO mol.build() mf = scf.UHF(mol) mf.kernel() with DFUMP2(mf) as pt: pt.kernel() natocc, _ = pt.make_natorbs() print() print(natocc)