Source code for pyscf.mcpdft.pdft_feff

#!/usr/bin/env python
# Copyright 2014-2023 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Matthew Hennefarth <mhennefarth@uchicago.com>

import numpy as np
from pyscf.lib import logger, tag_array, current_memory
from pyscf.dft.gen_grid import BLKSIZE
from pyscf.mcpdft.otpd import get_ontop_pair_density
from pyscf.mcpdft.pdft_eff import _ERIS
from pyscf.mcpdft.tfnal_derivs import contract_fot
import gc


[docs] def kernel(ot, dm1s, cascm2, c_dm1s, c_cascm2, mo_coeff, ncore, ncas, max_memory=2000, hermi=1, paaa_only=False, aaaa_only=False, jk_pc=False, delta=False): r'''Get the 1- and 2-body effective gradient responses from MC-PDFT. The $\rho \cdot \mathbf{F}$ terms, or Hessian vector products. Args: ot : an instance of otfnal class dm1s : ndarray of shape (2, nao, nao) Contains the spin-separated one-body density matrices to evaluate the kernel at cascm2 : ndarray of shape (ncas, ncas, ncas, ncas) Spin-summed two-body cumulant density matrix in the active space to evaluate the kernel at c_dm1s : ndarray of shape (2, nao, nao) Contains the spin-separated one-body density matrices to contract the kernel with. c_cascm2 : ndarray of shape (ncas, ncas, ncas, ncas) Spin-summed two-body cumulant density matrix in the active space to contract the kernel with. mo_coeff : ndarray of shape (nao, nmo) containing molecular orbital coefficients ncore : integer number of inactive orbitals ncas : integer number of active orbitals Kwargs: max_memory : int or float maximum cache size in MB default is 2000 hermi : int 1 if 1rdms are assumed hermitian, 0 otherwise paaa_only : logical If true, only compute the paaa range of papa and ppaa (all other elements set to zero) aaaa_only : logical If true, only compute the aaaa range of papa and ppaa (all other elements set to zero; overrides paaa_only) jk_pc : logical If true, compute the ppii=pipi elements of veff2 (otherwise, these are set to zero) delta : logical If true, then contract with the delta density. The delta density is the c_dm1s-dm1s and similarly for the 2rdm element (though care is taken since 2rdm elements are expressed in cumulant form). Returns: feff1 : ndarray of shape (nao, nao) 1-body effective gradient response feff2 : object of class pdft_eff._ERIS 2-body effective gradient response ''' nocc = ncore + ncas ni, xctype, dens_deriv = ot._numint, ot.xctype, ot.dens_deriv nao = mo_coeff.shape[0] mo_core = mo_coeff[:, :ncore] mo_cas = mo_coeff[:, ncore:nocc] shls_slice = (0, ot.mol.nbas) ao_loc = ot.mol.ao_loc_nr() omega, alpha, hyb = ot._numint.rsh_and_hybrid_coeff(ot.otxc) hyb_x, hyb_c = hyb if abs(omega) > 1e-11: raise NotImplementedError("range-separated on-top functionals") if abs(hyb_x) > 1e-11 or abs(hyb_c) > 1e-11: raise NotImplementedError("effective potential for hybrid functionals") feff1 = np.zeros((nao, nao), dtype=dm1s.dtype) feff2 = _ERIS(ot.mol, mo_coeff, ncore, ncas, paaa_only=paaa_only, aaaa_only=aaaa_only, jk_pc=jk_pc, verbose=ot.verbose, stdout=ot.stdout) t0 = (logger.process_clock(), logger.perf_counter()) # Density matrices dm_core = mo_core @ mo_core.T dm_cas = dm1s - dm_core[None, :, :] dm_core *= 2 # Propagate speedup tags if hasattr(dm1s, 'mo_coeff') and hasattr(dm1s, 'mo_occ'): dm_core = tag_array(dm_core, mo_coeff=dm1s.mo_coeff[0, :, :ncore], mo_occ=dm1s.mo_occ[:, :ncore].sum(0)) dm_cas = tag_array(dm_cas, mo_coeff=dm1s.mo_coeff[:, :, ncore:nocc], mo_occ=dm1s.mo_occ[:, ncore:nocc]) # rho generators make_rho_c = ni._gen_rho_evaluator(ot.mol, dm_core, hermi)[0] make_rho_a = ni._gen_rho_evaluator(ot.mol, dm_cas, hermi)[0] make_rho = ni._gen_rho_evaluator(ot.mol, dm1s, hermi)[0] make_crho = ni._gen_rho_evaluator(ot.mol, c_dm1s, hermi)[0] # memory block size gc.collect() remaining_floats = (max_memory - current_memory()[0]) * 1e6 / 8 nderiv_rho = (1, 4, 10)[dens_deriv] # ?? for meta-GGA nderiv_Pi = (1, 4)[ot.Pi_deriv] ncols = 4 + nderiv_rho * nao # ao, weight, coords ncols += nderiv_rho * 4 + nderiv_Pi # rho, rho_a, rho_c, Pi ncols += 1 + nderiv_rho + nderiv_Pi # eot, vot ncols += (nderiv_rho*nderiv_Pi*(nderiv_rho*nderiv_Pi + 1))/2 # fot # Asynchronous part nfeff1 = nderiv_rho * (nao + 1) # footprint of get_eff_1body nfeff2 = feff2._accumulate_ftpt() * nderiv_Pi ncols += np.amax([nfeff1, nfeff2]) # asynchronous fns pdft_blksize = int(remaining_floats / (ncols * BLKSIZE)) * BLKSIZE if ot.grids.coords is None: ot.grids.build(with_non0tab=True) ngrids = ot.grids.coords.shape[0] ngrids_blk = int(ngrids / BLKSIZE) * BLKSIZE pdft_blksize = max(BLKSIZE, min(pdft_blksize, ngrids_blk, BLKSIZE * 1200)) logger.debug(ot, ('{} MB used of {} available; block size of {} chosen' 'for grid with {} points').format(current_memory()[0], max_memory, pdft_blksize, ngrids)) for ao, mask, weight, coords in ni.block_loop(ot.mol, ot.grids, nao, dens_deriv, max_memory, blksize=pdft_blksize): rho = np.asarray([make_rho(i, ao, mask, xctype) for i in range(2)]) crho = np.asarray([make_crho(i, ao, mask, xctype) for i in range(2)]) rho_a = sum([make_rho_a(i, ao, mask, xctype) for i in range(2)]) rho_c = make_rho_c(0, ao, mask, xctype) t0 = logger.timer(ot, 'untransformed densities (core and total)', *t0) Pi = get_ontop_pair_density(ot, rho, ao, cascm2, mo_cas, dens_deriv, mask) cPi = get_ontop_pair_density(ot, crho, ao, c_cascm2, mo_cas, dens_deriv, mask) t0 = logger.timer(ot, 'on-top pair density calculation', *t0) if delta: crho -= rho cPi -= Pi vot, fot = ot.eval_ot(rho, Pi, weights=weight, dderiv=2, _unpack_vot=False)[1:] frho, fPi = contract_fot(ot, fot, rho, Pi, crho, cPi, unpack=True, vot_packed=vot) t0 = logger.timer(ot, 'effective gradient response kernel calculation', *t0) if ao.ndim == 2: ao = ao[None, :, :] feff1 += ot.get_eff_1body(ao, weight, frho, non0tab=mask, shls_slice=shls_slice, ao_loc=ao_loc, hermi=1) t0 = logger.timer(ot, '1-body effective gradient response calculation', *t0) feff2._accumulate(ot, ao, weight, rho_c, rho_a, fPi, mask, shls_slice, ao_loc) t0 = logger.timer(ot, '2-body effective gradient response calculation', *t0) feff2._finalize() t0 = logger.timer(ot, 'Finalizing 2-body gradient response calculation', *t0) return feff1, feff2
[docs] def lazy_kernel(ot, dm1s, cascm2, c_dm1s, c_cascm2, mo_cas, hermi=1, max_memory=2000, delta=False): '''1- and 2-body gradient response (hessian-vector products) from MC-PDFT. This is the lazy way and doesn't care about memory.''' ni, xctype, dens_deriv = ot._numint, ot.xctype, ot.dens_deriv nao = mo_cas.shape[0] feff1 = np.zeros_like(dm1s[0]) feff2 = np.zeros((nao, nao, nao, nao), dtype=feff1.dtype) t0 = (logger.process_clock(), logger.perf_counter()) make_rho = tuple(ni._gen_rho_evaluator(ot.mol, dm1s[i, :, :], hermi) for i in range(2)) make_crho = tuple(ni._gen_rho_evaluator(ot.mol, c_dm1s[i, :, :], hermi) for i in range(2)) for ao, mask, weight, coords in ni.block_loop(ot.mol, ot.grids, nao, dens_deriv, max_memory): rho = np.asarray([m[0](0, ao, mask, xctype) for m in make_rho]) crho = np.asarray([m[0](0, ao, mask, xctype) for m in make_crho]) t0 = logger.timer(ot, 'untransformed