Source code for pyscf.mcscf.addons

#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

import sys
from functools import reduce
import numpy
import scipy
from pyscf import lib
from pyscf import gto
from pyscf.lib import logger
from pyscf import fci
from pyscf import scf
from pyscf import symm
from pyscf import __config__

BASE = getattr(__config__, 'mcscf_addons_sort_mo_base', 1)
MAP2HF_TOL = getattr(__config__, 'mcscf_addons_map2hf_tol', 0.4)

if sys.version_info < (3,):
    RANGE_TYPE = list
else:
    RANGE_TYPE = range


[docs] def sort_mo(casscf, mo_coeff, caslst, base=BASE): '''Pick orbitals for CAS space Args: casscf : an :class:`CASSCF` or :class:`CASCI` object mo_coeff : ndarray or a list of ndarray Orbitals for CASSCF initial guess. In the UHF-CASSCF, it's a list of two orbitals, for alpha and beta spin. caslst : list of int or nested list of int A list of orbital indices to represent the CAS space. In the UHF-CASSCF, it's consist of two lists, for alpha and beta spin. Kwargs: base : int 0-based (C-style) or 1-based (Fortran-style) caslst Returns: An reoreded mo_coeff, which put the orbitals given by caslst in the CAS space Examples: >>> from pyscf import gto, scf, mcscf >>> mol = gto.M(atom='N 0 0 0; N 0 0 1', basis='ccpvdz', verbose=0) >>> mf = scf.RHF(mol) >>> mf.scf() >>> mc = mcscf.CASSCF(mf, 4, 4) >>> cas_list = [5,6,8,9] # pi orbitals >>> mo = mc.sort_mo(cas_list) >>> mc.kernel(mo)[0] -109.007378939813691 ''' ncore = casscf.ncore def ext_list(nmo, caslst): mask = numpy.ones(nmo, dtype=bool) mask[caslst] = False idx = numpy.where(mask)[0] if len(idx) + casscf.ncas != nmo: raise ValueError('Active space size is incompatible with caslist. ' 'ncas = %d. caslist %s' % (casscf.ncas, caslst)) return idx if isinstance(ncore, (int, numpy.integer)): nmo = mo_coeff.shape[1] if base != 0: caslst = [i-base for i in caslst] idx = ext_list(nmo, caslst) mo = numpy.hstack((mo_coeff[:,idx[:ncore]], mo_coeff[:,caslst], mo_coeff[:,idx[ncore:]])) if getattr(mo_coeff, 'orbsym', None) is not None: orbsym = mo_coeff.orbsym orbsym = numpy.hstack((orbsym[idx[:ncore]], orbsym[caslst], orbsym[idx[ncore:]])) mo = lib.tag_array(mo, orbsym=orbsym) return mo else: # UHF-based CASSCF if isinstance(caslst[0], (int, numpy.integer)): if base != 0: caslsta = [i-1 for i in caslst] caslst = (caslsta, caslsta) else: # two casspace lists, for alpha and beta if base != 0: caslst = ([i-base for i in caslst[0]], [i-base for i in caslst[1]]) nmo = mo_coeff[0].shape[1] idxa = ext_list(nmo, caslst[0]) mo_a = numpy.hstack((mo_coeff[0][:,idxa[:ncore[0]]], mo_coeff[0][:,caslst[0]], mo_coeff[0][:,idxa[ncore[0]:]])) idxb = ext_list(nmo, caslst[1]) mo_b = numpy.hstack((mo_coeff[1][:,idxb[:ncore[1]]], mo_coeff[1][:,caslst[1]], mo_coeff[1][:,idxb[ncore[1]:]])) if getattr(mo_coeff[0], 'orbsym', None) is not None: orbsyma, orbsymb = mo_coeff[0].orbsym, mo_coeff[1].orbsym orbsyma = numpy.hstack((orbsyma[idxa[:ncore[0]]], orbsyma[caslst[0]], orbsyma[idxa[ncore[0]:]])) orbsymb = numpy.hstack((orbsymb[idxb[:ncore[1]]], orbsymb[caslst[1]], orbsymb[idxb[ncore[1]:]])) mo_a = lib.tag_array(mo_a, orbsym=orbsyma) mo_b = lib.tag_array(mo_b, orbsym=orbsymb) return (mo_a, mo_b)
[docs] def select_mo_by_irrep(casscf, cas_occ_num, mo=None, base=BASE): raise RuntimeError('This function has been replaced by function caslst_by_irrep')
[docs] def caslst_by_irrep(casscf, mo_coeff, cas_irrep_nocc, cas_irrep_ncore=None, s=None, base=BASE): '''Given number of active orbitals for each irrep, return the orbital indices of active space Args: casscf : an :class:`CASSCF` or :class:`CASCI` object cas_irrep_nocc : list or dict Number of active orbitals for each irrep. It can be a dict, eg {'A1': 2, 'B2': 4} to indicate the active space size based on irrep names, or {0: 2, 3: 4} for irrep Id, or a list [2, 0, 0, 4] (identical to {0: 2, 3: 4}) in which the list index is served as the irrep Id. Kwargs: cas_irrep_ncore : list or dict Number of closed shells for each irrep. It can be a dict, eg {'A1': 6, 'B2': 4} to indicate the closed shells based on irrep names, or {0: 6, 3: 4} for irrep Id, or a list [6, 0, 0, 4] (identical to {0: 6, 3: 4}) in which the list index is served as the irrep Id. If cas_irrep_ncore is not given, the program will generate a guess based on the lowest :attr:`CASCI.ncore` orbitals. s : ndarray overlap matrix base : int 0-based (C-like) or 1-based (Fortran-like) caslst Returns: A list of orbital indices Examples: >>> from pyscf import gto, scf, mcscf >>> mol = gto.M(atom='N 0 0 0; N 0 0 1', basis='ccpvtz', symmetry=True, verbose=0) >>> mf = scf.RHF(mol) >>> mf.kernel() >>> mc = mcscf.CASSCF(mf, 12, 4) >>> mcscf.caslst_by_irrep(mc, mf.mo_coeff, {'E1gx':4, 'E1gy':4, 'E1ux':2, 'E1uy':2}) [5, 7, 8, 10, 11, 14, 15, 20, 25, 26, 31, 32] ''' mol = casscf.mol log = logger.Logger(casscf.stdout, casscf.verbose) orbsym = numpy.asarray(scf.hf_symm.get_orbsym(mol, mo_coeff)) ncore = casscf.ncore irreps = set(orbsym) if cas_irrep_ncore is not None: irrep_ncore = {} for k, v in cas_irrep_ncore.items(): if isinstance(k, str): irrep_ncore[symm.irrep_name2id(mol.groupname, k)] = v else: irrep_ncore[k] = v ncore_rest = ncore - sum(irrep_ncore.values()) if ncore_rest > 0: # guess core configuration mask = numpy.ones(len(orbsym), dtype=bool) for ir in irrep_ncore: mask[orbsym == ir] = False core_rest = orbsym[mask][:ncore_rest] core_rest = {ir: numpy.count_nonzero(core_rest==ir) for ir in set(core_rest)} log.info('Given core space %s < casscf core size %d', cas_irrep_ncore, ncore) log.info('Add %s to core configuration', core_rest) irrep_ncore.update(core_rest) elif ncore_rest < 0: raise ValueError('Given core space %s > casscf core size %d' % (cas_irrep_ncore, ncore)) else: irrep_ncore = {ir: sum(orbsym[:ncore]==ir) for ir in irreps} if not isinstance(cas_irrep_nocc, dict): # list => dict cas_irrep_nocc = {ir: n for ir,n in enumerate(cas_irrep_nocc) if n > 0} irrep_ncas = {} for k, v in cas_irrep_nocc.items(): if isinstance(k, str): irrep_ncas[symm.irrep_name2id(mol.groupname, k)] = v else: irrep_ncas[k] = v ncas_rest = casscf.ncas - sum(irrep_ncas.values()) if ncas_rest > 0: mask = numpy.ones(len(orbsym), dtype=bool) # remove core and specified active space for ir in irrep_ncas: mask[orbsym == ir] = False for ir, ncore in irrep_ncore.items(): idx = numpy.where(orbsym == ir)[0] mask[idx[:ncore]] = False cas_rest = orbsym[mask][:ncas_rest] cas_rest = {ir: numpy.count_nonzero(cas_rest==ir) for ir in set(cas_rest)} log.info('Given active space %s < casscf active space size %d', cas_irrep_nocc, casscf.ncas) log.info('Add %s to active space', cas_rest) irrep_ncas.update(cas_rest) elif ncas_rest < 0: raise ValueError('Given active space %s > casscf active space size %d' % (cas_irrep_nocc, casscf.ncas)) caslst = [] for ir, ncas in irrep_ncas.items(): if ncas > 0: if ir in irrep_ncore: nc = irrep_ncore[ir] else: nc = 0 no = nc + ncas idx = numpy.where(orbsym == ir)[0] caslst.extend(idx[nc:no]) caslst = numpy.sort(numpy.asarray(caslst)) + base if len(caslst) < casscf.ncas: raise ValueError('Not enough orbitals found for core %s, cas %s' % (cas_irrep_ncore, cas_irrep_nocc)) if log.verbose >= logger.INFO: log.info('ncore for each irreps %s', {symm.irrep_id2name(mol.groupname, k): v for k,v in irrep_ncore.items()}) log.info('ncas for each irreps %s', {symm.irrep_id2name(mol.groupname, k): v for k,v in irrep_ncas.items()}) log.info('(%d-based) caslst = %s', base, caslst) return caslst
[docs] def sort_mo_by_irrep(casscf, mo_coeff, cas_irrep_nocc, cas_irrep_ncore=None, s=None): '''Given number of active orbitals for each irrep, construct the mo initial guess for CASSCF Args: casscf : an :class:`CASSCF` or :class:`CASCI` object cas_irrep_nocc : list or dict Number of active orbitals for each irrep. It can be a dict, eg {'A1': 2, 'B2': 4} to indicate the active space size based on irrep names, or {0: 2, 3: 4} for irrep Id, or a list [2, 0, 0, 4] (identical to {0: 2, 3: 4}) in which the list index is served as the irrep Id. Kwargs: cas_irrep_ncore : list or dict Number of closed shells for each irrep. It can be a dict, eg {'A1': 6, 'B2': 4} to indicate the closed shells based on irrep names, or {0: 6, 3: 4} for irrep Id, or a list [6, 0, 0, 4] (identical to {0: 6, 3: 4}) in which the list index is served as the irrep Id. If cas_irrep_ncore is not given, the program will generate a guess based on the lowest :attr:`CASCI.ncore` orbitals. s : ndarray overlap matrix Returns: sorted orbitals, ordered as [c,..,c,a,..,a,v,..,v] Examples: >>> from pyscf import gto, scf, mcscf >>> mol = gto.M(atom='N 0 0 0; N 0 0 1', basis='ccpvtz', symmetry=True, verbose=0) >>> mf = scf.RHF(mol) >>> mf.kernel() >>> mc = mcscf.CASSCF(mf, 12, 4) >>> mo = mc.sort_mo_by_irrep({'E1gx':4, 'E1gy':4, 'E1ux':2, 'E1uy':2}) >>> # Same to mo = sort_mo_by_irrep(mc, mf.mo_coeff, {2: 4, 3: 4, 6: 2, 7: 2}) >>> # Same to mo = sort_mo_by_irrep(mc, mf.mo_coeff, [0, 0, 4, 4, 0, 0, 2, 2]) >>> mc.kernel(mo)[0] -108.162863845084 ''' caslst = caslst_by_irrep(casscf, mo_coeff, cas_irrep_nocc, cas_irrep_ncore, s, base=0) return sort_mo(casscf, mo_coeff, caslst, base=0)
[docs] def make_natural_orbitals (method_obj): """Make natural orbitals from a general PySCF method object. See Eqn. (1) in Keller et al. [DOI:10.1063/1.4922352] for details. Args: method_obj : Any PySCF method that has the function `make_rdm1` with kwarg `ao_repr`. This object can be a restricted OR unrestricted method. Returns: noons : A 1-D array of the natural orbital occupations (NOONs). natorbs : A set of natural orbitals made from method_obj. """ mf = method_obj if hasattr(method_obj, "_scf"): mf = method_obj._scf rdm1 = method_obj.make_rdm1(ao_repr=True) S = mf.get_ovlp() # Slight difference for restricted vs. unrestriced case if isinstance(rdm1, tuple): Dm = rdm1[0]+rdm1[1] elif isinstance(rdm1, numpy.ndarray): if numpy.ndim(rdm1) == 3: Dm = rdm1[0]+rdm1[1] elif numpy.ndim(rdm1) == 2: Dm = rdm1 else: raise ValueError( "rdm1 passed to is a numpy array," + "but it has the wrong number of dimensions: {}".format(numpy.ndim(rdm1))) else: raise ValueError( "\n\tThe rdm1 generated by method_obj.make_rdm1() was a {}." "\n\tThis type is not supported, please select a different method and/or " "open an issue at https://github.com/pyscf/pyscf/issues".format(type(rdm1)) ) # Diagonalize the DM in AO (using Eqn. (1) referenced above) A = reduce(numpy.dot, (S, Dm, S)) w, v = scipy.linalg.eigh(A, b=S) # Flip NOONs (and NOs) since they're in increasing order noons = numpy.flip(w) natorbs = numpy.flip(v, axis=1) return noons, natorbs
[docs] def project_init_guess (casscf, mo_init, prev_mol=None, priority=None, use_hf_core=None): '''Project the given initial guess to the current CASSCF problem giving using a sequence of SVDs on orthogonal orbital subspaces. Args: casscf : an :class:`CASSCF` or :class:`CASCI` object mo_init : ndarray or list of ndarray Initial guess orbitals which are not orthonormal for the current molecule. When the casscf is UHF-CASSCF, mo_init needs to be a list of two ndarrays, for alpha and beta orbitals. Cannot have linear dependencies (i.e., you cannot give more orbitals than the basis of casscf.mol has). Must have at least ncore+ncas columns with active orbitals last, even if use_hf_core=True. If incomplete, additional virtual orbitals will be constructed and appended automatically. Kwargs: prev_mol : an instance of :class:`Mole` If given, the initial guess orbitals are associated to the basis of prev_mol. Otherwise, the orbitals are presumed to be in the basis of casscf.mol. Beware linear dependencies if you are projecting from a LARGER basis to a SMALLER one. priority : 'active', 'core', nested idx arrays, or mask array If arrays are 3d, UHF-CASSCF must be used; arrays can always be 2d. Specifies the order in which groups of orbitals are projected. Orbitals orthogonalized earlier are deformed less than those orthogonalized later. 