#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
native implementation of DF-MP2/RI-MP2 with an RHF reference
'''
import numpy as np
import scipy
from pyscf import lib
from pyscf import gto
from pyscf import scf
from pyscf import df
from pyscf.scf import cphf
[docs]
class DFRMP2(lib.StreamObject):
'''
native implementation of DF-MP2/RI-MP2 with an RHF reference
'''
def __init__(self, mf, frozen=None, auxbasis=None):
'''
Args:
mf : RHF instance
frozen : number of frozen orbitals or list of frozen orbitals
auxbasis : name of auxiliary basis set, otherwise determined automatically
'''
self.mo_coeff = mf.mo_coeff
self.mo_energy = mf.mo_energy
self.nocc = np.count_nonzero(mf.mo_occ)
self.nmo = self.mo_coeff.shape[1]
self.e_scf = mf.e_tot
self._scf = mf
# Process the frozen core option correctly as an integer or a list.
# self.frozen_mask sets a flag for each orbital if it is frozen (True) or not (False).
# Only occupied orbitals can be frozen.
self.frozen_mask = np.zeros(self.nmo, dtype=bool)
if frozen is None:
pass
elif lib.isinteger(frozen):
if frozen > self.nocc:
raise ValueError('only occupied orbitals can be frozen')
self.frozen_mask[:frozen] = True
elif lib.isintsequence(frozen):
if max(frozen) > self.nocc - 1:
raise ValueError('only occupied orbitals can be frozen')
self.frozen_mask[frozen] = True
else:
raise TypeError('frozen must be an integer or a list of integers')
# mask for occupied orbitals that are not frozen
self.occ_mask = np.zeros(self.nmo, dtype=bool)
self.occ_mask[:self.nocc] = True
self.occ_mask[self.frozen_mask] = False
self.mol = mf.mol
if not auxbasis:
auxbasis = df.make_auxbasis(self.mol, mp2fit=True)
self.auxmol = df.make_auxmol(self.mol, auxbasis)
self.verbose = self.mol.verbose
self.stdout = self.mol.stdout
self.max_memory = self.mol.max_memory
self._intsfile = None
self.e_corr = None
# Spin component scaling factors
self.ps = 1.0
self.pt = 1.0
self.cphf_max_cycle = 100
self.cphf_tol = mf.conv_tol
[docs]
def dump_flags(self, logger=None):
'''
Prints selected information.
Args:
logger : Logger object
'''
if not logger:
logger = lib.logger.new_logger(self)
logger.info('')
logger.info('******** {0:s} ********'.format(repr(self.__class__)))
logger.info('nmo = {0:d}'.format(self.nmo))
logger.info('nocc = {0:d}'.format(self.nocc))
nfrozen = np.count_nonzero(self.frozen_mask)
logger.info('no. of frozen = {0:d}'.format(nfrozen))
frozen_list = np.arange(self.nmo)[self.frozen_mask]
logger.debug('frozen = {0}'.format(frozen_list))
logger.info('basis = {0:s}'.format(repr(self.mol.basis)))
logger.info('auxbasis = {0:s}'.format(repr(self.auxmol.basis)))
logger.info('max_memory = {0:.1f} MB (current use {1:.1f} MB)'.
format(self.max_memory, lib.current_memory()[0]))
@property
def e_tot(self):
'''
total energy (SCF + MP2)
'''
return self.e_scf + self.e_corr
[docs]
def calculate_energy(self):
'''
Calculates the MP2 correlation energy.
'''
logger = lib.logger
log = logger.new_logger(self)
cput0 = cput1 = (logger.process_clock(), logger.perf_counter())
if not self.has_ints:
self.calculate_integrals_()
cput1 = log.timer('ao2mo', *cput1)
logger = lib.logger.new_logger(self)
logger.info('')
logger.info('Calculating DF-MP2 energy')
self.e_corr = emp2_rhf(self._intsfile, self.mo_energy, self.frozen_mask,
logger, ps=self.ps, pt=self.pt)
logger.note('DF-MP2 correlation energy: {0:.14f}'.format(self.e_corr))
log.timer('kernel', *cput1)
log.timer(self.__class__.__name__, *cput0)
return self.e_corr
[docs]
def make_rdm1(self, relaxed=False, ao_repr=False):
'''
Calculates the MP2 1-RDM.
