#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#
import sys
from functools import reduce
import warnings
import numpy
from pyscf import lib
from pyscf.lib import logger
from pyscf import gto
from pyscf import scf
from pyscf import ao2mo
from pyscf import fci
from pyscf.mcscf import addons
from pyscf import __config__
WITH_META_LOWDIN = getattr(__config__, 'mcscf_analyze_with_meta_lowdin', True)
LARGE_CI_TOL = getattr(__config__, 'mcscf_analyze_large_ci_tol', 0.1)
PENALTY = getattr(__config__, 'mcscf_casci_CASCI_fix_spin_shift', 0.2)
FRAC_OCC_THRESHOLD = 1e-6
if sys.version_info < (3,):
RANGE_TYPE = list
else:
RANGE_TYPE = range
[docs]
def h1e_for_cas(casci, mo_coeff=None, ncas=None, ncore=None):
'''CAS space one-electron hamiltonian
Args:
casci : a CASSCF/CASCI object or RHF object
Returns:
A tuple, the first is the effective one-electron hamiltonian defined in CAS space,
the second is the electronic energy from core.
'''
if mo_coeff is None: mo_coeff = casci.mo_coeff
if ncas is None: ncas = casci.ncas
if ncore is None: ncore = casci.ncore
mo_core = mo_coeff[:,:ncore]
mo_cas = mo_coeff[:,ncore:ncore+ncas]
hcore = casci.get_hcore()
energy_core = casci.energy_nuc()
if mo_core.size == 0:
corevhf = 0
else:
core_dm = numpy.dot(mo_core, mo_core.conj().T) * 2
corevhf = casci.get_veff(casci.mol, core_dm)
energy_core += numpy.einsum('ij,ji', core_dm, hcore).real
energy_core += numpy.einsum('ij,ji', core_dm, corevhf).real * .5
h1eff = reduce(numpy.dot, (mo_cas.conj().T, hcore+corevhf, mo_cas))
return h1eff, energy_core
[docs]
def analyze(casscf, mo_coeff=None, ci=None, verbose=None,
large_ci_tol=LARGE_CI_TOL, with_meta_lowdin=WITH_META_LOWDIN,
**kwargs):
from pyscf.lo import orth
from pyscf.tools import dump_mat
from pyscf.mcscf import addons
log = logger.new_logger(casscf, verbose)
if mo_coeff is None: mo_coeff = casscf.mo_coeff
if ci is None: ci = casscf.ci
nelecas = casscf.nelecas
ncas = casscf.ncas
ncore = casscf.ncore
nocc = ncore + ncas
mocore = mo_coeff[:,:ncore]
mocas = mo_coeff[:,ncore:nocc]
label = casscf.mol.ao_labels()
if (isinstance(ci, (list, tuple, RANGE_TYPE)) and
not isinstance(casscf.fcisolver, addons.StateAverageFCISolver)):
log.warn('Mulitple states found in CASCI/CASSCF solver. Density '
'matrix of the first state is generated in .analyze() function.')
civec = ci[0]
else:
civec = ci
if getattr(casscf.fcisolver, 'make_rdm1s', None):
casdm1a, casdm1b = casscf.fcisolver.make_rdm1s(civec, ncas, nelecas)
casdm1 = casdm1a + casdm1b
dm1b = numpy.dot(mocore, mocore.conj().T)
dm1a = dm1b + reduce(numpy.dot, (mocas, casdm1a, mocas.conj().T))
dm1b += reduce(numpy.dot, (mocas, casdm1b, mocas.conj().T))
dm1 = dm1a + dm1b
spin_dm1 = dm1a - dm1b
if log.verbose >= logger.DEBUG2:
log.info('alpha density matrix (on AO)')
dump_mat.dump_tri(log.stdout, dm1a, label, **kwargs)
log.info('beta density matrix (on AO)')
dump_mat.dump_tri(log.stdout, dm1b, label, **kwargs)
else:
casdm1 = casscf.fcisolver.make_rdm1(civec, ncas, nelecas)
dm1a = (numpy.dot(mocore, mocore.conj().T) * 2 +
reduce(numpy.dot, (mocas, casdm1, mocas.conj().T)))
dm1b = None
dm1 = dm1a
spin_dm1 = None
if log.verbose >= logger.INFO:
ovlp_ao = casscf._scf.get_ovlp()
# note the last two args of ._eig for mc1step_symm
occ, ucas = casscf._eig(-casdm1, ncore, nocc)
log.info('Natural occ %s', str(-occ))
mocas = numpy.dot(mocas, ucas)
if with_meta_lowdin:
log.info('Natural orbital (expansion on meta-Lowdin AOs) in CAS space')
orth_coeff = orth.orth_ao(casscf.mol, 'meta_lowdin', s=ovlp_ao)
mocas = reduce(numpy.dot, (orth_coeff.conj().T, ovlp_ao, mocas))
else:
log.info('Natural orbital (expansion on AOs) in CAS space')
dump_mat.dump_rec(log.stdout, mocas, label, start=1, **kwargs)
if log.verbose >= logger.DEBUG2:
if not casscf.natorb:
log.debug2('NOTE: mc.mo_coeff in active space is different to '
'the natural orbital coefficients printed in above.')