'core' means core, then active, then virtual; 'active' means active, then core, then virtual, and the Gram-Schmidt process is generated by [[0],[1],[2],...] or numpy.eye (nmo). Missing orbitals are presumed virtual. Defaults to 'active' if you are projecting from the same basis set (prev_mol is None or has the same basis functions) and 'core' otherwise. use_hf_core : logical If True, the core orbitals of mo_init are swapped out with HF orbitals chosen by maximum overlap. Defaults to True if you are projecting from a different basis and False if you are projecting from a different geometry. Returns: New orthonormal initial guess orbitals''' from pyscf import lo ncore, ncas = casscf.ncore, casscf.ncas s0 = casscf._scf.get_ovlp () mf_mo = casscf._scf.mo_coeff nmo = numpy.asarray (mf_mo).shape[-1] nmo_init = numpy.asarray (mo_init).shape[-1] if nmo_init > nmo: raise RuntimeError ("Too many orbitals in mo_init (try passing only the occupied orbitals)") # Project orbitals from a different basis if prev_mol is not None: if gto.same_mol(prev_mol, casscf.mol, cmp_basis=False): if isinstance(ncore, (int, numpy.integer)): # RHF mo_init = scf.addons.project_mo_nr2nr(prev_mol, mo_init, casscf.mol) else: mo_init = (scf.addons.project_mo_nr2nr(prev_mol, mo_init[0], casscf.mol), scf.addons.project_mo_nr2nr(prev_mol, mo_init[1], casscf.mol)) elif gto.same_basis_set(prev_mol, casscf.mol): prev_mol = None # Ignore! Serves no purpose unless it's a different basis set else: raise NotImplementedError('Project initial guess from different system.') if priority is None: priority = ('core','active')[prev_mol is None] if use_hf_core is None: use_hf_core = (prev_mol is not None) # Do the projection def _symmcase (mo_basis, mo_target): ovlp = reduce (numpy.dot, (mo_basis.conj ().T, s0, mo_target)) u, s, vh = scipy.linalg.svd (ovlp, full_matrices=True) mo_proj = reduce (numpy.dot, (mo_basis, u[:,:len(s)], vh)) if u.shape[1] > len(s): mo_null = numpy.dot (mo_basis, u[:,len(s):]) else: mo_null = numpy.zeros ((mo_basis.shape[0], 0)) return mo_proj, mo_null # Iterate over irreps def _rangecase (mo_basis, mo_target): if not casscf.mol.symmetry: return _symmcase (mo_basis, mo_target) orbsym_target = scf.hf_symm.get_orbsym(casscf.mol, mo_target, s0) orbsym_basis = scf.hf_symm.get_orbsym(casscf.mol, mo_basis, s0) for ir in set (orbsym_target): errstr = 'inadequate basis for symmetry {}'.format (ir) assert (numpy.count_nonzero (orbsym_basis==ir) >= numpy.count_nonzero (orbsym_target==ir)), errstr # Avoid scrambling the order of the target orbitals mo_null = [] mo_proj = numpy.zeros_like (mo_target) for ir in set (orbsym_basis): mo_basis_ir = mo_basis[:,orbsym_basis==ir] idx_ir = orbsym_target == ir if numpy.count_nonzero (idx_ir) == 0: mo_null.append (mo_basis_ir) continue mo_proj_ir, mo_null_ir = _symmcase (mo_basis_ir, mo_target[:,idx_ir]) mo_null.append (mo_null_ir) mo_proj[:,idx_ir] = mo_proj_ir mo_null = numpy.hstack (mo_null) return mo_proj, mo_null # Iterate over orbital ranges def _spincase (mo_basis, mo_target, range_idx, sort_idx, ncore): # Swap out HF core orbitals (making a copy for safety) if use_hf_core: ovlp = numpy.dot (mo_target.conj ().T, s0.dot (mo_basis)) ix = numpy.argmax (numpy.abs (ovlp[:ncore,:]), axis=1) mo_target = numpy.append (mo_basis[:,ix], mo_target[:,ncore:], axis=1) # Do the iteration mo = numpy.zeros_like (mo_target) for idx in range_idx: mo[:,idx], mo_basis = _rangecase (mo_basis, mo_target[:,idx]) idx = numpy.any (range_idx, axis=0) mo = mo[:,idx] mo_target = mo_target[:,idx] # Fix sign sgn = numpy.einsum ('pi,pi->i', mo.conj (), s0.dot (mo_target)) mo[:,sgn<0] *= -1 # Append remaining virtual orbitals if mo_basis.shape[-1] > 0: mo = numpy.append (mo, mo_basis, axis=1) # Sort and debug print mo[:,:nmo_init] = mo[:,:nmo_init][:,sort_idx] if casscf.verbose >= logger.DEBUG: mocc = mo[:,:ncore+ncas] s1 = reduce(numpy.dot, (mocc.T, s0, mo_target)) tnorm = numpy.einsum ('pi,pi->i', mo_target.conj (), s0.dot (mo_target)) s1_norm = s1 / numpy.sqrt (tnorm) [None,:] idx = numpy.argmax (numpy.abs (s1), axis=1) for i, j in enumerate (idx): logger.debug(casscf, 'Init guess <mo-orth|mo-init> %d %d %10.8f (%10.8f after norm)', i+1, j+1, s1[i,j], s1_norm[i,j]) return mo # Interpret "priority" keyword def _interpret (priority, ncore): # Interpret priority keyword nocc = ncore + ncas if isinstance (priority, str): ridx = numpy.zeros ((2, nmo_init), dtype=bool) ridx[0,:ncore] = ridx[1,ncore:nocc] = True if priority.lower () == 'active': ridx = ridx[::-1,:] elif not priority.lower () == 'core': raise RuntimeError ("Invalid priority keyword: string must be either 'active' or 'core'") # Edge case: ncore == 0 or ncas == 0 -> remove zero rows from ridx ridx = ridx[ridx.sum (1).astype (bool)] else: ridx = numpy.zeros ((len (priority), nmo), dtype=bool) for row, idx in zip (ridx, priority): try: row[idx] = True except IndexError: raise RuntimeError ("Invalid priority keyword: index array cannot address shape (*,nmo_init)") ridx_counts = ridx.astype (int).sum (0) if numpy.any (ridx_counts > 1): raise RuntimeError ("Invalid priority keyword: index array has repeated elements") incl = numpy.any (ridx, axis=0) sidx = numpy.append (numpy.where (incl)[0], numpy.where (~incl)[0]) return ridx, numpy.argsort (sidx) # Iterate over spin cases if isinstance(ncore, (int, numpy.integer)): # errstr = 'Invalid priority keyword (3-dim is valid for UHF-CAS only)' range_idx, sort_idx = _interpret (priority, ncore) mo = _spincase (mf_mo, mo_init, range_idx, sort_idx, ncore) else: # UHF-based CASSCF if (isinstance (priority, str) # single string or (isinstance (priority, numpy.ndarray) and priority.ndim == 2) # single mask array or isinstance (priority[0][0], (int, numpy.integer))): # 2d nested list priority = [priority, priority] idx = [_interpret (p, n) for p, n in zip (priority, ncore)] mo = (_spincase (mf_mo[0], mo_init[0], idx[0][0], idx[0][1], ncore[0]), _spincase (mf_mo[1], mo_init[1], idx[1][0], idx[1][1], ncore[1])) return mo
[docs] def project_init_guess_old(casscf, init_mo, prev_mol=None): '''Project the given initial guess to the current CASSCF problem. The projected initial guess has two parts. The core orbitals are directly taken from the Hartree-Fock orbitals, and the active orbitals are projected from the given initial guess. Args: casscf : an :class:`CASSCF` or :class:`CASCI` object init_mo : ndarray or list of ndarray Initial guess orbitals which are not orth-normal for the current molecule. When the casscf is UHF-CASSCF, the init_mo needs to be a list of two ndarrays, for alpha and beta orbitals Kwargs: prev_mol : an instance of :class:`Mole` If given, the initial guess orbitals are associated to the geometry and basis of prev_mol. Otherwise, the orbitals are based of the geometry and basis of casscf.mol Returns: New orthogonal initial guess orbitals with the core taken from Hartree-Fock orbitals and projected active space from original initial guess orbitals Examples: .. code:: python import numpy from pyscf import gto, scf, mcscf mol = gto.Mole() mol.build(atom='H 0 0 0; F 0 0 0.8', basis='ccpvdz', verbose=0) mf = scf.RHF(mol) mf.scf() mc = mcscf.CASSCF(mf, 6, 6) mo = mcscf.sort_mo(mc, mf.mo_coeff, [3,4,5,6,8,9]) print('E(0.8) = %.12f' % mc.kernel(mo)[0]) init_mo = mc.mo_coeff for b in numpy.arange(1.0, 3., .2): mol.atom = [['H', (0, 0, 0)], ['F', (0, 0, b)]] mol.build(0, 0) mf = scf.RHF(mol) mf.scf() mc = mcscf.CASSCF(mf, 6, 6) mo = mcscf.project_init_guess(mc, init_mo) print('E(%2.1f) = %.12f' % (b, mc.kernel(mo)[0])) init_mo = mc.mo_coeff ''' from pyscf import lo def project(mfmo, init_mo, ncore, s): s_init_mo = numpy.einsum('pi,pi->i', init_mo.conj(), s.dot(init_mo)) if abs(s_init_mo - 1).max() < 1e-7 and mfmo.shape[1] == init_mo.shape[1]: # Initial guess orbitals are orthonormal return init_mo # TODO: test whether the canonicalized orbitals are better than the projected orbitals # Be careful that the ordering of the canonicalized orbitals may be very different # to the CASSCF orbitals. # else: # fock = casscf.get_fock(mc, init_mo, casscf.ci) # return casscf._scf.eig(fock, s)[1] nocc = ncore + casscf.ncas if ncore > 0: mo0core = init_mo[:,:ncore] s1 = reduce(numpy.dot, (mfmo.T, s, mo0core)) s1core = reduce(numpy.dot, (mo0core.T, s, mo0core)) coreocc = numpy.einsum('ij,ji->i', s1, lib.cho_solve(s1core, s1.T)) coreidx = numpy.sort(numpy.argsort(-coreocc)[:ncore]) logger.debug(casscf, 'Core indices %s', coreidx) logger.debug(casscf, 'Core components %s', coreocc[coreidx]) # take HF core mocore = mfmo[:,coreidx] # take projected CAS space mocas = init_mo[:,ncore:nocc] \ - reduce(numpy.dot, (mocore, mocore.T, s, init_mo[:,ncore:nocc])) mocc = lo.orth.vec_lowdin(numpy.hstack((mocore, mocas)), s) else: mocc = lo.orth.vec_lowdin(init_mo[:,:nocc], s) # remove core and active space from rest if mocc.shape[1] < mfmo.shape[1]: if casscf.mol.symmetry: restorb = [] orbsym = scf.hf_symm.get_orbsym(casscf.mol, mfmo, s) for ir in set(orbsym): mo_ir = mfmo[:,orbsym==ir] rest = mo_ir - reduce(numpy.dot, (mocc, mocc.T, s, mo_ir)) e, u = numpy.linalg.eigh(reduce(numpy.dot, (rest.T, s, rest))) restorb.append(numpy.dot(rest, u[:,e>1e-7])) restorb = numpy.hstack(restorb) else: rest = mfmo - reduce(numpy.dot, (mocc, mocc.T, s, mfmo)) e, u = numpy.linalg.eigh(reduce(numpy.dot, (rest.T, s, rest))) restorb = numpy.dot(rest, u[:,e>1e-7]) mo = numpy.hstack((mocc, restorb)) else: mo = mocc if casscf.verbose >= logger.DEBUG: s1 = reduce(numpy.dot, (mo[:,ncore:nocc].T, s, mfmo)) idx = numpy.argwhere(abs(s1) > 0.4) for i,j in idx: logger.debug(casscf, 'Init guess <mo-CAS|mo-hf> %d %d %12.8f', ncore+i+1, j+1, s1[i,j]) return mo ncore = casscf.ncore mfmo = casscf._scf.mo_coeff s = casscf._scf.get_ovlp() if prev_mol is None: if init_mo.shape[0] != mfmo.shape[0]: raise RuntimeError('Initial guess orbitals has wrong dimension') elif gto.same_mol(prev_mol, casscf.mol, cmp_basis=False): if isinstance(ncore, (int, numpy.integer)): # RHF init_mo = scf.addons.project_mo_nr2nr(prev_mol, init_mo, casscf.mol) else: init_mo = (scf.addons.project_mo_nr2nr(prev_mol, init_mo[0], casscf.mol), scf.addons.project_mo_nr2nr(prev_mol, init_mo[1], casscf.mol)) elif gto.same_basis_set(prev_mol, casscf.mol): if isinstance(ncore, (int, numpy.integer)): # RHF fock = casscf.get_fock(init_mo, casscf.ci) return casscf._scf.eig(fock, s)[1] else: raise NotImplementedError('Project initial for UHF orbitals.') else: raise NotImplementedError('Project initial guess from different system.') # Be careful with the orbital projection. The projection may lead to bad # initial guess orbitals if the geometry is dramatically changed. if isinstance(ncore, (int, numpy.integer)): mo = project(mfmo, init_mo, ncore, s) else: # UHF-based CASSCF mo = (project(mfmo[0], init_mo[0], ncore[0], s), project(mfmo[1], init_mo[1], ncore[1], s)) return mo
# on AO representation
[docs] def make_rdm1(casscf, mo_coeff=None, ci=None, **kwargs): '''One-particle density matrix in AO representation Args: casscf : an :class:`CASSCF` or :class:`CASCI` object Kwargs: ci : ndarray CAS space FCI coefficients. If not given, take casscf.ci. mo_coeff : ndarray Orbital coefficients. If not given, take casscf.mo_coeff. Examples: >>> import scipy.linalg >>> from pyscf import gto, scf, mcscf >>> mol = gto.M(atom='N 0 0 0; N 0 0 1', basis='sto-3g', verbose=0) >>> mf = scf.RHF(mol) >>> res = mf.scf() >>> mc = mcscf.CASSCF(mf, 6, 6) >>> res = mc.kernel() >>> natocc = numpy.linalg.eigh(mcscf.make_rdm1(mc), mf.get_ovlp(), type=2)[0] >>> print(natocc) [ 0.0121563 0.0494735 0.0494735 1.95040395 1.95040395 1.98808879 2. 2. 2. 2. ] ''' return casscf.make_rdm1(mo_coeff, ci, **kwargs)
# make both alpha and beta density matrices
[docs] def make_rdm1s(casscf, mo_coeff=None, ci=None, **kwargs): '''Alpha and beta one-particle density matrices in AO representation ''' return casscf.make_rdm1s(mo_coeff, ci, **kwargs)
[docs] def get_spin_square(casdm1, casdm2): # DOI:10.1021/acs.jctc.1c00589 Eq (49) spin_square = (0.75*numpy.einsum("ii", casdm1) - 0.5*numpy.einsum("ijji", casdm2) - 0.25*numpy.einsum("iijj", casdm2)) return spin_square
[docs] def make_spin_casdm1(casdm1, casdm2, spin=None, nelec=None): # DOI: 10.1002/qua.22320 Eq (3) if spin is None: spin = numpy.sqrt(get_spin_square(casdm1, casdm2) + 0.25) - 0.5 if nelec is None: nelec = numpy.einsum("ii", casdm1) spin_casdm1 = ((2. - nelec/2.)*casdm1 - numpy.einsum('ikkj->ij', casdm2))/(spin + 1) return spin_casdm1
def _is_uhf_mo(mo_coeff): return not (isinstance(mo_coeff, numpy.ndarray) and mo_coeff.ndim == 2) def _make_rdm12_on_mo(casdm1, casdm2, ncore, ncas, nmo): nocc = ncas + ncore dm1 = numpy.zeros((nmo,nmo)) idx = numpy.arange(ncore) dm1[idx,idx] = 2 dm1[ncore:nocc,ncore:nocc] = casdm1 dm2 = numpy.zeros((nmo,nmo,nmo,nmo)) dm2[ncore:nocc,ncore:nocc,ncore:nocc,ncore:nocc] = casdm2 for i in range(ncore): for j in range(ncore): dm2[i,i,j,j] += 4 dm2[i,j,j,i] += -2 dm2[i,i,ncore:nocc,ncore:nocc] = dm2[ncore:nocc,ncore:nocc,i,i] =2*casdm1 dm2[i,ncore:nocc,ncore:nocc,i] = dm2[ncore:nocc,i,i,ncore:nocc] = -casdm1 return dm1, dm2 # In AO representation
[docs] def make_rdm12(casscf, mo_coeff=None, ci=None): if ci is None: ci = casscf.ci if mo_coeff is None: mo_coeff = casscf.mo_coeff assert (not _is_uhf_mo(mo_coeff)) nelecas = casscf.nelecas ncas = casscf.ncas ncore = casscf.ncore nmo = mo_coeff.shape[1] casdm1, casdm2 = casscf.fcisolver.make_rdm12(ci, ncas, nelecas) rdm1, rdm2 = _make_rdm12_on_mo(casdm1, casdm2, ncore, ncas, nmo) rdm1 = reduce(numpy.dot, (mo_coeff, rdm1, mo_coeff.T)) rdm2 = numpy.dot(mo_coeff, rdm2.reshape(nmo,-1)) rdm2 = numpy.dot(rdm2.reshape(-1,nmo), mo_coeff.T) rdm2 = rdm2.reshape(nmo,nmo,nmo,nmo).transpose(2,3,0,1) rdm2 = numpy.dot(mo_coeff, rdm2.reshape(nmo,-1)) rdm2 = numpy.dot(rdm2.reshape(-1,nmo), mo_coeff.T) return rdm1, rdm2.reshape(nmo,nmo,nmo,nmo)