- The relaxed density matrix can be used to calculate properties of systems
for which MP2 is well-behaved.
- The unrelaxed density is less suited to calculate properties accurately,
but it can be used to calculate CASSCF starting orbitals.
Args:
relaxed : relaxed density if True, unrelaxed density if False
ao_repr : density in AO or in MO basis
Returns:
the 1-RDM
'''
logger = lib.logger.new_logger(self)
if relaxed:
logger.info('')
logger.info('DF-MP2 relaxed density calculation')
else:
logger.info('')
logger.info('DF-MP2 unrelaxed density calculation')
rdm1_mo = make_rdm1(self, relaxed, logger)
if ao_repr:
rdm1_ao = lib.einsum('xp,pq,yq->xy', self.mo_coeff, rdm1_mo, self.mo_coeff)
return rdm1_ao
else:
return rdm1_mo
[docs]
def make_rdm1_unrelaxed(self, ao_repr=False):
return self.make_rdm1(relaxed=False, ao_repr=ao_repr)
[docs]
def make_rdm1_relaxed(self, ao_repr=False):
return self.make_rdm1(relaxed=True, ao_repr=ao_repr)
[docs]
def make_natorbs(self, rdm1_mo=None, relaxed=False):
'''
Calculate natural orbitals.
Note: the most occupied orbitals come first (left)
and the least occupied orbitals last (right).
Args:
rdm1_mo : 1-RDM in MO basis
the function calculates a density matrix if none is provided
relaxed : calculated relaxed or unrelaxed density matrix
Returns:
natural occupation numbers, natural orbitals
'''
if rdm1_mo is None:
dm = self.make_rdm1(relaxed=relaxed, ao_repr=False)
elif isinstance(rdm1_mo, np.ndarray):
dm = rdm1_mo
else:
raise TypeError('rdm1_mo must be a 2-D array')
eigval, eigvec = np.linalg.eigh(dm)
natocc = np.flip(eigval)
natorb = lib.dot(self.mo_coeff, np.fliplr(eigvec))
return natocc, natorb
@property
def has_ints(self):
return bool(self._intsfile)
[docs]
def calculate_integrals_(self):
'''
Calculates the three center integrals for MP2.
'''
if not isinstance(self._scf, scf.rhf.RHF):
raise TypeError('Class initialization with non-RHF object')
Co = self.mo_coeff[:, self.occ_mask]
Cv = self.mo_coeff[:, self.nocc:]
logger = lib.logger.new_logger(self)
logger.info('')
logger.info('Calculating integrals')
self._intsfile = ints3c_cholesky(self.mol, self.auxmol, Co, Cv, self.max_memory, logger)
logger.info('Stored in file: {0:s}'.format(self._intsfile.filename))
[docs]
def delete(self):
'''
Delete the temporary file(s).
'''
self._intsfile = None
# The class can be used with a context manager (with ... as ...:).
def __enter__(self):
return self
def __exit__(self, exception_type, exception_value, traceback):
self.delete()
[docs]
def kernel(self):
'''
Alias for the MP2 energy calculation.
Does not need to be called to calculate the 1-RDM only.