if with_meta_lowdin:
c = reduce(numpy.dot, (orth_coeff.conj().T, ovlp_ao, mo_coeff))
log.debug2('MCSCF orbital (expansion on meta-Lowdin AOs)')
else:
c = mo_coeff
log.debug2('MCSCF orbital (expansion on AOs)')
dump_mat.dump_rec(log.stdout, c, label, start=1, **kwargs)
if casscf._scf.mo_coeff is not None:
addons.map2hf(casscf, casscf._scf.mo_coeff)
if (ci is not None and
(getattr(casscf.fcisolver, 'large_ci', None) or
getattr(casscf.fcisolver, 'states_large_ci', None))):
log.info('** Largest CI components **')
if isinstance(ci, (list, tuple, RANGE_TYPE)):
if hasattr(casscf.fcisolver, 'states_large_ci'):
# defined in state_average_mix_ mcscf object
res = casscf.fcisolver.states_large_ci(ci, casscf.ncas, casscf.nelecas,
large_ci_tol, return_strs=False)
else:
res = [casscf.fcisolver.large_ci(civec, casscf.ncas, casscf.nelecas,
large_ci_tol, return_strs=False)
for civec in ci]
for i, civec in enumerate(ci):
log.info(' [alpha occ-orbitals] [beta occ-orbitals] state %-3d CI coefficient', i)
for c,ia,ib in res[i]:
log.info(' %-20s %-30s % .12f', ia, ib, c)
else:
log.info(' [alpha occ-orbitals] [beta occ-orbitals] CI coefficient')
res = casscf.fcisolver.large_ci(ci, casscf.ncas, casscf.nelecas,
large_ci_tol, return_strs=False)
for c,ia,ib in res:
log.info(' %-20s %-30s % .12f', ia, ib, c)
if with_meta_lowdin:
casscf._scf.mulliken_meta(casscf.mol, dm1, s=ovlp_ao, verbose=log)
else:
casscf._scf.mulliken_pop(casscf.mol, dm1, s=ovlp_ao, verbose=log)
if spin_dm1 is not None:
if with_meta_lowdin:
log.info('Mulliken spin population analysis on meta-Lowdin AOs:')
spin_pop, spin_chg = casscf._scf.mulliken_meta(casscf.mol, spin_dm1, s=ovlp_ao, verbose=log)
else:
log.info('Mulliken spin population analysis on AOs:')
spin_pop, spin_chg = casscf._scf.mulliken_pop(casscf.mol, spin_dm1, s=ovlp_ao, verbose=log)
for i, s in enumerate(label):
log.info('spop of %-12s %10.5f', s, spin_pop[i])
spin_chg = casscf.mol.atom_charges() - spin_chg
log.note('Mulliken atomic spins:')
for ia in range(casscf.mol.natm):
symb = casscf.mol.atom_symbol(ia)
log.note('spin of %d%s = %10.5f', ia, symb, spin_chg[ia])
return dm1a, dm1b
[docs]
def get_fock(mc, mo_coeff=None, ci=None, eris=None, casdm1=None, verbose=None):
r'''
Effective one-electron Fock matrix in AO representation
f = \sum_{pq} E_{pq} F_{pq}
F_{pq} = h_{pq} + \sum_{rs} [(pq|rs)-(ps|rq)] DM_{sr}
Ref.
Theor. Chim. Acta., 91, 31
Chem. Phys. 48, 157
For state-average CASCI/CASSCF object, the effective fock matrix is based
on the state-average density matrix. To obtain Fock matrix of a specific
state in the state-average calculations, you can pass "casdm1" of the
specific state to this function.
Args:
mc: a CASSCF/CASCI object or RHF object
Kwargs:
mo_coeff (ndarray): orbitals that span the core, active and external
space.
ci (ndarray): CI coefficients (or objects to represent the CI
wavefunctions in DMRG/QMC-MCSCF calculations).
eris: Integrals for the MCSCF object. Input this object to reduce the
overhead of computing integrals. It can be generated by
:func:`mc.ao2mo` method.
casdm1 (ndarray): 1-particle density matrix in active space. Without
input casdm1, the density matrix is computed with the input ci
coefficients/object. If neither ci nor casdm1 were given, density
matrix is computed by :func:`mc.fcisolver.make_rdm1` method. For
state-average CASCI/CASCF calculation, this results in the
effective Fock matrix based on the state-average density matrix.
To obtain the effective Fock matrix for one particular state, you
can assign the density matrix of that state to the kwarg casdm1.
Returns:
Fock matrix
'''
if ci is None: ci = mc.ci
if mo_coeff is None: mo_coeff = mc.mo_coeff
nmo = mo_coeff.shape[1]
ncore = mc.ncore
ncas = mc.ncas
nocc = ncore + ncas
nelecas = mc.nelecas
if casdm1 is None:
casdm1 = mc.fcisolver.make_rdm1(ci, ncas, nelecas)
if getattr(eris, 'ppaa', None) is not None:
vj = numpy.empty((nmo,nmo))
vk = numpy.empty((nmo,nmo))
for i in range(nmo):
vj[i] = numpy.einsum('ij,qij->q', casdm1, eris.ppaa[i])
vk[i] = numpy.einsum('ij,iqj->q', casdm1, eris.papa[i])
mo_inv = numpy.dot(mo_coeff.conj().T, mc._scf.get_ovlp())
fock = (mc.get_hcore() +
reduce(numpy.dot, (mo_inv.conj().T, eris.vhf_c+vj-vk*.5, mo_inv)))
else:
dm_core = numpy.dot(mo_coeff[:,:ncore]*2, mo_coeff[:,:ncore].conj().T)
mocas = mo_coeff[:,ncore:nocc]
dm = dm_core + reduce(numpy.dot, (mocas, casdm1, mocas.conj().T))
vj, vk = mc._scf.get_jk(mc.mol, dm)
fock = mc.get_hcore() + vj-vk*.5
return fock
[docs]
def cas_natorb(mc, mo_coeff=None, ci=None, eris=None, sort=False,
casdm1=None, verbose=None, with_meta_lowdin=WITH_META_LOWDIN):
'''Transform active orbitals to natural orbitals, and update the CI wfn
accordingly
Args:
mc : a CASSCF/CASCI object or RHF object
Kwargs:
sort : bool
Sort natural orbitals wrt the occupancy.
Returns:
A tuple, the first item is natural orbitals, the second is updated CI
coefficients, the third is the natural occupancy associated to the
natural orbitals.
