Source code for pyscf.hessian.rks

#!/usr/bin/env python
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Non-relativistic RKS analytical Hessian
'''


import numpy
import ctypes
from pyscf import lib
from pyscf import gto
from pyscf.lib import logger
from pyscf.hessian import rhf as rhf_hess
from pyscf.grad import rks as rks_grad
from pyscf.dft import numint, gen_grid


# import pyscf.grad.rks to activate nuc_grad_method method
from pyscf.grad import rks  # noqa


min_grid_blksize = 128*128
NLC_REMOVE_ZERO_RHO_GRID_THRESHOLD = 1e-8

libdft = lib.load_library('libdft')
contract = numpy.einsum


[docs] def partial_hess_elec(hessobj, mo_energy=None, mo_coeff=None, mo_occ=None, atmlst=None, max_memory=4000, verbose=None): log = logger.new_logger(hessobj, verbose) time0 = t1 = (logger.process_clock(), logger.perf_counter()) mol = hessobj.mol mf = hessobj.base ni = mf._numint if mo_energy is None: mo_energy = mf.mo_energy if mo_occ is None: mo_occ = mf.mo_occ if mo_coeff is None: mo_coeff = mf.mo_coeff if atmlst is None: atmlst = range(mol.natm) nao, nmo = mo_coeff.shape mocc = mo_coeff[:,mo_occ>0] dm0 = numpy.dot(mocc, mocc.T) * 2 omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, spin=mol.spin) hybrid = ni.libxc.is_hybrid_xc(mf.xc) de2, ej, ek = rhf_hess._partial_hess_ejk(hessobj, mo_energy, mo_coeff, mo_occ, atmlst, max_memory, verbose, with_k=hybrid) de2 += ej - hyb * ek # (A,B,dR_A,dR_B) mem_now = lib.current_memory()[0] max_memory = max(2000, mf.max_memory*.9-mem_now) veff_diag = _get_vxc_diag(hessobj, mo_coeff, mo_occ, max_memory) if hybrid and omega != 0: with mol.with_range_coulomb(omega): vk1 = rhf_hess._get_jk(mol, 'int2e_ipip1', 9, 's2kl', ['jk->s1il', dm0])[0] veff_diag -= (alpha-hyb)*.5 * vk1.reshape(3,3,nao,nao) vk1 = None t1 = log.timer_debug1('contracting int2e_ipip1', *t1) aoslices = mol.aoslice_by_atom() vxc = _get_vxc_deriv2(hessobj, mo_coeff, mo_occ, max_memory) for i0, ia in enumerate(atmlst): shl0, shl1, p0, p1 = aoslices[ia] shls_slice = (shl0, shl1) + (0, mol.nbas)*3 veff = vxc[ia] if hybrid and omega != 0: with mol.with_range_coulomb(omega): vk1, vk2 = rhf_hess._get_jk(mol, 'int2e_ip1ip2', 9, 's1', ['li->s1kj', dm0[:,p0:p1], # vk1 'lj->s1ki', dm0 ], # vk2 shls_slice=shls_slice) veff -= (alpha-hyb)*.5 * vk1.reshape(3,3,nao,nao) veff[:,:,:,p0:p1] -= (alpha-hyb)*.5 * vk2.reshape(3,3,nao,p1-p0) t1 = log.timer_debug1('range-separated int2e_ip1ip2 for atom %d'%ia, *t1) with