'''
self.dump_flags()
return self.calculate_energy()
[docs]
def nuc_grad_method(self):
raise NotImplementedError
to_gpu = lib.to_gpu
MP2 = RMP2 = DFMP2 = DFRMP2
[docs]
class SCSDFRMP2(DFRMP2):
'''
RHF-DF-MP2 with spin-component scaling
S. Grimme, J. Chem. Phys. 118 (2003), 9095
https://doi.org/10.1063/1.1569242
'''
def __init__(self, mf, ps=6/5, pt=1/3, *args, **kwargs):
'''
mf : RHF instance
ps : opposite-spin (singlet) scaling factor
pt : same-spin (triplet) scaling factor
'''
super().__init__(mf, *args, **kwargs)
self.ps = ps
self.pt = pt
[docs]
def dump_flags(self, logger=None):
if not logger:
logger = lib.logger.new_logger(self)
super().dump_flags(logger=logger)
logger.info('pt(scs) = {0:.6f}'.format(self.pt))
logger.info('ps(scs) = {0:.6f}'.format(self.ps))
SCSMP2 = SCSRMP2 = SCSDFMP2 = SCSDFRMP2
[docs]
def ints3c_cholesky(mol, auxmol, mo_coeff1, mo_coeff2, max_memory, logger):
'''
Calculate the three center electron repulsion integrals in MO basis
multiplied with the Cholesky factor of the inverse Coulomb metric matrix.
Only integrals in MO basis are stored on disk; integral-direct with regard to AO integrals.
Args:
mol : Mole instance
auxmol : Mole instance with auxiliary basis
mo_coeff1 : MO coefficient matrix for the leading MO index, typically occupied
mo_coeff2 : MO coefficient matrix for the secondary MO index, typically virtual
max_memory : memory threshold in MB
logger : Logger instance
Returns:
A HDF5 temporary file containing the integrals in the dataset "ints_cholesky".
Indexing order: [mo1, aux, mo2]
'''
atm, bas, env = gto.conc_env(mol._atm, mol._bas, mol._env,
auxmol._atm, auxmol._bas, auxmol._env)
nmo1 = mo_coeff1.shape[1]
nmo2 = mo_coeff2.shape[1]
nauxfcns = auxmol.nao
logger.debug(' DF integral transformation')
logger.debug(' MO dimensions: {0:d} x {1:d}'.format(nmo1, nmo2))
logger.debug(' Aux functions: {0:d}'.format(nauxfcns))
intsfile_cho = lib.H5TmpFile(libver='latest')
with lib.H5TmpFile(libver='latest') as intsfile_tmp:
logger.debug(' Calculating three center integrals in MO basis.')
logger.debug(' Temporary file: {0:s}'.format(intsfile_tmp.filename))
intor = mol._add_suffix('int3c2e')
logger.debug2(' intor = {0:s}'.format(intor))
# Loop over shells of auxiliary functions.
# AO integrals are calculated in memory and directly transformed to MO basis.
ints_3c = intsfile_tmp.create_dataset('ints_3c', (nauxfcns, nmo1, nmo2), dtype='f8')
aux_ctr = 0
for auxsh in range(auxmol.nbas):
# needs to follow the convention (AO, AO | Aux)
shls_slice = (0, mol.nbas, 0, mol.nbas, mol.nbas+auxsh, mol.nbas+auxsh+1)
# AO integrals
aoints_auxshell = gto.getints(intor, atm, bas, env, shls_slice)
# loop over aux functions
for m in range(aoints_auxshell.shape[2]):
aoints = aoints_auxshell[:, :, m]
if nmo1 <= nmo2:
moints = lib.dot(lib.dot(mo_coeff1.T, aoints), mo_coeff2)
else:
moints = lib.dot(mo_coeff1.T, lib.dot(aoints, mo_coeff2))
ints_3c[aux_ctr, :, :] = moints
aux_ctr += 1
logger.debug(' Calculating fitted three center integrals.')
logger.debug(' Storage file: {0:s}'.format(intsfile_cho.filename))
# Typically we need the matrix for a specific occupied MO i in MP2.
# => i is the leading index for optimal I/O.
ints_cholesky = intsfile_cho.create_dataset('ints_cholesky', (nmo1, nauxfcns, nmo2), dtype='f8')
# (P | Q) matrix
Vmat = auxmol.intor('int2c2e')
# L L^T = V <-> L^-T L^-1 = V^-1
L = scipy.linalg.cholesky(Vmat, lower=True)
# Buffer only serves to reduce the read operations of the second index in ints_3c
# (I/O overhead increases from first to third index).
bufsize = int((max_memory - lib.current_memory()[0]) * 1e6 / (nauxfcns * nmo2 * 8))
if bufsize < 1:
raise MemoryError('Insufficient memory (PYSCF_MAX_MEMORY).')