'''
from pyscf.lo import orth
from pyscf.tools import dump_mat
from pyscf.tools.mo_mapping import mo_1to1map
if mo_coeff is None: mo_coeff = mc.mo_coeff
if ci is None: ci = mc.ci
log = logger.new_logger(mc, verbose)
ncore = mc.ncore
ncas = mc.ncas
nocc = ncore + ncas
nelecas = mc.nelecas
nmo = mo_coeff.shape[1]
if casdm1 is None:
casdm1 = mc.fcisolver.make_rdm1(ci, ncas, nelecas)
if getattr(mo_coeff, 'orbsym', None) is not None:
orbsym = numpy.copy(mo_coeff.orbsym)
else:
orbsym = numpy.zeros(mo_coeff.shape[1], dtype=int)
if getattr(mc, 'extrasym', None) is not None:
orbsym_extra = numpy.asarray([str(i1) + str(i2)
for i1, i2 in zip(orbsym, mc.extrasym)])
else:
orbsym_extra = orbsym
# orbital symmetry is reserved in this _eig call
cas_occ, ucas = mc._eig(-casdm1, ncore, nocc, orbsym_extra[ncore:nocc])
if sort:
casorb_idx = numpy.argsort(cas_occ.round(9), kind='mergesort')
cas_occ = cas_occ[casorb_idx]
ucas = ucas[:,casorb_idx]
cas_occ = -cas_occ
mo_occ = numpy.zeros(mo_coeff.shape[1])
mo_occ[:ncore] = 2
mo_occ[ncore:nocc] = cas_occ
mo_coeff1 = mo_coeff.copy()
mo_coeff1[:,ncore:nocc] = numpy.dot(mo_coeff[:,ncore:nocc], ucas)
if getattr(mo_coeff, 'orbsym', None) is not None:
if sort:
orbsym[ncore:nocc] = orbsym[ncore:nocc][casorb_idx]
mo_coeff1 = lib.tag_array(mo_coeff1, orbsym=orbsym)
else:
orbsym = numpy.zeros(nmo, dtype=int)
# When occupancies of active orbitals equal to 2 or 0, these orbitals
# need to be canonicalized along with inactive(core or virtual) orbitals
# using general Fock matrix. Because they are strongly coupled with
# inactive orbitals, the 0th order Hamiltonian of MRPT methods can be
# strongly affected. Numerical uncertainty may be found in the perturbed
# correlation energy.
# See issue https://github.com/pyscf/pyscf/issues/1041
occ2_idx = numpy.where(2 - cas_occ < FRAC_OCC_THRESHOLD)[0]
occ0_idx = numpy.where(cas_occ < FRAC_OCC_THRESHOLD)[0]
if occ2_idx.size > 0 or occ0_idx.size > 0:
fock_ao = mc.get_fock(mo_coeff, ci, eris, casdm1, verbose)
def _diag_subfock_(idx):
c = mo_coeff1[:,idx]
fock = reduce(numpy.dot, (c.conj().T, fock_ao, c))
w, c = mc._eig(fock, None, None, orbsym[idx])
mo_coeff1[:,idx] = mo_coeff1[:,idx].dot(c)
if occ2_idx.size > 0:
log.warn('Active orbitals %s (occs = %s) are canonicalized with core orbitals',
occ2_idx, cas_occ[occ2_idx])
full_occ2_idx = numpy.append(numpy.arange(ncore), ncore + occ2_idx)
_diag_subfock_(full_occ2_idx)
if occ0_idx.size > 0:
log.warn('Active orbitals %s (occs = %s) are canonicalized with external orbitals',
occ0_idx, cas_occ[occ0_idx])
full_occ0_idx = numpy.append(ncore + occ0_idx, numpy.arange(nocc, nmo))
_diag_subfock_(full_occ0_idx)
# Rotate CI according to the unitary coefficients ucas if applicable
fcivec = None
if getattr(mc.fcisolver, 'transform_ci_for_orbital_rotation', None):
if isinstance(ci, (fci.FCIvector, fci.SCIvector, numpy.ndarray)):
fcivec = mc.fcisolver.transform_ci_for_orbital_rotation(ci, ncas, nelecas, ucas)
elif (isinstance(ci, (list, tuple)) and
all(isinstance(x[0], (fci.FCIvector, fci.SCIvector, numpy.ndarray)) for x in ci)):
fcivec = [mc.fcisolver.transform_ci_for_orbital_rotation(x, ncas, nelecas, ucas)
for x in ci]
elif getattr(mc.fcisolver, 'states_transform_ci_for_orbital_rotation', None):
fcivec = mc.fcisolver.states_transform_ci_for_orbital_rotation(ci, ncas, nelecas, ucas)
# Rerun fcisolver to get wavefunction if it cannot be transformed from
# existed one.
if fcivec is None:
log.info('FCI vector not available, call CASCI to update wavefunction')
mocas = mo_coeff1[:,ncore:nocc]
hcore = mc.get_hcore()
dm_core = numpy.dot(mo_coeff1[:,:ncore]*2, mo_coeff1[:,:ncore].conj().T)
ecore = mc.energy_nuc()
ecore+= numpy.einsum('ij,ji', hcore, dm_core)
h1eff = reduce(numpy.dot, (mocas.conj().T, hcore, mocas))
if getattr(eris, 'ppaa', None) is not None:
ecore += eris.vhf_c[:ncore,:ncore].trace()
h1eff += reduce(numpy.dot, (ucas.conj().T, eris.vhf_c[ncore:nocc,ncore:nocc], ucas))
aaaa = ao2mo.restore(4, eris.ppaa[ncore:nocc,ncore:nocc,:,:], ncas)
aaaa = ao2mo.incore.full(aaaa, ucas)
else:
if getattr(mc, 'with_df', None):
aaaa = mc.with_df.ao2mo(mocas)
else:
aaaa = ao2mo.kernel(mc.mol, mocas)
corevhf = mc.get_veff(mc.mol, dm_core)
ecore += numpy.einsum('ij,ji', dm_core, corevhf) * .5
h1eff += reduce(numpy.dot, (mocas.conj().T, corevhf, mocas))