[docs] def get_fock(casscf, mo_coeff=None, ci=None): '''Generalized Fock matrix in AO representation ''' if mo_coeff is None: mo_coeff = casscf.mo_coeff if _is_uhf_mo(mo_coeff): raise RuntimeError('TODO: UCAS general fock') else: return casscf.get_fock(mo_coeff, ci)
[docs] def cas_natorb(casscf, mo_coeff=None, ci=None, sort=False): '''Natural orbitals in CAS space ''' if mo_coeff is None: mo_coeff = casscf.mo_coeff if _is_uhf_mo(mo_coeff): raise RuntimeError('TODO: UCAS natural orbitals') else: return casscf.cas_natorb(mo_coeff, ci, sort=sort)
[docs] def map2hf(casscf, mf_mo=None, base=BASE, tol=MAP2HF_TOL): '''The overlap between the CASSCF optimized orbitals and the canonical HF orbitals. ''' if mf_mo is None: mf_mo = casscf._scf.mo_coeff s = casscf.mol.intor_symmetric('int1e_ovlp') s = reduce(numpy.dot, (casscf.mo_coeff.T, s, mf_mo)) idx = numpy.argwhere(abs(s) > tol) for i,j in idx: logger.info(casscf, '<mo_coeff-mcscf|mo_coeff-hf> %-5d %-5d % 12.8f', i+base, j+base, s[i,j]) return idx
[docs] def spin_square(casscf, mo_coeff=None, ci=None, ovlp=None): '''Spin square of the UHF-CASSCF wavefunction Returns: A list of two floats. The first is the expectation value of S^2. The second is the corresponding 2S+1 Examples: >>> from pyscf import gto, scf, mcscf >>> mol = gto.M(atom='O 0 0 0; O 0 0 1', basis='sto-3g', spin=2, verbose=0) >>> mf = scf.UHF(mol) >>> res = mf.scf() >>> mc = mcscf.CASSCF(mf, 4, 6) >>> res = mc.kernel() >>> print('S^2 = %.7f, 2S+1 = %.7f' % mcscf.spin_square(mc)) S^2 = 3.9831589, 2S+1 = 4.1149284 ''' if ci is None: ci = casscf.ci ncore = casscf.ncore ncas = casscf.ncas nelecas = casscf.nelecas if isinstance(ncore, (int, numpy.integer)): return fci.spin_op.spin_square0(ci, ncas, nelecas) else: if mo_coeff is None: mo_coeff = casscf.mo_coeff if ovlp is None: ovlp = casscf._scf.get_ovlp() nocc = (ncore[0] + ncas, ncore[1] + ncas) mocas = (mo_coeff[0][:,ncore[0]:nocc[0]], mo_coeff[1][:,ncore[1]:nocc[1]]) if isinstance(ci, (list, tuple, RANGE_TYPE)): sscas = numpy.array([fci.spin_op.spin_square(c, ncas, nelecas, mocas, ovlp)[0] for c in ci]) else: sscas = fci.spin_op.spin_square(ci, ncas, nelecas, mocas, ovlp)[0] mocore = (mo_coeff[0][:,:ncore[0]], mo_coeff[1][:,:ncore[1]]) sscore = casscf._scf.spin_square(mocore, ovlp)[0] logger.debug(casscf, 'S^2 of core %s S^2 of cas %s', sscore, sscas) ss = sscas+sscore s = numpy.sqrt(ss+.25) - .5 return ss, s*2+1
# A tag to label the derived MCSCF class
[docs] class StateAverageMCSCFSolver: pass
[docs] def state_average(casscf, weights=(0.5,0.5), wfnsym=None): ''' State average over the energy. The energy functional is E = w1<psi1|H|psi1> + w2<psi2|H|psi2> + ... Note we may need change the FCI solver to mc.fcisolver = fci.solver(mol, False) before calling state_average_(mc), to mix the singlet and triplet states MRH, 04/08/2019: Instead of turning casscf._finalize into an instance attribute that points to the previous casscf object, I'm going to make a whole new child class. This will have the added benefit of making state_average and state_average_ actually behave differently for the first time (until now they *both* modified the casscf object inplace). I'm also going to assign the weights argument as a member of the mc child class because an accurate second-order CASSCF algorithm for state-averaged calculations requires that the gradient and Hessian be computed for CI vectors of each root individually and then multiplied by that root's weight. The second derivatives computed by newton_casscf.py need to be extended to state-averaged calculations in order to be used as intermediates for calculations of the gradient of a single root in the context of the SA-CASSCF method; see: Mol. Phys. 99, 103 (2001). ''' assert (abs(sum(weights)-1) < 1e-3) fcisolver = casscf.fcisolver # No recursion is allowed! if isinstance (fcisolver, StateAverageFCISolver): fcisolver.nroots = len(weights) fcisolver.weights = weights else: fcisolver = lib.set_class(StateAverageFCISolver(fcisolver, weights, wfnsym), (StateAverageFCISolver, fcisolver.__class__)) fcisolver_cls = fcisolver.__class__ if getattr(fcisolver, 'spin_square', None): def spin_square(self, ci0, norb, nelec, *args, **kwargs): ss, multip = self.states_spin_square(ci0, norb, nelec, *args, **kwargs) weights = self.weights return numpy.dot(ss, weights), numpy.dot(multip, weights) def states_spin_square(self, ci0, norb, nelec, *args, **kwargs): fcibase = super(StateAverageFCISolver, self) s = [fcibase.spin_square(ci0[i], norb, nelec, *args, **kwargs) for i, wi in enumerate(self.weights)] return [x[0] for x in s], [x[1] for x in s] fcisolver_cls.spin_square = spin_square fcisolver_cls.states_spin_square = states_spin_square return _state_average_mcscf_solver(casscf, fcisolver)
[docs] class StateAverageFCISolver: __name_mixin__ = 'StateAverage' _keys = {'weights', 'e_states'} def __init__(self, fcibase, weights, wfnsym): self.__dict__.update (fcibase.__dict__) self.nroots = len(weights) self.weights = weights if wfnsym is not None: self.wfnsym = wfnsym self.e_states = [None] # MRH 09/09/2022: I turned the _base_class property into an # attribute to prevent conflict with fix_spin_ dynamic class self._base_class = fcibase.__class__
[docs] def undo_state_average(self): obj = lib.view(self, lib.drop_class(self.__class__, StateAverageFCISolver)) del obj.weights del obj.e_states return obj
[docs] def dump_flags(self, verbose=None): super().dump_flags(verbose) log = logger.new_logger(self, verbose) log.info('State-average over %d states with weights %s', len(self.weights), self.weights) return self
[docs] def kernel(self, h1, h2, norb, nelec, ci0=None, **kwargs): if 'nroots' not in kwargs: kwargs['nroots'] = self.nroots fcibase = super() # call fcibase_class.kernel function because the attribute orbsym # is available in self but undefined in fcibase object e, c = fcibase.kernel(h1, h2, norb, nelec, ci0=ci0, wfnsym=self.wfnsym, **kwargs) self.e_states = e log = logger.new_logger(self, kwargs.get('verbose')) if log.verbose >= logger.DEBUG: if getattr(fcibase, 'spin_square', None): ss = self.states_spin_square(c, norb, nelec)[0] for i, ei in enumerate(e): log.debug('state %d E = %.15g S^2 = %.7f', i, ei, ss[i]) else: for i, ei in enumerate(e): log.debug('state %d E = %.15g', i, ei) return numpy.einsum('i,i->', e, self.weights), c