bufsize = max(1, min(nmo1, bufsize))
logger.debug(' Batch size: {0:d} (of {1:d})'.format(bufsize, nmo1))
# In batches:
# - Read integrals from the temporary file.
# - Instead of multiplying with L^-1, solve linear equation system.
# - Store the "fitted" integrals in the integrals file.
for istart in range(0, nmo1, bufsize):
iend = min(istart+bufsize, nmo1)
intsbuf = ints_3c[:, istart:iend, :]
for i in range(istart, iend):
ints_cholesky[i, :, :] = scipy.linalg.solve_triangular(L, intsbuf[:, i-istart, :], lower=True)
logger.debug(' DF transformation finished')
return intsfile_cho
[docs]
def emp2_rhf(intsfile, mo_energy, frozen_mask, logger, ps=1.0, pt=1.0):
'''
Calculates the DF-MP2 energy with an RHF reference.
Args:
intsfile : contains the three center integrals in MO basis
mo_energy : energies of the molecular orbitals
frozen_mask : boolean mask for frozen orbitals
logger : Logger instance
ps : SCS factor for opposite-spin contributions
pt : SCS factor for same-spin contributions
Returns:
the MP2 correlation energy
'''
ints = intsfile['ints_cholesky']
nocc_act, _, nvirt = ints.shape
nfrozen = np.count_nonzero(frozen_mask)
nocc = nocc_act + nfrozen
logger.debug(' RHF-DF-MP2 energy routine')
logger.debug(' Occupied orbitals: {0:d}'.format(nocc))
logger.debug(' Virtual orbitals: {0:d}'.format(nvirt))
logger.debug(' Frozen orbitals: {0:d}'.format(nfrozen))
logger.debug(' Integrals from file: {0:s}'.format(intsfile.filename))
mo_energy_masked = mo_energy[~frozen_mask]
# Somewhat awkward workaround to perform division in the MP2 energy expression
# through numpy routines. We precompute Eab[a, b] = mo_energy[a] + mo_energy[b].
Eab = np.zeros((nvirt, nvirt))
for a in range(nvirt):
Eab[a, :] += mo_energy[nocc + a]
Eab[:, a] += mo_energy[nocc + a]
energy = 0.0
for i in range(nocc_act):
ints3c_ia = ints[i, :, :]
# contributions for occupied orbitals j < i
for j in range(i):
ints3c_jb = ints[j, :, :]
Kab = lib.dot(ints3c_ia.T, ints3c_jb)
DE = mo_energy_masked[i] + mo_energy_masked[j] - Eab
Tab = Kab / DE
energy += 2.0 * (ps + pt) * lib.einsum('ab,ab', Tab, Kab)
energy -= 2.0 * pt * lib.einsum('ab,ba', Tab, Kab)
# contribution for j == i
Kab = lib.dot(ints3c_ia.T, ints3c_ia)
DE = 2.0 * mo_energy_masked[i] - Eab
Tab = Kab / DE
energy += ps * lib.einsum('ab,ab', Tab, Kab)
logger.debug(' DF-MP2 correlation energy: {0:.14f}'.format(energy))
return energy
[docs]
def make_rdm1(mp2, relaxed, logger=None):
'''
Calculates the unrelaxed or relaxed MP2 density matrix.