# See label_symmetry_ function in casci_symm.py which initialize the
# orbital symmetry information in fcisolver. This orbital symmetry
# labels should be reordered to match the sorted active space orbitals.
if sort and getattr(mo_coeff1, 'orbsym', None) is not None:
mc.fcisolver.orbsym = mo_coeff1.orbsym[ncore:nocc]
max_memory = max(400, mc.max_memory-lib.current_memory()[0])
e, fcivec = mc.fcisolver.kernel(h1eff, aaaa, ncas, nelecas, ecore=ecore,
max_memory=max_memory, verbose=log)
log.debug('In Natural orbital, CASCI energy = %s', e)
if log.verbose >= logger.INFO:
ovlp_ao = mc._scf.get_ovlp()
# where_natorb gives the new locations of the natural orbitals
where_natorb = mo_1to1map(ucas)
log.debug('where_natorb %s', str(where_natorb))
log.info('Natural occ %s', str(cas_occ))
if with_meta_lowdin:
log.info('Natural orbital (expansion on meta-Lowdin AOs) in CAS space')
label = mc.mol.ao_labels()
orth_coeff = orth.orth_ao(mc.mol, 'meta_lowdin', s=ovlp_ao)
mo_cas = reduce(numpy.dot, (orth_coeff.conj().T, ovlp_ao, mo_coeff1[:,ncore:nocc]))
else:
log.info('Natural orbital (expansion on AOs) in CAS space')
label = mc.mol.ao_labels()
mo_cas = mo_coeff1[:,ncore:nocc]
dump_mat.dump_rec(log.stdout, mo_cas, label, start=1)
if mc._scf.mo_coeff is not None:
s = reduce(numpy.dot, (mo_coeff1[:,ncore:nocc].conj().T,
mc._scf.get_ovlp(), mc._scf.mo_coeff))
idx = numpy.argwhere(abs(s)>.4)
for i,j in idx:
log.info('<CAS-nat-orb|mo-hf> %-5d %-5d % 12.8f',
ncore+i+1, j+1, s[i,j])
return mo_coeff1, fcivec, mo_occ
[docs]
def canonicalize(mc, mo_coeff=None, ci=None, eris=None, sort=False,
cas_natorb=False, casdm1=None, verbose=logger.NOTE,
with_meta_lowdin=WITH_META_LOWDIN, stav_dm1=False):
'''Canonicalized CASCI/CASSCF orbitals of effective Fock matrix and
update CI coefficients accordingly.
Effective Fock matrix is built with one-particle density matrix (see
also :func:`mcscf.casci.get_fock`). For state-average CASCI/CASSCF object,
the canonicalized orbitals are based on the state-average density matrix.
To obtain canonicalized orbitals for an individual state, you need to pass
"casdm1" of the specific state to this function.
Args:
mc: a CASSCF/CASCI object or RHF object
Kwargs:
mo_coeff (ndarray): orbitals that span the core, active and external
space.
ci (ndarray): CI coefficients (or objects to represent the CI
wavefunctions in DMRG/QMC-MCSCF calculations).
eris: Integrals for the MCSCF object. Input this object to reduce the
overhead of computing integrals. It can be generated by
:func:`mc.ao2mo` method.
sort (bool): Whether the canonicalized orbitals are sorted based on
the orbital energy (diagonal part of the effective Fock matrix)
within each subspace (core, active, external). If point group
symmetry is not available in the system, orbitals are always
sorted. When point group symmetry is available, sort=False will
preserve the symmetry label of input orbitals and only sort the
orbitals in each symmetry sector. sort=True will reorder all
orbitals over all symmetry sectors in each subspace and the
symmetry labels may be changed.
cas_natorb (bool): Whether to transform active orbitals to natural
orbitals. If enabled, the output orbitals in active space are
transformed to natural orbitals and CI coefficients are updated
accordingly.
casdm1 (ndarray): 1-particle density matrix in active space. This
density matrix is used to build effective fock matrix. Without
input casdm1, the density matrix is computed with the input ci
coefficients/object. If neither ci nor casdm1 were given, density
matrix is computed by :func:`mc.fcisolver.make_rdm1` method. For
state-average CASCI/CASCF calculation, this results in a set of
canonicalized orbitals of state-average effective Fock matrix.
To canonicalize the orbitals for one particular state, you can
assign the density matrix of that state to the kwarg casdm1.
stav_dm1 (bool): Use state-average 1-particle density matrix for
computing Fock matrices and natural orbitals
Returns:
A tuple, (natural orbitals, CI coefficients, orbital energies)
The orbital energies are the diagonal terms of effective Fock matrix.
'''
from pyscf.mcscf import addons
log = logger.new_logger(mc, verbose)
if mo_coeff is None: mo_coeff = mc.mo_coeff
if ci is None: ci = mc.ci
if casdm1 is None:
if (isinstance(ci, (list, tuple, RANGE_TYPE)) and
not isinstance(mc.fcisolver, addons.StateAverageFCISolver)):
if stav_dm1:
log.warn('Mulitple states found in CASCI solver. '
'Use state-average 1RDM to compute the Fock matrix'
' and natural orbitals in the active space.')
casdm1 = mc.fcisolver.make_rdm1(ci[0], mc.ncas, mc.nelecas)
for root in range(1, len(ci)):
casdm1 += mc.fcisolver.make_rdm1(ci[root], mc.ncas,
mc.nelecas)
casdm1 /= len(ci)
else:
log.warn('Mulitple states found in CASCI solver. '
'First state is used to compute the Fock matrix'
' and natural orbitals in active space.')
casdm1 = mc.fcisolver.make_rdm1(ci[0], mc.ncas, mc.nelecas)
else:
casdm1 = mc.fcisolver.make_rdm1(ci, mc.ncas, mc.nelecas)
ncore = mc.ncore
nocc = ncore + mc.ncas
nmo = mo_coeff.shape[1]
fock_ao = mc.get_fock(mo_coeff, ci, eris, casdm1, verbose)
if cas_natorb:
mo_coeff1, ci, mc.mo_occ = mc.cas_natorb(mo_coeff, ci, eris, sort, casdm1,
verbose, with_meta_lowdin)
else:
# Keep the active space unchanged by default. The rotation in active space
# may cause problem for external CI solver eg DMRG.
mo_coeff1 = mo_coeff.copy()
log.info('Density matrix diagonal elements %s', casdm1.diagonal())
mo_energy = numpy.einsum('pi,pi->i', mo_coeff1.conj(), fock_ao.dot(mo_coeff1))
if getattr(mo_coeff, 'orbsym', None) is not None:
orbsym = mo_coeff.orbsym
else:
orbsym = numpy.zeros(nmo, dtype=int)
extrasym = getattr(mc, 'extrasym', None)
if extrasym is not None:
orbsym_extra = numpy.asarray([str(i1) + str(i2)
for i1, i2 in zip(orbsym, extrasym)])
else:
orbsym_extra = orbsym
def _diag_subfock_(idx):
if idx.size > 1:
c = mo_coeff1[:,idx]
fock = reduce(numpy.dot, (c.conj().T, fock_ao, c))
# note the last argument orbysm is needed by mc1step_symm._eig
w, c = mc._eig(fock, None, None, orbsym_extra[idx])
if sort:
sub_order = numpy.argsort(w.round(9), kind='mergesort')
w = w[sub_order]
c = c[:,sub_order]
orbsym[idx] = orbsym[idx][sub_order]
mo_coeff1[:,idx] = mo_coeff1[:,idx].dot(c)
mo_energy[idx] = w
mask = numpy.ones(nmo, dtype=bool)
frozen = getattr(mc, 'frozen', None)
if frozen is not None:
if isinstance(frozen, (int, numpy.integer)):
mask[:frozen] = False
else:
mask[frozen] = False
core_idx = numpy.where(mask[:ncore])[0]
vir_idx = numpy.where(mask[nocc:])[0] + nocc
_diag_subfock_(core_idx)
_diag_subfock_(vir_idx)