[docs] def approx_kernel(self, h1, h2, norb, nelec, ci0=None, **kwargs): fcibase = super() if hasattr(fcibase, 'approx_kernel'): e, c = fcibase.approx_kernel(h1, h2, norb, nelec, ci0=ci0, nroots=self.nroots, wfnsym=self.wfnsym, **kwargs) else: e, c = fcibase.kernel(h1, h2, norb, nelec, ci0=ci0, nroots=self.nroots, wfnsym=self.wfnsym, **kwargs) return numpy.einsum('i,i->', e, self.weights), c
[docs] def states_make_rdm1(self, ci0, norb, nelec, *args, **kwargs): fcibase = super() dm1 = [fcibase.make_rdm1(c, norb, nelec, *args, **kwargs) for c in ci0] return dm1
[docs] def make_rdm1(self, ci0, norb, nelec, *args, **kwargs): return sum ([w * dm for w, dm in zip(self.weights, self.states_make_rdm1(ci0, norb, nelec, *args, **kwargs))])
[docs] def states_make_rdm1s(self, ci0, norb, nelec, *args, **kwargs): fcibase = super() dm1a = [] dm1b = [] for c in ci0: dm1s = fcibase.make_rdm1s(c, norb, nelec, *args, **kwargs) dm1a.append (dm1s[0]) dm1b.append (dm1s[1]) return dm1a, dm1b
[docs] def make_rdm1s(self, ci0, norb, nelec, *args, **kwargs): dm1s = self.states_make_rdm1s(ci0, norb, nelec, *args, **kwargs) dm1s = numpy.einsum ('r,srpq->spq', self.weights, dm1s) return dm1s[0], dm1s[1]
[docs] def states_make_rdm12(self, ci0, norb, nelec, *args, **kwargs): fcibase = super() rdm1 = [] rdm2 = [] for c in ci0: dm1, dm2 = fcibase.make_rdm12(c, norb, nelec, *args, **kwargs) rdm1.append (dm1) rdm2.append (dm2) return rdm1, rdm2
[docs] def make_rdm12(self, ci0, norb, nelec, *args, **kwargs): rdm1, rdm2 = self.states_make_rdm12(ci0, norb, nelec, *args, **kwargs) rdm1 = numpy.einsum ('r,rpq->pq', self.weights, rdm1) rdm2 = numpy.einsum ('r,rpqst->pqst', self.weights, rdm2) return rdm1, rdm2
[docs] def states_make_rdm12s(self, ci0, norb, nelec, *args, **kwargs): fcibase = super() dm1a, dm1b = [], [] dm2aa, dm2ab, dm2bb = [], [], [] for c in ci0: dm1s, dm2s = fcibase.make_rdm12s(c, norb, nelec, *args, **kwargs) dm1a.append(dm1s[0]) dm1b.append(dm1s[1]) dm2aa.append(dm2s[0]) dm2ab.append(dm2s[1]) dm2bb.append(dm2s[2]) return (dm1a, dm1b), (dm2aa, dm2ab, dm2bb)
[docs] def make_rdm12s(self, ci0, norb, nelec, *args, **kwargs): rdm1s, rdm2s = self.states_make_rdm12s(ci0, norb, nelec, *args, **kwargs) rdm1s = numpy.einsum ('r,srpq->spq', self.weights, rdm1s) rdm2s = numpy.einsum ('r,srpqtu->spqtu', self.weights, rdm2s) return rdm1s, rdm2s
[docs] def states_trans_rdm12 (self, ci1, ci0, norb, nelec, *args, **kwargs): fcibase = super() tdm1 = [] tdm2 = [] for c1, c0 in zip (ci1, ci0): dm1, dm2 = fcibase.trans_rdm12 (c1, c0, norb, nelec) tdm1.append (dm1) tdm2.append (dm2) return tdm1, tdm2
[docs] def trans_rdm12 (self, ci1, ci0, norb, nelec, *args, **kwargs): tdm1, tdm2 = self.states_trans_rdm12 (ci1, ci0, norb, nelec, *args, **kwargs) tdm1 = numpy.einsum ('r,rpq->pq', self.weights, tdm1) tdm2 = numpy.einsum ('r,rpqst->pqst', self.weights, tdm2) return tdm1, tdm2
def _state_average_mcscf_solver(casscf, fcisolver): '''A common routine for function state_average and state_average_mix to generate state-average MCSCF solver. ''' if isinstance (casscf, StateAverageMCSCFSolver): casscf = casscf.undo_state_average() return lib.set_class(StateAverageMCSCF(casscf, fcisolver), (StateAverageMCSCF, casscf.__class__))
[docs] class StateAverageMCSCF(StateAverageMCSCFSolver): __name_mixin__ = 'StateAverage' def __init__(self, my_mc, fcisolver): self.__dict__.update (my_mc.__dict__) self.fcisolver = fcisolver
[docs] def undo_state_average(self): obj = lib.view(self, lib.drop_class(self.__class__, StateAverageMCSCF)) if isinstance(self.fcisolver, StateAverageFCISolver): obj.fcisolver = self.fcisolver.undo_state_average() return obj
@property def _base_class (self): ''' for convenience; this is equal to mcscfbase_class ''' return self.__class__.__bases__[1] @property def weights (self): ''' I want these to be accessible but not separable from fcisolver.weights ''' return self.fcisolver.weights @weights.setter def weights (self, x): self.fcisolver.weights = x return self.fcisolver.weights @property def e_average(self): return numpy.dot(self.fcisolver.weights, self.fcisolver.e_states) @property def e_states(self): return self.fcisolver.e_states def _finalize(self): super()._finalize() # Do not overwrite self.e_tot because .e_tot needs to be used in # geometry optimization. self.e_states can be used to access the # energy of each state #self.e_tot = self.fcisolver.e_states logger.note(self, 'CASCI state-averaged energy = %.15g', self.e_average) logger.note(self, 'CASCI energy for each state') if getattr(self.fcisolver, 'states_spin_square', None): ss = self.fcisolver.states_spin_square(self.ci, self.ncas, self.nelecas)[0] for i, ei in enumerate(self.e_states): logger.note(self, ' State %d weight %g E = %.15g S^2 = %.7f', i, self.weights[i], ei, ss[i]) else: for i, ei in enumerate(self.e_states): logger.note(self, ' State %d weight %g E = %.15g', i, self.weights[i], ei) return self
[docs] def nuc_grad_method (self, state=None): if callable (getattr (self, '_state_average_nuc_grad_method', None)): return self._state_average_nuc_grad_method (state=state) else: # Avoid messing up state-average CASCI return self._base_class.nuc_grad_method (self)
Gradients = nuc_grad_method
[docs] def nac_method(self): if callable(getattr(self, '_state_average_nac_method', None)): return self._state_average_nac_method() else: raise NotImplementedError("NAC method")
NACs = nac_method
[docs] def state_average_(casscf, weights=(0.5,0.5), wfnsym=None): ''' Inplace version of state_average ''' sacasscf = state_average (casscf, weights, wfnsym) casscf.__class__ = sacasscf.__class__ casscf.__dict__ = sacasscf.__dict__ return casscf
[docs] def state_specific_(casscf, state=1, wfnsym=None): '''For excited state Kwargs: state : int 0 for ground state; 1 for first excited state. ''' fcisolver = casscf.fcisolver if isinstance(fcisolver, StateSpecificFCISolver): fcisolver.nroots = state+1 fcisolver._civec = None if wfnsym is not None: fcisolver.wfnsym = wfnsym elif isinstance(fcisolver, StateAverageFCISolver): fcisolver = fcisolver.undo_state_average() else: fcisolver = lib.set_class(StateSpecificFCISolver(fcisolver, state, wfnsym), (StateSpecificFCISolver, fcisolver.__class__)) casscf.fcisolver = fcisolver return casscf