Args:
mp2 : DFRMP2 instance
relaxed : relaxed density if True, unrelaxed density if False
logger : Logger instance
Returns:
the 1-RDM in MO basis
'''
if not mp2.has_ints:
mp2.calculate_integrals_()
if logger is None:
logger = lib.logger.new_logger(mp2)
rdm1, GammaFile = \
rmp2_densities_contribs(mp2._intsfile, mp2.mo_energy, mp2.frozen_mask, mp2.max_memory,
logger, calcGamma=relaxed, auxmol=mp2.auxmol, ps=mp2.ps, pt=mp2.pt)
if relaxed:
# right-hand side for the CPHF equation
Lvo, Lfo = orbgrad_from_Gamma(mp2.mol, mp2.auxmol, GammaFile['Gamma'],
mp2.mo_coeff, mp2.frozen_mask, mp2.max_memory, logger)
# frozen core orbital relaxation contribution
frozen_list = np.arange(mp2.nmo)[mp2.frozen_mask]
for fm, f in enumerate(frozen_list):
for i in np.arange(mp2.nmo)[mp2.occ_mask]:
zfo = Lfo[fm, i] / (mp2.mo_energy[f] - mp2.mo_energy[i])
rdm1[f, i] += 0.5 * zfo
rdm1[i, f] += 0.5 * zfo
# Fock response
Lvo -= fock_response_rhf(mp2._scf, rdm1)
# solving the CPHF equations
zvo = solve_cphf_rhf(mp2._scf, -Lvo, mp2.cphf_max_cycle, mp2.cphf_tol, logger)
# add the relaxation contribution to the density
rdm1[mp2.nocc:, :mp2.nocc] += 0.5 * zvo
rdm1[:mp2.nocc, mp2.nocc:] += 0.5 * zvo.T
# SCF part of the density
rdm1[:mp2.nocc, :mp2.nocc] += 2.0 * np.eye(mp2.nocc)
return rdm1
[docs]
def rmp2_densities_contribs(intsfile, mo_energy, frozen_mask, max_memory, logger,
calcGamma=False, auxmol=None, ps=1.0, pt=1.0):
'''
Calculates the unrelaxed DF-MP2 density matrix contribution with an RHF reference.
Note: this is the difference density, i.e. without HF contribution.
Also calculates the three-center two-particle density if requested.
Args:
intsfile : contains the three center integrals
mo_energy : molecular orbital energies
frozen_mask : boolean mask for frozen orbitals
max_memory : memory threshold in MB
logger : Logger instance
calcGamma : if True, calculate 3c2e density
auxmol : required if relaxed is True
ps : SCS factor for opposite-spin contributions
pt : SCS factor for same-spin contributions
Returns:
matrix containing the 1-RDM contribution, file with 3c2e density if requested
'''
ints = intsfile['ints_cholesky']
nocc_act, naux, nvirt = ints.shape
nmo = len(mo_energy)
nfrozen = np.count_nonzero(frozen_mask)
nocc = nocc_act + nfrozen
if nocc + nvirt != nmo:
raise ValueError('numbers of frozen, occupied and virtual orbitals inconsistent')
logger.debug(' Density matrix contributions for DF-RMP2')
logger.debug(' Occupied orbitals: {0:d}'.format(nocc))
logger.debug(' Virtual orbitals: {0:d}'.format(nvirt))
logger.debug(' Frozen orbitals: {0:d}'.format(nfrozen))
logger.debug(' Three center integrals from file: {0:s}'.format(intsfile.filename))
# Precompute Eab[a, b] = mo_energy[a] + mo_energy[b] for division with numpy.
Eab = np.zeros((nvirt, nvirt))
for a in range(nvirt):
Eab[a, :] += mo_energy[nocc + a]
Eab[:, a] += mo_energy[nocc + a]
GammaFile, Gamma, LT = None, None, None
if calcGamma:
if not auxmol:
raise RuntimeError('auxmol needs to be specified for relaxed density computation')
# create temporary file to store the two-body density Gamma
GammaFile = lib.H5TmpFile(libver='latest')
Gamma = GammaFile.create_dataset('Gamma', (nocc_act, naux, nvirt), dtype='f8')
logger.debug(' Storing 3c2e density in file: {0:s}'.format(GammaFile.filename))
# We will need LT = L^T, where L L^T = V
LT = scipy.linalg.cholesky(auxmol.intor('int2c2e'), lower=False)
# We start forming P with contiguous frozen, occupied, virtual subblocks.
P = np.zeros((nmo, nmo))
mo_energy_masked = mo_energy[~frozen_mask]
with lib.H5TmpFile(libver='latest') as tfile:
logger.debug(' Storing amplitudes in temporary file: {0:s}'.format(tfile.filename))
