#!/usr/bin/env python
# Copyright 2014-2023 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Matthew Hennefarth <mhennefarth@uchicago.com>
import numpy as np
from pyscf.lib import logger, tag_array, current_memory
from pyscf.dft.gen_grid import BLKSIZE
from pyscf.mcpdft.otpd import get_ontop_pair_density
from pyscf.mcpdft.pdft_eff import _ERIS
from pyscf.mcpdft.tfnal_derivs import contract_fot
import gc
[docs]
def kernel(ot, dm1s, cascm2, c_dm1s, c_cascm2, mo_coeff, ncore, ncas, max_memory=2000, hermi=1, paaa_only=False,
aaaa_only=False, jk_pc=False, delta=False):
r'''Get the 1- and 2-body effective gradient responses from MC-PDFT. The
$\rho \cdot \mathbf{F}$ terms, or Hessian vector products.
Args:
ot : an instance of otfnal class
dm1s : ndarray of shape (2, nao, nao)
Contains the spin-separated one-body density matrices to evaluate
the kernel at
cascm2 : ndarray of shape (ncas, ncas, ncas, ncas)
Spin-summed two-body cumulant density matrix in the active space to
evaluate the kernel at
c_dm1s : ndarray of shape (2, nao, nao)
Contains the spin-separated one-body density matrices to contract
the kernel with.
c_cascm2 : ndarray of shape (ncas, ncas, ncas, ncas)
Spin-summed two-body cumulant density matrix in the active space to
contract the kernel with.
mo_coeff : ndarray of shape (nao, nmo)
containing molecular orbital coefficients
ncore : integer
number of inactive orbitals
ncas : integer
number of active orbitals
Kwargs:
max_memory : int or float
maximum cache size in MB
default is 2000
hermi : int
1 if 1rdms are assumed hermitian, 0 otherwise
paaa_only : logical
If true, only compute the paaa range of papa and ppaa (all other
elements set to zero)
aaaa_only : logical
If true, only compute the aaaa range of papa and ppaa (all other
elements set to zero; overrides paaa_only)
jk_pc : logical
If true, compute the ppii=pipi elements of veff2 (otherwise, these
are set to zero)
delta : logical
If true, then contract with the delta density. The delta density is the c_dm1s-dm1s and similarly for the
2rdm element (though care is taken since 2rdm elements are expressed in cumulant form).
Returns:
feff1 : ndarray of shape (nao, nao)
1-body effective gradient response
feff2 : object of class pdft_eff._ERIS
2-body effective gradient response
'''
nocc = ncore + ncas
ni, xctype, dens_deriv = ot._numint, ot.xctype, ot.dens_deriv
nao = mo_coeff.shape[0]
mo_core = mo_coeff[:, :ncore]
mo_cas = mo_coeff[:, ncore:nocc]
shls_slice = (0, ot.mol.nbas)
ao_loc = ot.mol.ao_loc_nr()
omega, alpha, hyb = ot._numint.rsh_and_hybrid_coeff(ot.otxc)
hyb_x, hyb_c = hyb
if abs(omega) > 1e-11:
raise NotImplementedError("range-separated on-top functionals")
if abs(hyb_x) > 1e-11 or abs(hyb_c) > 1e-11:
raise NotImplementedError("effective potential for hybrid functionals")
feff1 = np.zeros((nao, nao), dtype=dm1s.dtype)
feff2 = _ERIS(ot.mol, mo_coeff, ncore, ncas, paaa_only=paaa_only,
aaaa_only=aaaa_only, jk_pc=jk_pc, verbose=ot.verbose,
stdout=ot.stdout)
t0 = (logger.process_clock(), logger.perf_counter())
# Density matrices
dm_core = mo_core @ mo_core.T
dm_cas = dm1s - dm_core[None, :, :]
dm_core *= 2