density', *t0) Pi = get_ontop_pair_density(ot, rho, ao, cascm2, mo_cas, dens_deriv, mask) cPi = get_ontop_pair_density(ot, crho, ao, c_cascm2, mo_cas, dens_deriv, mask) t0 = logger.timer(ot, 'on-top pair density calculation', *t0) if delta: crho -= rho cPi -= Pi vot, fot = ot.eval_ot(rho, Pi, weights=weight, dderiv=2, _unpack_vot=False)[1:] frho, fPi = contract_fot(ot, fot, rho, Pi, crho, cPi, unpack=True, vot_packed=vot) t0 = logger.timer(ot, 'effective gradient response kernel calculation', *t0) if ao.ndim == 2: ao = ao[None, :, :] feff1 += ot.get_eff_1body(ao, weight, frho) t0 = logger.timer(ot, '1-body effective gradient response calculation', *t0) feff2 += ot.get_eff_2body(ao, weight, fPi, aosym=1) t0 = logger.timer(ot, '2-body effective gradient response calculation', *t0) return feff1, feff2
[docs] def get_feff_1body(otfnal, rho, Pi, crho, cPi, ao, weight, kern=None, non0tab=None, shls_slice=None, ao_loc=None, hermi=0, **kwargs): r"""Get the terms [\Delta F]_{pq} Args: rho : ndarray of shape (2,*,ngrids) Spin-density [and derivatives] Pi : ndarray with shape (*,ngrids) On-top pair density [and derivatives] crho : ndarray of shape (2,*,ngrids) Spin-density [and derivatives] to contract the hessian with cPi : ndarray with shape (*,ngrids) On-top pair density [and derivatives] to contract Hessian with ao : ndarray or 2 ndarrays of shape (*,ngrids,nao) contains values and derivatives of nao. 2 different ndarrays can have different nao but not different ngrids weight : ndarray of shape (ngrids) containing numerical integration weights Kwargs: kern : ndarray of shape (*,ngrids) the hessian-vector product. If not provided, it is calculated. non0tab : ndarray of shape (nblk, nbas) Identifies blocks of grid points which are nonzero on each AO shell so as to exploit sparsity. If you want the "ao" array to be in the MO basis, just leave this as None. If hermi == 0, it only applies to the bra index ao array, even if the ket index ao array is the same (so probably always pass hermi = 1 in that case) shls_slice : sequence of integers of len 2 Identifies starting and stopping indices of AO shells ao_loc : ndarray of length nbas Offset to first AO of each shell hermi : integer or logical Toggle whether feff is supposed to be a Hermitian matrix You can still pass two different ao arrays for the bra and the ket indices, for instance if one of them is supposed to be a higher derivative. They just have to have the same nao in that case. Returns : ndarray of shape (nao[0],nao[1]) The 1-body effective gradient response corresponding to this on-top pair density exchange-correlation functional, in the atomic-orbital basis. In PDFT this functional is always spin-symmetric. """ if kern is None: if rho.ndim == 2: rho = np.expand_dims(rho, 1) Pi = np.expand_dims(Pi, 0) if crho.ndim == 2: crho = np.expand_dims(crho, 1) cPi = np.expand_dims(cPi, 0) fot = otfnal.eval_ot(rho, Pi, dderiv=2, **kwargs)[2] kern = contract_fot(otfnal, fot, rho, Pi, crho, cPi)[0] rho = np.squeeze(rho) Pi = np.squeeze(Pi) crho = np.squeeze(crho) cPi = np.squeeze(cPi) return otfnal.get_eff_1body(ao, weight, kern=kern, non0tab=non0tab, shls_slice=shls_slice, ao_loc=ao_loc, hermi=hermi)