# For each occupied orbital i, all amplitudes are calculated once and stored on disk.
# The occupied 1-RDM contribution is calculated in a batched algorithm.
# More memory -> more efficient I/O.
# The virtual contribution to the 1-RDM is calculated in memory.
tiset = tfile.create_dataset('amplitudes', (nocc_act, nvirt, nvirt), dtype='f8')
for i in range(nocc_act):
ints3c_ia = ints[i, :, :]
# Calculate amplitudes T^ij_ab for a given i and all j, a, b
# Store the amplitudes in a file.
for j in range(nocc_act):
ints3c_jb = ints[j, :, :]
Kab = lib.dot(ints3c_ia.T, ints3c_jb)
DE = mo_energy_masked[i] + mo_energy_masked[j] - Eab
Tab = Kab / DE
TCab = 2.0 * (ps + pt) * Tab - 2.0 * pt * Tab.T
tiset[j, :, :] = Tab
# virtual 1-RDM contribution
P[nocc:, nocc:] += lib.dot(Tab, TCab.T)
del ints3c_jb, Kab, DE, Tab, TCab
# Read batches of amplitudes from disk and calculate the occupied 1-RDM.
batchsize = int((max_memory - lib.current_memory()[0]) * 1e6 / (2 * nocc_act * nvirt * 8))
batchsize = min(nvirt, batchsize)
if batchsize < 1:
raise MemoryError('Insufficient memory (PYSCF_MAX_MEMORY).')
logger.debug2(' Pij formation - MO {0:d}, batch size {1:d} (of {2:d})'.
format(i, batchsize, nvirt))
for astart in range(0, nvirt, batchsize):
aend = min(astart+batchsize, nvirt)
tbatch1 = tiset[:, astart:aend, :]
tbatch2 = tiset[:, :, astart:aend]
P[nfrozen:nocc, nfrozen:nocc] += \
- 2.0 * (ps + pt) * lib.einsum('iab,jab->ij', tbatch1, tbatch1) \
+ 2.0 * pt * lib.einsum('iab,jba->ij', tbatch1, tbatch2)
del tbatch1, tbatch2
if calcGamma:
# This produces (P | Q)^-1 (Q | i a)
ints3cV1_ia = scipy.linalg.solve_triangular(LT, ints3c_ia, lower=False)
# Read batches of amplitudes from disk and calculate the two-body density Gamma
size = nvirt * nvirt * 8 + naux * nvirt * 8
batchsize = int((max_memory - lib.current_memory()[0]) * 1e6 / size)
batchsize = min(nocc_act, batchsize)
if batchsize < 1:
raise MemoryError('Insufficient memory (PYSCF_MAX_MEMORY).')
logger.debug2(' Gamma formation - MO {0:d}, batch size {1:d} (of {2:d})'.
format(i, batchsize, nocc_act))
for jstart in range(0, nocc_act, batchsize):
jend = min(jstart+batchsize, nocc_act)
tbatch = tiset[jstart:jend, :, :]
Gbatch = Gamma[jstart:jend, :, :]
for jj in range(jend-jstart):
TCijab_scal = 4.0 * (pt + ps) * tbatch[jj] - 4.0 * pt * tbatch[jj].T
Gbatch[jj] += lib.dot(ints3cV1_ia, TCijab_scal)
Gamma[jstart:jend, :, :] = Gbatch
del ints3cV1_ia, tbatch, Gbatch, TCijab_scal
# now reorder P such that the frozen orbitals correspond to frozen_mask
idx_reordered = np.concatenate([np.arange(nmo)[frozen_mask], np.arange(nmo)[~frozen_mask]])
P[idx_reordered, :] = P.copy()
P[:, idx_reordered] = P.copy()
logger.debug(' Density matrix contributions calculation finished')
return P, GammaFile
[docs]
class BatchSizeError(Exception):
pass
[docs]
def shellBatchGenerator(mol, nao_max):
'''
Generates sets of shells with a limited number of functions.