mol.with_range_coulomb(omega): vk1 = rhf_hess._get_jk(mol, 'int2e_ipvip1', 9, 's2kl', ['li->s1kj', dm0[:,p0:p1]], # vk1 shls_slice=shls_slice)[0] veff -= (alpha-hyb)*.5 * vk1.transpose(0,2,1).reshape(3,3,nao,nao) t1 = log.timer_debug1('range-separated int2e_ipvip1 for atom %d'%ia, *t1) vk1 = vk2 = None de2[i0,i0] += numpy.einsum('xypq,pq->xy', veff_diag[:,:,p0:p1], dm0[p0:p1])*2 for j0, ja in enumerate(atmlst[:i0+1]): q0, q1 = aoslices[ja][2:] de2[i0,j0] += numpy.einsum('xypq,pq->xy', veff[:,:,q0:q1], dm0[q0:q1])*2 for j0 in range(i0): de2[j0,i0] = de2[i0,j0].T if mf.do_nlc(): de2 += _get_enlc_deriv2(hessobj, mo_coeff, mo_occ, max_memory) log.timer('RKS partial hessian', *time0) return de2
[docs] def make_h1(hessobj, mo_coeff, mo_occ, chkfile=None, atmlst=None, verbose=None): mol = hessobj.mol if atmlst is None: atmlst = range(mol.natm) nao, nmo = mo_coeff.shape mocc = mo_coeff[:,mo_occ>0] dm0 = numpy.dot(mocc, mocc.T) * 2 hcore_deriv = hessobj.base.nuc_grad_method().hcore_generator(mol) mf = hessobj.base ni = mf._numint ni.libxc.test_deriv_order(mf.xc, 2, raise_error=True) omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, spin=mol.spin) hybrid = ni.libxc.is_hybrid_xc(mf.xc) mem_now = lib.current_memory()[0] max_memory = max(2000, mf.max_memory*.9-mem_now) h1ao = _get_vxc_deriv1(hessobj, mo_coeff, mo_occ, max_memory) if mf.do_nlc(): h1ao += _get_vnlc_deriv1(hessobj, mo_coeff, mo_occ, max_memory) aoslices = mol.aoslice_by_atom() for i0, ia in enumerate(atmlst): shl0, shl1, p0, p1 = aoslices[ia] shls_slice = (shl0, shl1) + (0, mol.nbas)*3 if hybrid: vj1, vj2, vk1, vk2 = \ rhf_hess._get_jk(mol, 'int2e_ip1', 3, 's2kl', ['ji->s2kl', -dm0[:,p0:p1], # vj1 'lk->s1ij', -dm0 , # vj2 'li->s1kj', -dm0[:,p0:p1], # vk1 'jk->s1il', -dm0 ], # vk2 shls_slice=shls_slice) veff = vj1 - hyb * .5 * vk1 veff[:,p0:p1] += vj2 - hyb * .5 * vk2 if omega != 0: with mol.with_range_coulomb(omega): vk1, vk2 = \ rhf_hess._get_jk(mol, 'int2e_ip1', 3, 's2kl', ['li->s1kj', -dm0[:,p0:p1], # vk1 'jk->s1il', -dm0 ], # vk2 shls_slice=shls_slice) veff -= (alpha-hyb) * .5 * vk1 veff[:,p0:p1] -= (alpha-hyb) * .5 * vk2 else: vj1, vj2 = rhf_hess._get_jk(mol, 'int2e_ip1', 3, 's2kl', ['ji->s2kl', -dm0[:,p0:p1], # vj1 'lk->s1ij', -dm0 ], # vj2 shls_slice=shls_slice) veff = vj1 veff[:,p0:p1] += vj2 h1ao[ia] += veff + veff.transpose(0,2,1) h1ao[ia] += hcore_deriv(ia) return h1ao