# orbsym is required only for symmetry-adapted methods. Here to use
# mo_coeff.orbsym to test if a symmetry-adapted calculation.
if getattr(mo_coeff, 'orbsym', None) is not None:
mo_coeff1 = lib.tag_array(mo_coeff1, orbsym=orbsym)
if log.verbose >= logger.DEBUG:
for i in range(nmo):
log.debug('i = %d <i|F|i> = %12.8f', i+1, mo_energy[i])
# still return ci coefficients, in case the canonicalization function changed
# cas orbitals, the ci coefficients should also be updated.
return mo_coeff1, ci, mo_energy
[docs]
def kernel(casci, mo_coeff=None, ci0=None, verbose=logger.NOTE, envs=None):
'''CASCI solver
Args:
casci: CASCI or CASSCF object
mo_coeff : ndarray
orbitals to construct active space Hamiltonian
ci0 : ndarray or custom types
FCI sovler initial guess. For external FCI-like solvers, it can be
overloaded different data type. For example, in the state-average
FCI solver, ci0 is a list of ndarray. In other solvers such as
DMRGCI solver, SHCI solver, ci0 are custom types.
kwargs:
envs: dict
The variable envs is created (for PR 807) to passes MCSCF runtime
environment variables to SHCI solver. For solvers which do not
need this parameter, a kwargs should be created in kernel method
and "envs" pop in kernel function
'''
if mo_coeff is None: mo_coeff = casci.mo_coeff
if ci0 is None: ci0 = casci.ci
log = logger.new_logger(casci, verbose)
t0 = (logger.process_clock(), logger.perf_counter())
log.debug('Start CASCI')
ncas = casci.ncas
nelecas = casci.nelecas
# 2e
eri_cas = casci.get_h2eff(mo_coeff)
t1 = log.timer('integral transformation to CAS space', *t0)
# 1e
h1eff, energy_core = casci.get_h1eff(mo_coeff)
log.debug('core energy = %.15g', energy_core)
t1 = log.timer('effective h1e in CAS space', *t1)
if h1eff.shape[0] != ncas:
raise RuntimeError('Active space size error. nmo=%d ncore=%d ncas=%d' %
(mo_coeff.shape[1], casci.ncore, ncas))
# FCI
max_memory = max(400, casci.max_memory-lib.current_memory()[0])
e_tot, fcivec = casci.fcisolver.kernel(h1eff, eri_cas, ncas, nelecas,
ci0=ci0, verbose=log,
max_memory=max_memory,
ecore=energy_core)
t1 = log.timer('FCI solver', *t1)
e_cas = e_tot - energy_core
return e_tot, e_cas, fcivec
[docs]
def as_scanner(mc):
'''Generating a scanner for CASCI PES.
The returned solver is a function. This function requires one argument
"mol" as input and returns total CASCI energy.
The solver will automatically use the results of last calculation as the
initial guess of the new calculation. All parameters of MCSCF object
are automatically applied in the solver.
Note scanner has side effects. It may change many underlying objects
(_scf, with_df, with_x2c, ...) during calculation.
Examples:
>>> from pyscf import gto, scf, mcscf
>>> mf = scf.RHF(gto.Mole().set(verbose=0))
>>> mc_scanner = mcscf.CASCI(mf, 4, 4).as_scanner()
>>> mc_scanner(gto.M(atom='N 0 0 0; N 0 0 1.1'))
>>> mc_scanner(gto.M(atom='N 0 0 0; N 0 0 1.5'))
'''
if isinstance(mc, lib.SinglePointScanner):
return mc
logger.info(mc, 'Create scanner for %s', mc.__class__)
name = mc.__class__.__name__ + CASCI_Scanner.__name_mixin__
return lib.set_class(CASCI_Scanner(mc), (CASCI_Scanner, mc.__class__), name)
[docs]
class CASCI_Scanner(lib.SinglePointScanner):
def __init__(self, mc):
self.__dict__.update(mc.__dict__)
self._scf = mc._scf.as_scanner()
def __call__(self, mol_or_geom, mo_coeff=None, ci0=None):
if isinstance(mol_or_geom, gto.MoleBase):
mol = mol_or_geom
else:
mol = self.mol.set_geom_(mol_or_geom, inplace=False)
self.reset (mol)
if mo_coeff is None:
mf_scanner = self._scf
mf_scanner(mol)
mo_coeff = mf_scanner.mo_coeff
if ci0 is None:
ci0 = self.ci
self.mol = mol
e_tot = self.kernel(mo_coeff, ci0)[0]
return e_tot
[docs]
class CASBase(lib.StreamObject):
'''CASCI/CASSCF
Args:
mf_or_mol : SCF object or Mole object
SCF or Mole to define the problem size.
ncas : int
Number of active orbitals.
nelecas : int or a pair of int
Number of electrons in active space.
Kwargs:
ncore : int
Number of doubly occupied core orbitals. If not presented, this
parameter can be automatically determined.
Attributes:
verbose : int
Print level. Default value equals to :class:`Mole.verbose`.
max_memory : float or int
Allowed memory in MB. Default value equals to :class:`Mole.max_memory`.
ncas : int
Active space size.
nelecas : tuple of int
Active (nelec_alpha, nelec_beta)
ncore : int or tuple of int
Core electron number. In UHF-CASSCF, it's a tuple to indicate the different core electron numbers.
natorb : bool
Whether to transform natural orbitals in active space.
Note: when CASCI/CASSCF are combined with DMRG solver or selected
CI solver, enabling this parameter may slightly change the total energy.
False by default.
canonicalization : bool
Whether to canonicalize orbitals in core and external space
against the general Fock matrix.
The orbitals in active space are NOT transformed by default. To
get the natural orbitals in active space, the attribute .natorb
needs to be enabled.