Args:
mol : the molecule object
nao_max : maximum number of AOs in each set
Returns:
generator yields ((first shell, last shell+1), (first AO, last AO+1))
'''
nbas = mol.nbas
# ao_loc contains nbas + 1 entries
ao_loc = mol.ao_loc
shell_start = 0
while shell_start < nbas:
shell_stop = shell_start
while (ao_loc[shell_stop+1] - ao_loc[shell_start] <= nao_max):
shell_stop += 1
if shell_stop == nbas:
break
if shell_stop == shell_start:
raise BatchSizeError('empty batch')
shell_range = (shell_start, shell_stop)
ao_range = (int(ao_loc[shell_start]), int(ao_loc[shell_stop]))
yield shell_range, ao_range
shell_start = shell_stop
[docs]
def orbgrad_from_Gamma(mol, auxmol, Gamma, mo_coeff, frozen_mask, max_memory, logger):
'''
Calculates the orbital gradient of the two-electron term in the Hylleraas functional.
Args:
mol : Mole object
auxmol : Mole object for the auxiliary functions
Gamma : h5py dataset with the 3c2e density, order: [occ. orbs., aux. fcns., virt. orbs.]
mo_coeff : molecular orbital coefficients
frozen_mask : boolean mask for frozen orbitals
max_memory : memory limit in MB
logger : Logger object
Returns:
orbital gradient in shape: virt. orbitals x occ. orbitals,
orbital gradient in shape: froz. orbitals x occ. orbitals
'''
nocc_act, _, nvirt = Gamma.shape
nfrozen = np.count_nonzero(frozen_mask)
nocc = nfrozen + nocc_act
nmo = len(mo_coeff)
if nocc + nvirt != nmo:
raise ValueError('numbers of frozen, occupied and virtual orbitals inconsistent')
occ_mask = np.zeros(nmo, dtype=bool)
occ_mask[:nocc] = True
occ_mask[frozen_mask] = False
logger.debug(' Contracting the two-body density with 3c2e integrals in memory')
logger.debug(' Occupied orbitals: {0:d}'.format(nocc))
logger.debug(' Virtual orbitals: {0:d}'.format(nvirt))
logger.debug(' Frozen orbitals: {0:d}'.format(nfrozen))
atm, bas, env = gto.conc_env(mol._atm, mol._bas, mol._env,
auxmol._atm, auxmol._bas, auxmol._env)
intor = mol._add_suffix('int3c2e')
logger.debug2(' intor = {0:s}'.format(intor))
Lov_act = np.zeros((nocc_act, nvirt))
Lof_act = np.zeros((nocc_act, nfrozen))
Lfv = np.zeros((nfrozen, nvirt))
# process as many auxiliary functions in a go as possible: may reduce I/O cost
size_per_aux = (nocc_act * nvirt + mol.nao ** 2) * 8
naux_max = int((max_memory - lib.current_memory()[0]) * 1e6 / size_per_aux)
logger.debug2(' Max. auxiliary functions per batch: {0:d}'.format(naux_max))
try:
# loop over batches of auxiliary function shells
for auxsh_range, aux_range in shellBatchGenerator(auxmol, naux_max):
auxsh_start, auxsh_stop = auxsh_range
aux_start, aux_stop = aux_range
logger.debug2(' aux from {0:d} to {1:d}'.format(aux_start, aux_stop))
# needs to follow the convention (AO, AO | Aux)
shls_slice = (0, mol.nbas, 0, mol.nbas, mol.nbas+auxsh_start, mol.nbas+auxsh_stop)
# AO integrals
aoints_auxshell = gto.getints(intor, atm, bas, env, shls_slice)
# read 3c2e density elements for the current aux functions
GiKa = Gamma[:, aux_start:aux_stop, :]
for m in range(aux_stop - aux_start):