XX, XY, XZ = 4, 5, 6 YX, YY, YZ = 5, 7, 8 ZX, ZY, ZZ = 6, 8, 9 XXX, XXY, XXZ, XYY, XYZ, XZZ = 10, 11, 12, 13, 14, 15 YYY, YYZ, YZZ, ZZZ = 16, 17, 18, 19 def _get_vxc_diag(hessobj, mo_coeff, mo_occ, max_memory): mol = hessobj.mol mf = hessobj.base if hessobj.grids is not None: grids = hessobj.grids else: grids = mf.grids if grids.coords is None: grids.build(with_non0tab=True) nao, nmo = mo_coeff.shape ni = mf._numint xctype = ni._xc_type(mf.xc) shls_slice = (0, mol.nbas) ao_loc = mol.ao_loc_nr() vmat = numpy.zeros((6,nao,nao)) if xctype == 'LDA': ao_deriv = 2 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): rho = ni.eval_rho2(mol, ao[0], mo_coeff, mo_occ, mask, xctype) vxc = ni.eval_xc_eff(mf.xc, rho, 1, xctype=xctype)[1] wv = weight * vxc[0] aow = numint._scale_ao(ao[0], wv) for i in range(6): vmat[i] += numint._dot_ao_ao(mol, ao[i+4], aow, mask, shls_slice, ao_loc) aow = None elif xctype == 'GGA': def contract_(mat, ao, aoidx, wv, mask): aow = numint._scale_ao(ao[aoidx[0]], wv[1]) aow+= numint._scale_ao(ao[aoidx[1]], wv[2]) aow+= numint._scale_ao(ao[aoidx[2]], wv[3]) mat += numint._dot_ao_ao(mol, aow, ao[0], mask, shls_slice, ao_loc) ao_deriv = 3 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): rho = ni.eval_rho2(mol, ao[:4], mo_coeff, mo_occ, mask, xctype) vxc = ni.eval_xc_eff(mf.xc, rho, 1, xctype=xctype)[1] wv = weight * vxc #:aow = numpy.einsum('npi,np->pi', ao[:4], wv[:4]) aow = numint._scale_ao(ao[:4], wv[:4]) for i in range(6): vmat[i] += numint._dot_ao_ao(mol, ao[i+4], aow, mask, shls_slice, ao_loc) contract_(vmat[0], ao, [XXX,XXY,XXZ], wv, mask) contract_(vmat[1], ao, [XXY,XYY,XYZ], wv, mask) contract_(vmat[2], ao, [XXZ,XYZ,XZZ], wv, mask) contract_(vmat[3], ao, [XYY,YYY,YYZ], wv, mask) contract_(vmat[4], ao, [XYZ,YYZ,YZZ], wv, mask) contract_(vmat[5], ao, [XZZ,YZZ,ZZZ], wv, mask) rho = vxc = wv = aow = None elif xctype == 'MGGA': def contract_(mat, ao, aoidx, wv, mask): aow = numint._scale_ao(ao[aoidx[0]], wv[1]) aow+= numint._scale_ao(ao[aoidx[1]], wv[2]) aow+= numint._scale_ao(ao[aoidx[2]], wv[3]) mat += numint._dot_ao_ao(mol, aow, ao[0], mask, shls_slice, ao_loc) ao_deriv = 3 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): rho = ni.eval_rho2(mol, ao[:10], mo_coeff, mo_occ, mask, xctype) vxc = ni.eval_xc_eff(mf.xc, rho, 1, xctype=xctype)[1] wv = weight * vxc wv[4] *= .5 # for the factor 1/2 in tau #:aow = numpy.einsum('npi,np->pi', ao[:4], wv[:4]) aow = numint._scale_ao(ao[:4], wv[:4]) for i in