True by default.
sorting_mo_energy : bool
Whether to sort the orbitals based on the diagonal elements of the
general Fock matrix. Default is False.
fcisolver : an instance of :class:`FCISolver`
The pyscf.fci module provides several FCISolver for different scenario. Generally,
fci.direct_spin1.FCISolver can be used for all RHF-CASSCF. However, a proper FCISolver
can provide better performance and better numerical stability. One can either use
:func:`fci.solver` function to pick the FCISolver by the program or manually assigen
the FCISolver to this attribute, e.g.
>>> from pyscf import fci
>>> mc = mcscf.CASSCF(mf, 4, 4)
>>> mc.fcisolver = fci.solver(mol, singlet=True)
>>> mc.fcisolver = fci.direct_spin1.FCISolver(mol)
You can control FCISolver by setting e.g.::
>>> mc.fcisolver.max_cycle = 30
>>> mc.fcisolver.conv_tol = 1e-7
For more details of the parameter for FCISolver, See :mod:`fci`.
Saved results
e_tot : float
Total MCSCF energy (electronic energy plus nuclear repulsion)
e_cas : float
CAS space FCI energy
ci : ndarray
CAS space FCI coefficients
mo_coeff : ndarray
When canonicalization is specified, the orbitals are canonical
orbitals which make the general Fock matrix (Fock operator on top
of MCSCF 1-particle density matrix) diagonalized within each
subspace (core, active, external). If natorb (natural orbitals in
active space) is specified, the active segment of the mo_coeff is
natural orbitals.
mo_energy : ndarray
Diagonal elements of general Fock matrix (in mo_coeff
representation).
mo_occ : ndarray
Occupation numbers of natural orbitals if natorb is specified.
Examples:
>>> from pyscf import gto, scf, mcscf
>>> mol = gto.M(atom='N 0 0 0; N 0 0 1', basis='ccpvdz', verbose=0)
>>> mf = scf.RHF(mol)
>>> mf.scf()
>>> mc = mcscf.CASCI(mf, 6, 6)
>>> mc.kernel()[0]
-108.980200816243354
'''
natorb = getattr(__config__, 'mcscf_casci_CASCI_natorb', False)
canonicalization = getattr(__config__, 'mcscf_casci_CASCI_canonicalization', True)
sorting_mo_energy = getattr(__config__, 'mcscf_casci_CASCI_sorting_mo_energy', False)
_keys = {
'natorb', 'canonicalization', 'sorting_mo_energy', 'mol', 'max_memory',
'ncas', 'nelecas', 'ncore', 'fcisolver', 'frozen', 'extrasym',
'e_tot', 'e_cas', 'ci', 'mo_coeff', 'mo_energy', 'mo_occ', 'converged',
}
def __init__(self, mf_or_mol, ncas=0, nelecas=0, ncore=None):
if isinstance(mf_or_mol, gto.Mole):
mf = scf.RHF(mf_or_mol)
else:
mf = mf_or_mol
mol = mf.mol
self.mol = mol
self._scf = mf
self.verbose = mol.verbose
self.stdout = mol.stdout
self.max_memory = mf.max_memory
self.ncas = ncas
if isinstance(nelecas, (int, numpy.integer)):
nelecb = (nelecas-mol.spin)//2
neleca = nelecas - nelecb
self.nelecas = (neleca, nelecb)
else:
self.nelecas = (nelecas[0],nelecas[1])
self.ncore = ncore
singlet = (getattr(__config__, 'mcscf_casci_CASCI_fcisolver_direct_spin0', False)
and self.nelecas[0] == self.nelecas[1]) # leads to direct_spin1
self.fcisolver = fci.solver(mol, singlet, symm=False)
# CI solver parameters are set in fcisolver object
self.fcisolver.lindep = getattr(__config__,
'mcscf_casci_CASCI_fcisolver_lindep', 1e-12)
self.fcisolver.max_cycle = getattr(__config__,
'mcscf_casci_CASCI_fcisolver_max_cycle', 200)
self.fcisolver.conv_tol = getattr(__config__,
'mcscf_casci_CASCI_fcisolver_conv_tol', 1e-8)
self.frozen = None
self.extrasym = None
##################################################
# don't modify the following attributes, they are not input options
self.e_tot = 0
self.e_cas = None
self.ci = None
self.mo_coeff = mf.mo_coeff
self.mo_energy = mf.mo_energy
self.mo_occ = None
self.converged = False
@property
def ncore(self):
if self._ncore is None:
ncorelec = self.mol.nelectron - sum(self.nelecas)
assert ncorelec % 2 == 0
assert ncorelec >= 0
return ncorelec // 2
else:
return self._ncore
@ncore.setter
def ncore(self, x):
assert x is None or isinstance(x, (int, numpy.integer))
assert x is None or x >= 0
self._ncore = x
[docs]
def dump_flags(self, verbose=None):
log = logger.new_logger(self, verbose)
log.info('')
log.info('******** CASCI flags ********')
ncore = self.ncore
ncas = self.ncas
nvir = self.mo_coeff.shape[1] - ncore - ncas
log.info('CAS (%de+%de, %do), ncore = %d, nvir = %d',
self.nelecas[0], self.nelecas[1], ncas, ncore, nvir)
if self.frozen is not None:
log.info('frozen orbitals %s', str(self.frozen))
if self.extrasym is not None:
log.info('extra symmetry labels:\n%s', str(self.extrasym))
log.info('natorb = %s', self.natorb)
log.info('canonicalization = %s', self.canonicalization)
log.info('sorting_mo_energy = %s', self.sorting_mo_energy)
log.info('max_memory %d (MB)', self.max_memory)
if getattr(self.fcisolver, 'dump_flags', None):
self.fcisolver.dump_flags(log.verbose)
if self.mo_coeff is None:
log.error('Orbitals for CASCI are not specified. The relevant SCF '
'object may not be initialized.')
if (getattr(self._scf, 'with_solvent', None) and
not getattr(self, 'with_solvent', None)):
log.warn('''Solvent model %s was found at SCF level but not applied to the CASCI object.
The SCF solvent model will not be applied to the current CASCI calculation.