# Propagate speedup tags
if hasattr(dm1s, 'mo_coeff') and hasattr(dm1s, 'mo_occ'):
dm_core = tag_array(dm_core, mo_coeff=dm1s.mo_coeff[0, :, :ncore],
mo_occ=dm1s.mo_occ[:, :ncore].sum(0))
dm_cas = tag_array(dm_cas, mo_coeff=dm1s.mo_coeff[:, :, ncore:nocc],
mo_occ=dm1s.mo_occ[:, ncore:nocc])
# rho generators
make_rho_c = ni._gen_rho_evaluator(ot.mol, dm_core, hermi)[0]
make_rho_a = ni._gen_rho_evaluator(ot.mol, dm_cas, hermi)[0]
make_rho = ni._gen_rho_evaluator(ot.mol, dm1s, hermi)[0]
make_crho = ni._gen_rho_evaluator(ot.mol, c_dm1s, hermi)[0]
# memory block size
gc.collect()
remaining_floats = (max_memory - current_memory()[0]) * 1e6 / 8
nderiv_rho = (1, 4, 10)[dens_deriv] # ?? for meta-GGA
nderiv_Pi = (1, 4)[ot.Pi_deriv]
ncols = 4 + nderiv_rho * nao # ao, weight, coords
ncols += nderiv_rho * 4 + nderiv_Pi # rho, rho_a, rho_c, Pi
ncols += 1 + nderiv_rho + nderiv_Pi # eot, vot
ncols += (nderiv_rho*nderiv_Pi*(nderiv_rho*nderiv_Pi + 1))/2 # fot
# Asynchronous part
nfeff1 = nderiv_rho * (nao + 1) # footprint of get_eff_1body
nfeff2 = feff2._accumulate_ftpt() * nderiv_Pi
ncols += np.amax([nfeff1, nfeff2]) # asynchronous fns
pdft_blksize = int(remaining_floats / (ncols * BLKSIZE)) * BLKSIZE
if ot.grids.coords is None:
ot.grids.build(with_non0tab=True)
ngrids = ot.grids.coords.shape[0]
ngrids_blk = int(ngrids / BLKSIZE) * BLKSIZE
pdft_blksize = max(BLKSIZE, min(pdft_blksize, ngrids_blk, BLKSIZE * 1200))
logger.debug(ot, ('{} MB used of {} available; block size of {} chosen'
'for grid with {} points').format(current_memory()[0], max_memory,
pdft_blksize, ngrids))
for ao, mask, weight, coords in ni.block_loop(ot.mol, ot.grids, nao,
dens_deriv, max_memory,
blksize=pdft_blksize):
rho = np.asarray([make_rho(i, ao, mask, xctype) for i in range(2)])
crho = np.asarray([make_crho(i, ao, mask, xctype) for i in range(2)])
rho_a = sum([make_rho_a(i, ao, mask, xctype) for i in range(2)])
rho_c = make_rho_c(0, ao, mask, xctype)
t0 = logger.timer(ot, 'untransformed densities (core and total)', *t0)
Pi = get_ontop_pair_density(ot, rho, ao, cascm2, mo_cas,
dens_deriv, mask)
cPi = get_ontop_pair_density(ot, crho, ao, c_cascm2, mo_cas,
dens_deriv, mask)
t0 = logger.timer(ot, 'on-top pair density calculation', *t0)
if delta:
crho -= rho
cPi -= Pi
vot, fot = ot.eval_ot(rho, Pi, weights=weight, dderiv=2,
_unpack_vot=False)[1:]
frho, fPi = contract_fot(ot, fot, rho, Pi, crho, cPi, unpack=True,
vot_packed=vot)
t0 = logger.timer(ot, 'effective gradient response kernel calculation',
*t0)
if ao.ndim == 2:
ao = ao[None, :, :]
feff1 += ot.get_eff_1body(ao, weight, frho, non0tab=mask,
shls_slice=shls_slice, ao_loc=ao_loc,
hermi=1)
t0 = logger.timer(ot, '1-body effective gradient response calculation',
*t0)
feff2._accumulate(ot, ao, weight, rho_c, rho_a, fPi, mask, shls_slice,
ao_loc)
t0 = logger.timer(ot, '2-body effective gradient response calculation',
*t0)
feff2._finalize()
t0 = logger.timer(ot, 'Finalizing 2-body gradient response calculation',
*t0)
return feff1, feff2
[docs]
def lazy_kernel(ot, dm1s, cascm2, c_dm1s, c_cascm2, mo_cas, hermi=1, max_memory=2000, delta=False):
'''1- and 2-body gradient response (hessian-vector products) from MC-PDFT.