range(6): vmat[i] += numint._dot_ao_ao(mol, ao[i+4], aow, mask, shls_slice, ao_loc) contract_(vmat[0], ao, [XXX,XXY,XXZ], wv, mask) contract_(vmat[1], ao, [XXY,XYY,XYZ], wv, mask) contract_(vmat[2], ao, [XXZ,XYZ,XZZ], wv, mask) contract_(vmat[3], ao, [XYY,YYY,YYZ], wv, mask) contract_(vmat[4], ao, [XYZ,YYZ,YZZ], wv, mask) contract_(vmat[5], ao, [XZZ,YZZ,ZZZ], wv, mask) aow = [numint._scale_ao(ao[i], wv[4]) for i in range(1, 4)] for i, j in enumerate([XXX, XXY, XXZ, XYY, XYZ, XZZ]): vmat[i] += numint._dot_ao_ao(mol, ao[j], aow[0], mask, shls_slice, ao_loc) for i, j in enumerate([XXY, XYY, XYZ, YYY, YYZ, YZZ]): vmat[i] += numint._dot_ao_ao(mol, ao[j], aow[1], mask, shls_slice, ao_loc) for i, j in enumerate([XXZ, XYZ, XZZ, YYZ, YZZ, ZZZ]): vmat[i] += numint._dot_ao_ao(mol, ao[j], aow[2], mask, shls_slice, ao_loc) vmat = vmat[[0,1,2, 1,3,4, 2,4,5]] return vmat.reshape(3,3,nao,nao) def _make_dR_rho1(ao, ao_dm0, atm_id, aoslices, xctype): p0, p1 = aoslices[atm_id][2:] ngrids = ao[0].shape[0] if xctype == 'GGA': rho1 = numpy.zeros((3,4,ngrids)) elif xctype == 'MGGA': rho1 = numpy.zeros((3,5,ngrids)) ao_dm0_x = ao_dm0[1][:,p0:p1] ao_dm0_y = ao_dm0[2][:,p0:p1] ao_dm0_z = ao_dm0[3][:,p0:p1] # (d_X \nabla mu) dot \nalba nu DM_{mu,nu} rho1[0,4] += numpy.einsum('pi,pi->p', ao[XX,:,p0:p1], ao_dm0_x) rho1[0,4] += numpy.einsum('pi,pi->p', ao[XY,:,p0:p1], ao_dm0_y) rho1[0,4] += numpy.einsum('pi,pi->p', ao[XZ,:,p0:p1], ao_dm0_z) rho1[1,4] += numpy.einsum('pi,pi->p', ao[YX,:,p0:p1], ao_dm0_x) rho1[1,4] += numpy.einsum('pi,pi->p', ao[YY,:,p0:p1], ao_dm0_y) rho1[1,4] += numpy.einsum('pi,pi->p', ao[YZ,:,p0:p1], ao_dm0_z) rho1[2,4] += numpy.einsum('pi,pi->p', ao[ZX,:,p0:p1], ao_dm0_x) rho1[2,4] += numpy.einsum('pi,pi->p', ao[ZY,:,p0:p1], ao_dm0_y) rho1[2,4] += numpy.einsum('pi,pi->p', ao[ZZ,:,p0:p1], ao_dm0_z) rho1[:,4] *= .5 else: raise RuntimeError ao_dm0_0 = ao_dm0[0][:,p0:p1] # (d_X \nabla_x mu) nu DM_{mu,nu} rho1[:,0] = numpy.einsum('xpi,pi->xp', ao[1:4,:,p0:p1], ao_dm0_0) rho1[0,1]+= numpy.einsum('pi,pi->p', ao[XX,:,p0:p1], ao_dm0_0) rho1[0,2]+= numpy.einsum('pi,pi->p', ao[XY,:,p0:p1], ao_dm0_0) rho1[0,3]+= numpy.einsum('pi,pi->p', ao[XZ,:,p0:p1], ao_dm0_0) rho1[1,1]+= numpy.einsum('pi,pi->p', ao[YX,:,p0:p1], ao_dm0_0) rho1[1,2]+= numpy.einsum('pi,pi->p', ao[YY,:,p0:p1], ao_dm0_0) rho1[1,3]+= numpy.einsum('pi,pi->p', ao[YZ,:,p0:p1], ao_dm0_0) rho1[2,1]+= numpy.einsum('pi,pi->p', ao[ZX,:,p0:p1], ao_dm0_0) rho1[2,2]+= numpy.einsum('pi,pi->p', ao[ZY,:,p0:p1], ao_dm0_0) rho1[2,3]+= numpy.einsum('pi,pi->p', ao[ZZ,:,p0:p1], ao_dm0_0) # (d_X