state_specific = state_specific_
[docs] class StateSpecificFCISolver: __name_mixin__ = 'StateSpecific' _keys = {'state', 'nroots'} def __init__(self, fcibase, state, wfnsym): self.__dict__.update(fcibase.__dict__) self.state = state self.nroots = state+1 self._civec = None if wfnsym is not None: self.wfnsym = wfnsym
[docs] def undo_state_specific(self): obj = lib.view(self, lib.drop_class(self.__class__, StateSpecificFCISolver)) del obj._civec return obj
[docs] def kernel(self, h1, h2, norb, nelec, ci0=None, **kwargs): if self._civec is not None: ci0 = self._civec fcibase = super() e, c = fcibase.kernel(h1, h2, norb, nelec, ci0=ci0, nroots=self.nroots, wfnsym=self.wfnsym, **kwargs) state = self.state if state == 0: e = [e] c = [c] self._civec = c log = logger.new_logger(self, kwargs.get('verbose')) if log.verbose >= logger.DEBUG: if getattr(fcibase, 'spin_square', None): ss = fcibase.spin_square(c[state], norb, nelec) log.debug('state %d E = %.15g S^2 = %.7f', state, e[state], ss[0]) else: log.debug('state %d E = %.15g', state, e[state]) return e[state], c[state]
[docs] def approx_kernel(self, h1, h2, norb, nelec, ci0=None, **kwargs): if self._civec is not None: ci0 = self._civec fcibase = super() if hasattr(fcibase, 'approx_kernel'): e, c = fcibase.approx_kernel(h1, h2, norb, nelec, ci0=ci0, nroots=self.nroots, wfnsym=self.wfnsym, **kwargs) else: e, c = fcibase.kernel(h1, h2, norb, nelec, ci0=ci0, nroots=self.nroots, wfnsym=self.wfnsym, **kwargs) state = self.state if state == 0: self._civec = [c] return e, c else: self._civec = c return e[state], c[state]
[docs] class StateAverageMixFCISolver_solver_args: def __init__(self, data): self._data = data def __getitem__(self, key): # Handle data = None try: return self._data[key] except TypeError as e: assert (self._data is None), e return None
[docs] class StateAverageMixFCISolver_state_args (StateAverageMixFCISolver_solver_args): pass
[docs] class StateAverageMixFCISolver(StateAverageFCISolver): __name_mixin__ = 'StateAverageMix' _keys = {'weights','e_states','fcisolvers'} _solver_args = StateAverageMixFCISolver_solver_args _state_args = StateAverageMixFCISolver_state_args def __init__(self, fcisolvers, weights): self.__dict__.update(fcisolvers[0].__dict__) self.nroots = len(weights) self.weights = weights self.e_states = [None] self.fcisolvers = fcisolvers
[docs] def undo_state_average(self): obj = lib.view(self, lib.drop_class(self.__class__, StateAverageMixFCISolver)) del obj.weights del obj.e_states del obj.fcisolvers return obj
@property def _base_class (self): return self.fcisolvers[0].__base__ # MRH 06/24/2020: I need these functions in newton_casscf! # TODO: handle things like linkstr somehow (variables that # have to be different for different solvers or ci vecs) def _loop_solver(self, *args, **kwargs): _solver_args = self._solver_args _state_args = self._state_args p0 = 0 for ix, solver in enumerate (self.fcisolvers): my_args = [] for arg in args: if isinstance (arg, _state_args): my_arg = arg[p0:p0+solver.nroots] if solver.nroots == 1 and my_arg is not None: my_arg = my_arg[0] my_args.append (my_arg) elif isinstance (arg, _solver_args): my_args.append (arg[ix]) else: my_args.append (arg) my_kwargs = {} for key, item in kwargs.items (): if isinstance (item, _state_args): my_arg = item[p0:p0+solver.nroots] if solver.nroots == 1 and my_arg is not None: my_arg = my_arg[0] my_kwargs[key] = my_arg elif isinstance (item, _solver_args): my_kwargs[key] = item[ix] else: my_kwargs[key] = item yield solver, my_args, my_kwargs p0 += solver.nroots def _loop_civecs(self, *args, **kwargs): _solver_args = self._solver_args _state_args = self._state_args p0 = 0 for i, solver in enumerate (self.fcisolvers): for j in range(p0, p0+solver.nroots): my_args = [] for arg in args: if isinstance (arg, _state_args): my_args.append (arg[j]) elif isinstance (arg, _solver_args): my_args.append (arg[i]) else: my_args.append (arg) my_kwargs = {} for key, item in kwargs.items (): if isinstance (item, _state_args): my_kwargs[key] = item[j] elif isinstance (item, _solver_args): my_kwargs[key] = item[i] else: my_kwargs[key] = item yield solver, my_args, my_kwargs p0 += solver.nroots def _get_nelec(self, solver, nelec): # FCISolver does not need this function. Some external solver may not # have the function to handle nelec and spin # MRH 06/24/2020: Yes, FCISolver DOES need this function! if solver.spin is not None: nelec = numpy.sum(nelec) nelec = (nelec+solver.spin)//2, (nelec-solver.spin)//2 return nelec def _collect(self, fname, *args, **kwargs): for solver, args, kwargs in self._loop_civecs(*args, **kwargs): fn = getattr(solver, fname) yield fn(*args, **kwargs)
[docs] def kernel(self, h1, h2, norb, nelec, ci0=None, verbose=0, **kwargs): # Note self.orbsym is initialized lazily in mc1step_symm.kernel function _state_args = self._state_args log = logger.new_logger(self, verbose) es = [] cs = [] for solver, my_args, my_kwargs in self._loop_solver(_state_args (ci0)): c0 = my_args[0] e, c = solver.kernel(h1, h2, norb, self._get_nelec(solver, nelec), ci0=c0, orbsym=self.orbsym, verbose=log, **kwargs) if solver.nroots == 1: es.append(e) cs.append(c) else: es.extend(e) cs.extend(c) self.e_states = es self.converged = numpy.all(getattr(sol, 'converged', True) for sol in self.fcisolvers) if log.verbose >= logger.DEBUG: if all(getattr(solver, 'spin_square', None) for solver in self.fcisolvers): ss = self.states_spin_square(cs, norb, nelec)[0] for i, ei in enumerate(es): log.debug('state %d E = %.15g S^2 = %.7f', i, ei, ss[i]) else: for i, ei in enumerate(es): log.debug('state %d E = %.15g', i, ei) return numpy.einsum('i,i', numpy.array(es), self.weights), cs
[docs] def approx_kernel(self, h1, h2, norb, nelec, ci0=None, **kwargs): _state_args = self._state_args es = [] cs = [] for ix, (solver, my_args, my_kwargs) in enumerate (self._loop_solver(_state_args (ci0))): c0 = my_args[0] if hasattr(solver, 'approx_kernel'): e, c = solver.approx_kernel(h1, h2, norb, self._get_nelec(solver, nelec), ci0=c0, orbsym=self.orbsym, **kwargs) else: e, c = solver.kernel(h1, h2, norb, self._get_nelec(solver, nelec), ci0=c0, orbsym=self.orbsym, **kwargs) if solver.nroots == 1: es.append(e) cs.append(c) else: es.extend(e) cs.extend(c) return numpy.einsum('i,i->', es, self.weights), cs