[docs] def get_feff_2body(otfnal, rho, Pi, crho, cPi, ao, weight, aosym='s4', kern=None, fao=None, **kwargs): r'''Get the terms [\Delta F]_{pqrs} Args: rho : ndarray of shape (2,*,ngrids) containing spin-density [and derivatives] Pi : ndarray with shape (*,ngrids) containing on-top pair density [and derivatives] crho : ndarray of shape (2,*,ngrids) Spin-density [and derivatives] to contract the hessian with cPi : ndarray with shape (*,ngrids) On-top pair density [and derivatives] to contract Hessian with ao : ndarray of shape (*,ngrids,nao) OR list of ndarrays of shape (*,ngrids,*) values and derivatives of atomic or molecular orbitals in which space to calculate the 2-body veff If a list of length 4, the corresponding set of eri-like elements are returned weight : ndarray of shape (ngrids) containing numerical integration weights Kwargs: aosym : int or str Index permutation symmetry of the desired integrals. Valid options are 1 (or '1' or 's1'), 4 (or '4' or 's4'), '2ij' (or 's2ij'), and '2kl' (or 's2kl'). These have the same meaning as in PySCF's ao2mo module. Currently all symmetry exploitation is extremely slow and unparallelizable for some reason so trying to use this is not recommended until I come up with a C routine. kern : ndarray of shape (*,ngrids) the hessian-vector product. If not provided, it is calculated. fao : ndarray of shape (*,ngrids,nao,nao) or (*,ngrids,nao*(nao+1)//2). An intermediate in which the kernel and the k,l orbital indices have been contracted. Overrides kl_symm Returns : eri-like ndarray The two-body effective gradient response corresponding to this on-top pair density exchange-correlation functional or elements thereof, in the provided basis. ''' if kern is None: if rho.ndim == 2: rho = np.expand_dims(rho, 1) Pi = np.expand_dims(Pi, 0) if crho.ndim == 2: crho = np.expand_dims(crho, 1) cPi = np.expand_dims(cPi, 0) fot = otfnal.eval_ot(rho, Pi, dderiv=2, **kwargs)[2] kern = contract_fot(otfnal, fot, rho, Pi, crho, cPi)[1] rho = np.squeeze(rho) Pi = np.squeeze(Pi) crho = np.squeeze(crho) cPi = np.squeeze(cPi) return otfnal.get_eff_2body(ao, weight, kern, aosym=aosym, eff_ao=fao)
[docs] def get_feff_2body_kl(otfnal, rho, Pi, crho, cPi, ao_k, ao_l, weight, symm=False, kern=None, **kwargs): r''' get the two-index intermediate Mkl of [\Delta \cdot F]_{pqrs} Args: rho : ndarray of shape (2,*,ngrids) containing spin-density [and derivatives] Pi : ndarray with shape (*,ngrids) containing on-top pair density [and derivatives] crho : ndarray of shape (2,*,ngrids) Spin-density [and derivatives] to contract the hessian with cPi : ndarray with shape (*,ngrids) On-top pair density [and derivatives] to contract Hessian with ao_k : ndarray of shape (*,ngrids,nao) OR list of ndarrays of shape (*,ngrids,*) values and derivatives of atomic or molecular orbitals corresponding to index k ao_l : ndarray of shape (*,ngrids,nao) OR list of ndarrays of shape (*,ngrids,*) values and derivatives of atomic or molecular orbitals corresponding to index l weight : ndarray of shape (ngrids) containing numerical integration weights Kwargs: symm : logical Index permutation symmetry of the desired integral wrt k,l kern : ndarray of shape (*,ngrids) the hessian-vector product. If not provided, it is calculated. Returns : ndarray of shape (*,ngrids,nao,nao) or (*,ngrids,nao*(nao+1)//2). An intermediate for calculating the two-body effective gradient response corresponding to this on-top pair density exchange-correlation functional in the provided basis. ''' if kern is None: if rho.ndim == 2: rho = np.expand_dims(rho, 1) Pi = np.expand_dims(Pi, 0) if crho.ndim == 2: crho = np.expand_dims(crho, 1) cPi = np.expand_dims(cPi, 0) fot = otfnal.eval_ot(rho, Pi, dderiv=2, **kwargs)[2] kern = contract_fot(otfnal, fot, rho, Pi, crho, cPi)[1] return otfnal.get_eff_2body_kl(ao_k, ao_l, weight, kern=kern, symm=symm)