This is the lazy way and doesn't care about memory.'''
ni, xctype, dens_deriv = ot._numint, ot.xctype, ot.dens_deriv
nao = mo_cas.shape[0]
feff1 = np.zeros_like(dm1s[0])
feff2 = np.zeros((nao, nao, nao, nao), dtype=feff1.dtype)
t0 = (logger.process_clock(), logger.perf_counter())
make_rho = tuple(ni._gen_rho_evaluator(ot.mol, dm1s[i, :, :], hermi) for i
in range(2))
make_crho = tuple(ni._gen_rho_evaluator(ot.mol, c_dm1s[i, :, :], hermi) for
i in range(2))
for ao, mask, weight, coords in ni.block_loop(ot.mol, ot.grids, nao,
dens_deriv, max_memory):
rho = np.asarray([m[0](0, ao, mask, xctype) for m in make_rho])
crho = np.asarray([m[0](0, ao, mask, xctype) for m in make_crho])
t0 = logger.timer(ot, 'untransformed density', *t0)
Pi = get_ontop_pair_density(ot, rho, ao, cascm2, mo_cas, dens_deriv,
mask)
cPi = get_ontop_pair_density(ot, crho, ao, c_cascm2, mo_cas,
dens_deriv, mask)
t0 = logger.timer(ot, 'on-top pair density calculation', *t0)
if delta:
crho -= rho
cPi -= Pi
vot, fot = ot.eval_ot(rho, Pi, weights=weight, dderiv=2,
_unpack_vot=False)[1:]
frho, fPi = contract_fot(ot, fot, rho, Pi, crho, cPi, unpack=True,
vot_packed=vot)
t0 = logger.timer(ot, 'effective gradient response kernel calculation',
*t0)
if ao.ndim == 2:
ao = ao[None, :, :]
feff1 += ot.get_eff_1body(ao, weight, frho)
t0 = logger.timer(ot, '1-body effective gradient response calculation',
*t0)
feff2 += ot.get_eff_2body(ao, weight, fPi, aosym=1)
t0 = logger.timer(ot, '2-body effective gradient response calculation',
*t0)
return feff1, feff2
[docs]
def get_feff_1body(otfnal, rho, Pi, crho, cPi, ao, weight, kern=None, non0tab=None,
shls_slice=None, ao_loc=None, hermi=0, **kwargs):
r"""Get the terms [\Delta F]_{pq}
Args:
rho : ndarray of shape (2,*,ngrids)
Spin-density [and derivatives]
Pi : ndarray with shape (*,ngrids)
On-top pair density [and derivatives]
crho : ndarray of shape (2,*,ngrids)
Spin-density [and derivatives] to contract the hessian with
cPi : ndarray with shape (*,ngrids)
On-top pair density [and derivatives] to contract Hessian with
ao : ndarray or 2 ndarrays of shape (*,ngrids,nao)
contains values and derivatives of nao. 2 different ndarrays can
have different nao but not different ngrids
weight : ndarray of shape (ngrids)
containing numerical integration weights
Kwargs:
kern : ndarray of shape (*,ngrids)
the hessian-vector product. If not provided, it is calculated.
non0tab : ndarray of shape (nblk, nbas)
Identifies blocks of grid points which are nonzero on each AO shell
so as to exploit sparsity. If you want the "ao" array to be in the
MO basis, just leave this as None. If hermi == 0, it only applies
to the bra index ao array, even if the ket index ao array is the
same (so probably always pass hermi = 1 in that case)
shls_slice : sequence of integers of len 2
Identifies starting and stopping indices of AO shells
ao_loc : ndarray of length nbas
Offset to first AO of each shell
hermi : integer or logical
Toggle whether feff is supposed to be a Hermitian matrix You can
still pass two different ao arrays for the bra and the ket indices,
for instance if one of them is supposed to be a higher derivative.
They just have to have the same nao in that case.
Returns : ndarray of shape (nao[0],nao[1])
The 1-body effective gradient response corresponding to this on-top
pair density exchange-correlation functional, in the atomic-orbital
basis. In PDFT this functional is always spin-symmetric.