# Half-transformed Gamma for specific auxiliary function m
G12 = lib.dot(GiKa[:, m, :], mo_coeff[:, nocc:].T)
# product of Gamma with integrals: one index still in AO basis
Gints = lib.dot(G12, aoints_auxshell[:, :, m])
# 3c2e integrals in occupied MO basis
intso12 = lib.dot(aoints_auxshell[:, :, m], mo_coeff[:, occ_mask])
intsoo = lib.dot(mo_coeff[:, occ_mask].T, intso12)
intsfo = lib.dot(mo_coeff[:, frozen_mask].T, intso12)
# contributions to the orbital gradient
Lov_act += lib.dot(intsoo, GiKa[:, m, :]) - lib.dot(Gints, mo_coeff[:, nocc:])
Lof_act -= lib.dot(Gints, mo_coeff[:, frozen_mask])
Lfv += lib.dot(intsfo, GiKa[:, m, :])
del GiKa, aoints_auxshell
except BatchSizeError:
raise MemoryError('Insufficient memory (PYSCF_MAX_MEMORY)')
# convert to full matrix with frozen orbitals
Lvo = np.zeros((nvirt, nocc))
Lvo[:, occ_mask[:nocc]] = Lov_act.T
Lvo[:, frozen_mask[:nocc]] = Lfv.T
Lfo = np.zeros((nfrozen, nocc))
Lfo[:, occ_mask[:nocc]] = Lof_act.T
logger.debug(' Finished integral contraction.')
return Lvo, Lfo
[docs]
def fock_response_rhf(mf, dm, full=True):
'''
Calculate the Fock response function for a given density matrix:
sum_pq [ 4 (ai|pq) - (ap|iq) - (aq|ip) ] dm[p, q]
Args:
mf : RHF instance
dm : density matrix in MO basis
full : full MO density matrix if True, virtual x occupied if False
Returns:
Fock response in MO basis. Shape: virtual x occupied.
'''
mo_coeff = mf.mo_coeff
mo_occ = mf.mo_occ
Ci = mo_coeff[:, mo_occ>0]
Ca = mo_coeff[:, mo_occ==0]
if full:
dmao = lib.einsum('xp,pq,yq->xy', mo_coeff, dm, mo_coeff)
else:
dmao = lib.einsum('xa,ai,yi->xy', Ca, dm, Ci)
rao = 2.0 * mf.get_veff(dm=dmao+dmao.T)
rvo = lib.einsum('xa,xy,yi->ai', Ca, rao, Ci)
return rvo
[docs]
def solve_cphf_rhf(mf, Lvo, max_cycle, tol, logger):
'''
Solve the CPHF equations.
(e[i] - e[a]) zvo[a, i] - sum_bj [ 4 (ai|bj) - (ab|ij) - (aj|ib) ] zvo[b, j] = Lvo[a, i]
Args:
mf : an RHF object
Lvo : right-hand side the the response equation
max_cycle : number of iterations for the CPHF solver
tol : convergence tolerance for the CPHF solver
logger : Logger object
'''
logger.info('Solving the CPHF response equations')
logger.info('Max. iterations: {0:d}'.format(max_cycle))
logger.info('Convergence tolerance: {0:.3g}'.format(tol))
# Currently we need to make the CPHF solver somewhat more talkative to see anything at all.
cphf_verbose = logger.verbose
if logger.verbose == lib.logger.INFO:
cphf_verbose = lib.logger.DEBUG
def fvind(z):
return fock_response_rhf(mf, z.reshape(Lvo.shape), full=False)
zvo = cphf.solve(fvind, mf.mo_energy, mf.mo_occ, Lvo,
max_cycle=max_cycle, tol=tol, verbose=cphf_verbose)[0]
logger.info('CPHF iterations finished')
return zvo
if __name__ == '__main__':
mol = gto.Mole()
mol.atom = [
['O' , (0. , 0. , 0. )],
['H' , (0. , -0.757 , 0.587)],
['H' , (0. , 0.757 , 0.587)]]
mol.basis = 'def2-SVP'
mol.verbose = lib.logger.INFO
mol.build()
mf = scf.RHF(mol)
mf.kernel()
with DFMP2(mf) as pt:
pt.kernel()
natocc, _ = pt.make_natorbs()
print()
print(natocc)