[docs] def states_make_rdm1 (self, ci0, norb, nelec, link_index=None, **kwargs): _solver_args = self._solver_args _state_args = self._state_args ci0 = _state_args (ci0) link_index = _solver_args (link_index) nelec = _solver_args ([self._get_nelec (solver, nelec) for solver in self.fcisolvers]) return list(self._collect ('make_rdm1', ci0, norb, nelec, link_index=link_index, **kwargs))
[docs] def make_rdm1(self, ci0, norb, nelec, link_index=None, **kwargs): dm1 = self.states_make_rdm1 (ci0, norb, nelec, link_index=link_index, **kwargs) return numpy.einsum ('r,rpq->pq', self.weights, dm1)
[docs] def states_make_rdm1s (self, ci0, norb, nelec, link_index=None, **kwargs): _solver_args = self._solver_args _state_args = self._state_args ci0 = _state_args (ci0) link_index = _solver_args (link_index) nelec = _solver_args ([self._get_nelec (solver, nelec) for solver in self.fcisolvers]) dm1a = [] dm1b = [] for dm1s in self._collect ('make_rdm1s', ci0, norb, nelec, link_index=link_index, **kwargs): dm1a.append (dm1s[0]) dm1b.append (dm1s[1]) return dm1a, dm1b
[docs] def make_rdm1s(self, ci0, norb, nelec, link_index=None, **kwargs): dm1a, dm1b = self.states_make_rdm1s (ci0, norb, nelec, link_index=link_index, **kwargs) dm1s = numpy.einsum ('r,srpq->spq', self.weights, [dm1a, dm1b]) return dm1s[0], dm1s[1]
[docs] def states_make_rdm12 (self, ci0, norb, nelec, link_index=None, **kwargs): _solver_args = self._solver_args _state_args = self._state_args ci0 = _state_args (ci0) link_index = _solver_args (link_index) nelec = _solver_args ([self._get_nelec (solver, nelec) for solver in self.fcisolvers]) rdm1 = [] rdm2 = [] for dm1, dm2 in self._collect ('make_rdm12', ci0, norb, nelec, link_index=link_index, **kwargs): rdm1.append (dm1) rdm2.append (dm2) return rdm1, rdm2
[docs] def make_rdm12(self, ci0, norb, nelec, link_index=None, **kwargs): rdm1, rdm2 = self.states_make_rdm12 (ci0, norb, nelec, link_index=link_index, **kwargs) rdm1 = numpy.einsum ('r,rpq->pq', self.weights, rdm1) rdm2 = numpy.einsum ('r,rpqst->pqst', self.weights, rdm2) return rdm1, rdm2
[docs] def states_make_rdm12s(self, ci0, norb, nelec, link_index=None, **kwargs): _solver_args = self._solver_args _state_args = self._state_args ci0 = _state_args (ci0) link_index = _solver_args (link_index) nelec = _solver_args ([self._get_nelec (solver, nelec) for solver in self.fcisolvers]) dm1a, dm1b = [], [] dm2aa, dm2ab, dm2bb = [], [], [] for dm1s, dm2s in self._collect ('make_rdm12s', ci0, norb, nelec, link_index=link_index, **kwargs): dm1a.append(dm1s[0]) dm1b.append(dm1s[1]) dm2aa.append(dm2s[0]) dm2ab.append(dm2s[1]) dm2bb.append(dm2s[2]) return (dm1a, dm1b), (dm2aa, dm2ab, dm2bb)
[docs] def make_rdm12s(self, ci0, norb, nelec, link_index=None, **kwargs): rdm1s, rdm2s = self.states_make_rdm12s(ci0, norb, nelec, link_index=link_index, **kwargs) rdm1s = numpy.einsum ('r,srpq->spq', self.weights, rdm1s) rdm2s = numpy.einsum ('r,srpqtu->spqtu', self.weights, rdm2s) return rdm1s, rdm2s
# TODO: linkstr support
[docs] def states_trans_rdm12 (self, ci1, ci0, norb, nelec, link_index=None, **kwargs): _solver_args = self._solver_args _state_args = self._state_args ci1 = _state_args (ci1) ci0 = _state_args (ci0) link_index = _solver_args (link_index) nelec = _solver_args ([self._get_nelec (solver, nelec) for solver in self.fcisolvers]) tdm1 = [] tdm2 = [] for dm1, dm2 in self._collect ('trans_rdm12', ci1, ci0, norb, nelec, link_index=link_index, **kwargs): tdm1.append (dm1) tdm2.append (dm2) return tdm1, tdm2
[docs] def trans_rdm12 (self, ci1, ci0, norb, nelec, link_index=None, **kwargs): tdm1, tdm2 = self.states_trans_rdm12 (ci1, ci0, norb, nelec, link_index=link_index, **kwargs) tdm1 = numpy.einsum ('r,rpq->pq', self.weights, tdm1) tdm2 = numpy.einsum ('r,rpqst->pqst', self.weights, tdm2) return tdm1, tdm2
spin_square = None large_ci = None transform_ci_for_orbital_rotation = None
[docs] def state_average_mix(casscf, fcisolvers, weights=(0.5,0.5)): '''State-average CASSCF over multiple FCI solvers. ''' nroots = sum(solver.nroots for solver in fcisolvers) assert (nroots == len(weights)) fcisolver = lib.set_class(StateAverageMixFCISolver(fcisolvers, weights), (StateAverageMixFCISolver, fcisolvers[0].__class__)) fcisolver_cls = fcisolver.__class__ has_spin_square = all(getattr(solver, 'spin_square', None) for solver in fcisolvers) has_large_ci = all(getattr(solver, 'large_ci', None) for solver in fcisolvers) has_transform_ci = all(getattr(solver, 'transform_ci_for_orbital_rotation', None) for solver in fcisolvers) if has_spin_square: def spin_square(self, ci0, norb, nelec, *args, **kwargs): ss, multip = self.states_spin_square(ci0, norb, nelec, *args, **kwargs) weights = self.weights return numpy.dot(ss, weights), numpy.dot(multip, weights) def states_spin_square(self, ci0, norb, nelec, *args, **kwargs): _solver_args = self._solver_args _state_args = self._state_args ci0 = _state_args (ci0) nelec = _solver_args ([self._get_nelec (solver, nelec) for solver in self.fcisolvers]) res = list(self._collect('spin_square', ci0, norb, nelec, *args, **kwargs)) ss = [x[0] for x in res] multip = [x[1] for x in res] return ss, multip fcisolver_cls.spin_square = spin_square fcisolver_cls.states_spin_square = states_spin_square if has_large_ci: def states_large_ci(self, fcivec, norb, nelec, *args, **kwargs): _solver_args = self._solver_args _state_args = self._state_args fcivec = _state_args (fcivec) nelec = _solver_args ([self._get_nelec (solver, nelec) for solver in self.fcisolvers]) return list(self._collect('large_ci', fcivec, norb, nelec, *args, **kwargs)) fcisolver_cls.states_large_ci = states_large_ci if has_transform_ci: def states_transform_ci_for_orbital_rotation(self, fcivec, norb, nelec, *args, **kwargs): _solver_args = self._solver_args _state_args = self._state_args fcivec = _state_args (fcivec) nelec = _solver_args ([self._get_nelec (solver, nelec) for solver in self.fcisolvers]) return list(self._collect('transform_ci_for_orbital_rotation', fcivec, norb, nelec, *args, **kwargs)) fcisolver_cls.states_transform_ci_for_orbital_rotation = states_transform_ci_for_orbital_rotation mc = _state_average_mcscf_solver(casscf, fcisolver) return mc
[docs] def state_average_mix_(casscf, fcisolvers, weights=(0.5,0.5)): ''' Inplace version of state_average ''' sacasscf = state_average_mix(casscf, fcisolvers, weights) casscf.__class__ = sacasscf.__class__ casscf.__dict__ = sacasscf.__dict__ return casscf
del (BASE, MAP2HF_TOL)