"""
if kern is None:
if rho.ndim == 2:
rho = np.expand_dims(rho, 1)
Pi = np.expand_dims(Pi, 0)
if crho.ndim == 2:
crho = np.expand_dims(crho, 1)
cPi = np.expand_dims(cPi, 0)
fot = otfnal.eval_ot(rho, Pi, dderiv=2, **kwargs)[2]
kern = contract_fot(otfnal, fot, rho, Pi, crho, cPi)[0]
rho = np.squeeze(rho)
Pi = np.squeeze(Pi)
crho = np.squeeze(crho)
cPi = np.squeeze(cPi)
return otfnal.get_eff_1body(ao, weight, kern=kern, non0tab=non0tab,
shls_slice=shls_slice, ao_loc=ao_loc,
hermi=hermi)
[docs]
def get_feff_2body(otfnal, rho, Pi, crho, cPi, ao, weight, aosym='s4',
kern=None, fao=None, **kwargs):
r'''Get the terms [\Delta F]_{pqrs}
Args:
rho : ndarray of shape (2,*,ngrids)
containing spin-density [and derivatives]
Pi : ndarray with shape (*,ngrids)
containing on-top pair density [and derivatives]
crho : ndarray of shape (2,*,ngrids)
Spin-density [and derivatives] to contract the hessian with
cPi : ndarray with shape (*,ngrids)
On-top pair density [and derivatives] to contract Hessian with
ao : ndarray of shape (*,ngrids,nao)
OR list of ndarrays of shape (*,ngrids,*) values and
derivatives of atomic or molecular orbitals in which space to
calculate the 2-body veff If a list of length 4, the
corresponding set of eri-like elements are returned
weight : ndarray of shape (ngrids)
containing numerical integration weights
Kwargs:
aosym : int or str
Index permutation symmetry of the desired integrals. Valid
options are 1 (or '1' or 's1'), 4 (or '4' or 's4'), '2ij' (or
's2ij'), and '2kl' (or 's2kl'). These have the same meaning as
in PySCF's ao2mo module. Currently all symmetry exploitation is
extremely slow and unparallelizable for some reason so trying
to use this is not recommended until I come up with a C
routine.
kern : ndarray of shape (*,ngrids)
the hessian-vector product. If not provided, it is calculated.
fao : ndarray of shape (*,ngrids,nao,nao) or
(*,ngrids,nao*(nao+1)//2). An intermediate in which the kernel
and the k,l orbital indices have been contracted. Overrides
kl_symm
Returns : eri-like ndarray
The two-body effective gradient response corresponding to this on-top
pair density exchange-correlation functional or elements
thereof, in the provided basis.
'''
if kern is None:
if rho.ndim == 2:
rho = np.expand_dims(rho, 1)
Pi = np.expand_dims(Pi, 0)
if crho.ndim == 2:
crho = np.expand_dims(crho, 1)
cPi = np.expand_dims(cPi, 0)
fot = otfnal.eval_ot(rho, Pi, dderiv=2, **kwargs)[2]
kern = contract_fot(otfnal, fot, rho, Pi, crho, cPi)[1]
rho = np.squeeze(rho)
Pi = np.squeeze(Pi)
crho = np.squeeze(crho)
cPi = np.squeeze(cPi)
return otfnal.get_eff_2body(ao, weight, kern, aosym=aosym, eff_ao=fao)
[docs]
def get_feff_2body_kl(otfnal, rho, Pi, crho, cPi, ao_k, ao_l, weight,
symm=False, kern=None, **kwargs):
r''' get the two-index intermediate Mkl of [\Delta \cdot F]_{pqrs}
Args:
rho : ndarray of shape (2,*,ngrids)
containing spin-density [and derivatives]
Pi : ndarray with shape (*,ngrids)
containing on-top pair density [and derivatives]
crho : ndarray of shape (2,*,ngrids)
Spin-density [and derivatives] to contract the hessian with
cPi : ndarray with shape (*,ngrids)
On-top pair density [and derivatives] to contract Hessian with
ao_k : ndarray of shape (*,ngrids,nao)
OR list of ndarrays of shape (*,ngrids,*) values and
derivatives of atomic or molecular orbitals corresponding to
index k
ao_l : ndarray of shape (*,ngrids,nao)
OR list of ndarrays of shape (*,ngrids,*) values and
derivatives of atomic or molecular orbitals corresponding to
index l
weight : ndarray of shape (ngrids)
containing numerical integration weights
Kwargs:
symm : logical
Index permutation symmetry of the desired integral wrt k,l
kern : ndarray of shape (*,ngrids)
the hessian-vector product. If not provided, it is calculated.
Returns : ndarray of shape (*,ngrids,nao,nao)
or (*,ngrids,nao*(nao+1)//2). An intermediate for calculating the
two-body effective gradient response corresponding to this on-top
pair density exchange-correlation functional in the provided basis.
'''
if kern is None:
if rho.ndim == 2:
rho = np.expand_dims(rho, 1)
Pi = np.expand_dims(Pi, 0)
if crho.ndim == 2:
crho = np.expand_dims(crho, 1)
cPi = np.expand_dims(cPi, 0)
fot = otfnal.eval_ot(rho, Pi, dderiv=2, **kwargs)[2]
kern = contract_fot(otfnal, fot, rho, Pi, crho, cPi)[1]
return otfnal.get_eff_2body_kl(ao_k, ao_l, weight, kern=kern, symm=symm)