To enable the solvent model for CASCI, the following code needs to be called
from pyscf import solvent
mc = mcscf.CASCI(...)
mc = solvent.ddCOSMO(mc)
''',
self._scf.with_solvent.__class__)
return self
[docs]
def check_sanity(self):
super().check_sanity()
assert self.ncas > 0
ncore = self.ncore
nvir = self.mo_coeff.shape[1] - ncore - self.ncas
assert ncore >= 0
assert nvir >= 0
assert ncore * 2 + sum(self.nelecas) == self.mol.nelectron
assert 0 <= self.nelecas[0] <= self.ncas
assert 0 <= self.nelecas[1] <= self.ncas
return self
[docs]
def reset(self, mol=None):
if mol is not None:
self.mol = mol
self.fcisolver.mol = mol
self._scf.reset(mol)
return self
[docs]
def energy_nuc(self):
return self._scf.energy_nuc()
[docs]
def get_hcore(self, mol=None):
return self._scf.get_hcore(mol)
[docs]
@lib.with_doc(scf.hf.get_jk.__doc__)
def get_jk(self, mol, dm, hermi=1, with_j=True, with_k=True, omega=None):
return self._scf.get_jk(mol, dm, hermi,
with_j=with_j, with_k=with_k, omega=omega)
[docs]
@lib.with_doc(scf.hf.get_veff.__doc__)
def get_veff(self, mol=None, dm=None, hermi=1):
if mol is None: mol = self.mol
if dm is None:
mocore = self.mo_coeff[:,:self.ncore]
dm = numpy.dot(mocore, mocore.conj().T) * 2
# don't call self._scf.get_veff because _scf might be DFT object
vj, vk = self.get_jk(mol, dm, hermi)
return vj - vk * .5
def _eig(self, h, *args):
return scf.hf.eig(h, None)
[docs]
def get_h2cas(self, mo_coeff=None):
'''An alias of get_h2eff method'''
return self.get_h2eff(mo_coeff)
[docs]
def get_h2eff(self, mo_coeff=None):
'''Compute the active space two-particle Hamiltonian.
'''
raise NotImplementedError
[docs]
def ao2mo(self, mo_coeff=None):
'''Compute the active space two-particle Hamiltonian.
'''
raise NotImplementedError
[docs]
def get_h1cas(self, mo_coeff=None, ncas=None, ncore=None):
'''An alias of get_h1eff method'''
return self.get_h1eff(mo_coeff, ncas, ncore)
get_h1eff = h1e_for_cas = h1e_for_cas
[docs]
def casci(self, mo_coeff=None, ci0=None, verbose=None):
raise NotImplementedError
[docs]
def kernel(self, mo_coeff=None, ci0=None, verbose=None):
'''
Returns:
Five elements, they are
total energy,
active space CI energy,
the active space FCI wavefunction coefficients or DMRG wavefunction ID,
the MCSCF canonical orbital coefficients,
the MCSCF canonical orbital coefficients.
They are attributes of mcscf object, which can be accessed by
.e_tot, .e_cas, .ci, .mo_coeff, .mo_energy
'''
raise NotImplementedError
def _finalize(self):
log = logger.Logger(self.stdout, self.verbose)
if log.verbose >= logger.NOTE and getattr(self.fcisolver, 'spin_square', None):
if isinstance(self.e_cas, (float, numpy.number)):
try:
ss = self.fcisolver.spin_square(self.ci, self.ncas, self.nelecas)
log.note('CASCI E = %#.15g E(CI) = %#.15g S^2 = %.7f',
self.e_tot, self.e_cas, ss[0])
except NotImplementedError:
log.note('CASCI E = %#.15g E(CI) = %#.15g',
self.e_tot, self.e_cas)
else:
for i, e in enumerate(self.e_cas):
try:
ss = self.fcisolver.spin_square(self.ci[i], self.ncas, self.nelecas)
log.note('CASCI state %3d E = %#.15g E(CI) = %#.15g S^2 = %.7f',
i, self.e_tot[i], e, ss[0])
except NotImplementedError:
log.note('CASCI state %3d E = %#.15g E(CI) = %#.15g',
i, self.e_tot[i], e)
else:
if isinstance(self.e_cas, (float, numpy.number)):
log.note('CASCI E = %#.15g E(CI) = %#.15g', self.e_tot, self.e_cas)
else:
for i, e in enumerate(self.e_cas):
log.note('CASCI state %3d E = %#.15g E(CI) = %#.15g',
i, self.e_tot[i], e)
return self
[docs]
@lib.with_doc(cas_natorb.__doc__)
def cas_natorb(self, mo_coeff=None, ci=None, eris=None, sort=False,
casdm1=None, verbose=None, with_meta_lowdin=WITH_META_LOWDIN):
return cas_natorb(self, mo_coeff, ci, eris, sort, casdm1, verbose,
with_meta_lowdin)
[docs]
@lib.with_doc(cas_natorb.__doc__)
def cas_natorb_(self, mo_coeff=None, ci=None, eris=None, sort=False,
casdm1=None, verbose=None, with_meta_lowdin=WITH_META_LOWDIN):
self.mo_coeff, self.ci, self.mo_occ = cas_natorb(self, mo_coeff, ci, eris,
sort, casdm1, verbose)
return self.mo_coeff, self.ci, self.mo_occ
[docs]
def get_fock(self, mo_coeff=None, ci=None, eris=None, casdm1=None,
verbose=None):
return get_fock(self, mo_coeff, ci, eris, casdm1, verbose)
canonicalize = canonicalize
[docs]
@lib.with_doc(canonicalize.__doc__)
def canonicalize_(self, mo_coeff=None, ci=None, eris=None, sort=False,
cas_natorb=False, casdm1=None, verbose=None,
with_meta_lowdin=WITH_META_LOWDIN):
self.mo_coeff, ci, self.mo_energy = \
canonicalize(self, mo_coeff, ci, eris,
sort, cas_natorb, casdm1, verbose, with_meta_lowdin)
if cas_natorb: # When active space is changed, the ci solution needs to be updated
self.ci = ci
return self.mo_coeff, ci, self.mo_energy
analyze = analyze
[docs]
@lib.with_doc(addons.sort_mo.__doc__)
def sort_mo(self, caslst, mo_coeff=None, base=1):
if mo_coeff is None: mo_coeff = self.mo_coeff
return addons.sort_mo(self, mo_coeff, caslst, base)
[docs]
@lib.with_doc(addons.state_average.__doc__)
def state_average_(self, weights=(0.5,0.5), wfnsym=None):
addons.state_average_(self, weights, wfnsym)
return self
[docs]
@lib.with_doc(addons.state_average.__doc__)
def state_average(self, weights=(0.5,0.5), wfnsym=None):
return addons.state_average(self, weights, wfnsym)
[docs]
@lib.with_doc(addons.state_specific_.__doc__)
def state_specific_(self, state=1):
addons.state_specific(self, state)
return self
[docs]
def make_rdm1s(self, mo_coeff=None, ci=None, ncas=None, nelecas=None,
ncore=None, **kwargs):
'''One-particle density matrices for alpha and beta spin on AO basis
'''
if mo_coeff is None: mo_coeff = self.mo_coeff
if ci is None: ci = self.ci
if ncas is None: ncas = self.ncas
if nelecas is None: nelecas = self.nelecas
if ncore is None: ncore = self.ncore
casdm1a, casdm1b = self.fcisolver.make_rdm1s(ci, ncas, nelecas)
mocore = mo_coeff[:,:ncore]
mocas = mo_coeff[:,ncore:ncore+ncas]
dm1b = numpy.dot(mocore, mocore.conj().T)
dm1a = dm1b + reduce(numpy.dot, (mocas, casdm1a, mocas.conj().T))
dm1b += reduce(numpy.dot, (mocas, casdm1b, mocas.conj().T))
return dm1a, dm1b
[docs]
def make_rdm1(self, mo_coeff=None, ci=None, ncas=None, nelecas=None,
ncore=None, **kwargs):
'''One-particle density matrix in AO representation
'''
if mo_coeff is None: mo_coeff = self.mo_coeff
if ci is None: ci = self.ci
if ncas is None: ncas = self.ncas
if nelecas is None: nelecas = self.nelecas
if ncore is None: ncore = self.ncore
casdm1 = self.fcisolver.make_rdm1(ci, ncas, nelecas)
mocore = mo_coeff[:,:ncore]
mocas = mo_coeff[:,ncore:ncore+ncas]
dm1 = numpy.dot(mocore, mocore.conj().T) * 2
dm1 = dm1 + reduce(numpy.dot, (mocas, casdm1, mocas.conj().T))
return dm1
[docs]
def fix_spin_(self, shift=PENALTY, ss=None):
r'''Use level shift to control FCI solver spin.
.. math::
(H + shift*S^2) |\Psi\rangle = E |\Psi\rangle
Kwargs:
shift : float
Energy penalty for states which have wrong spin
ss : number
S^2 expection value == s*(s+1)
'''
fci.addons.fix_spin_(self.fcisolver, shift, ss)
return self
fix_spin = fix_spin_
[docs]
def density_fit(self, auxbasis=None, with_df=None):
from pyscf.mcscf import df
return df.density_fit(self, auxbasis, with_df)
[docs]
def sfx2c1e(self):
from pyscf.x2c import sfx2c1e
self._scf = sfx2c1e.sfx2c1e(self._scf).run()
self.mo_coeff = self._scf.mo_coeff
self.mo_energy = self._scf.mo_energy
return self
x2c = x2c1e = sfx2c1e
[docs]
def nuc_grad_method(self):
raise NotImplementedError
[docs]
class CASCI(CASBase):
[docs]
def get_h2eff(self, mo_coeff=None):
'''Compute the active space two-particle Hamiltonian.
'''
ncore = self.ncore
ncas = self.ncas
nocc = ncore + ncas
if mo_coeff is None:
ncore = self.ncore
mo_coeff = self.mo_coeff[:,ncore:nocc]
elif mo_coeff.shape[1] != ncas:
mo_coeff = mo_coeff[:,ncore:nocc]
if hasattr(self._scf, '_eri') and self._scf._eri is not None:
eri = ao2mo.full(self._scf._eri, mo_coeff,
max_memory=self.max_memory)
else:
eri = ao2mo.full(self.mol, mo_coeff, verbose=self.verbose,
max_memory=self.max_memory)
return eri
[docs]
def casci(self, mo_coeff=None, ci0=None, verbose=None):
return self.kernel(mo_coeff, ci0, verbose)
[docs]
def kernel(self, mo_coeff=None, ci0=None, verbose=None):
'''
Returns:
Five elements, they are
total energy,
active space CI energy,
the active space FCI wavefunction coefficients or DMRG wavefunction ID,
the MCSCF canonical orbital coefficients,
the MCSCF canonical orbital coefficients.
They are attributes of mcscf object, which can be accessed by
.e_tot, .e_cas, .ci, .mo_coeff, .mo_energy
'''
if mo_coeff is None:
mo_coeff = self.mo_coeff
else:
self.mo_coeff = mo_coeff
if ci0 is None:
ci0 = self.ci
log = logger.new_logger(self, verbose)
self.check_sanity()
self.dump_flags(log)
self.e_tot, self.e_cas, self.ci = \
kernel(self, mo_coeff, ci0=ci0, verbose=log)
if self.canonicalization:
self.canonicalize_(mo_coeff, self.ci,
sort=self.sorting_mo_energy,
cas_natorb=self.natorb, verbose=log)
elif self.natorb:
# FIXME (pyscf-2.0): Whether to transform natural orbitals in
# active space when this flag is enabled?
log.warn('The attribute .natorb of mcscf object affects only the '
'orbital canonicalization.\n'
'If you would like to get natural orbitals in active space '
'without touching core and external orbitals, an explicit '
'call to mc.cas_natorb_() is required')
if getattr(self.fcisolver, 'converged', None) is not None:
self.converged = numpy.all(self.fcisolver.converged)
if self.converged:
log.info('CASCI converged')
else:
log.info('CASCI not converged')
else:
self.converged = True
self._finalize()
return self.e_tot, self.e_cas, self.ci, self.mo_coeff, self.mo_energy
as_scanner = as_scanner
[docs]
def nuc_grad_method(self):
from pyscf.grad import casci
return casci.Gradients(self)
to_gpu = lib.to_gpu
scf.hf.RHF.CASCI = scf.rohf.ROHF.CASCI = lib.class_as_method(CASCI)
scf.uhf.UHF.CASCI = None
del (WITH_META_LOWDIN, LARGE_CI_TOL, PENALTY)