mu) (\nabla_x nu) DM_{mu,nu} rho1[:,1] += numpy.einsum('xpi,pi->xp', ao[1:4,:,p0:p1], ao_dm0[1][:,p0:p1]) rho1[:,2] += numpy.einsum('xpi,pi->xp', ao[1:4,:,p0:p1], ao_dm0[2][:,p0:p1]) rho1[:,3] += numpy.einsum('xpi,pi->xp', ao[1:4,:,p0:p1], ao_dm0[3][:,p0:p1]) # *2 for |mu> DM <d_X nu| return rho1 * 2 def _d1d2_dot_(vmat, mol, ao1, ao2, mask, ao_loc, dR1_on_bra=True): shls_slice = (0, mol.nbas) if dR1_on_bra: # (d/dR1 bra) * (d/dR2 ket) for d1 in range(3): for d2 in range(3): vmat[d1,d2] += numint._dot_ao_ao(mol, ao1[d1], ao2[d2], mask, shls_slice, ao_loc) else: # (d/dR2 bra) * (d/dR1 ket) for d1 in range(3): for d2 in range(3): vmat[d1,d2] += numint._dot_ao_ao(mol, ao1[d2], ao2[d1], mask, shls_slice, ao_loc) def _get_vxc_deriv2(hessobj, mo_coeff, mo_occ, max_memory): mol = hessobj.mol mf = hessobj.base if hessobj.grids is not None: grids = hessobj.grids else: grids = mf.grids if grids.coords is None: grids.build(with_non0tab=True) nao, nmo = mo_coeff.shape ni = mf._numint xctype = ni._xc_type(mf.xc) aoslices = mol.aoslice_by_atom() shls_slice = (0, mol.nbas) ao_loc = mol.ao_loc_nr() dm0 = mf.make_rdm1(mo_coeff, mo_occ) vmat = numpy.zeros((mol.natm,3,3,nao,nao)) ipip = numpy.zeros((3,3,nao,nao)) if xctype == 'LDA': ao_deriv = 1 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): rho = ni.eval_rho2(mol, ao[0], mo_coeff, mo_occ, mask, xctype) vxc, fxc = ni.eval_xc_eff(mf.xc, rho, 2, xctype=xctype)[1:3] wv = weight * vxc[0] aow = [numint._scale_ao(ao[i], wv) for i in range(1, 4)] _d1d2_dot_(ipip, mol, aow, ao[1:4], mask, ao_loc, False) ao_dm0 = numint._dot_ao_dm(mol, ao[0], dm0, mask, shls_slice, ao_loc) wf = weight * fxc[0,0] for ia in range(mol.natm): p0, p1 = aoslices[ia][2:] # *2 for \nabla|ket> in rho1 rho1 = numpy.einsum('xpi,pi->xp', ao[1:,:,p0:p1], ao_dm0[:,p0:p1]) * 2 # aow ~ rho1 ~ d/dR1 wv = wf * rho1 aow = [numint._scale_ao(ao[0], wv[i]) for i in range(3)] _d1d2_dot_(vmat[ia], mol, ao[1:4], aow, mask, ao_loc, False) ao_dm0 = aow = None for ia in range(mol.natm): p0, p1 = aoslices[ia][2:] vmat[ia,:,:,:,p0:p1] += ipip[:,:,:,p0:p1] elif xctype == 'GGA': ao_deriv = 2 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): rho = ni.eval_rho2(mol, ao[:4], mo_coeff, mo_occ, mask, xctype) vxc, fxc = ni.eval_xc_eff(mf.xc, rho, 2, xctype=xctype)[1:3] wv = weight * vxc wv[0] *= .5 aow = rks_grad._make_dR_dao_w(ao, wv) _d1d2_dot_(ipip, mol, aow, ao[1:4], mask, ao_loc, False) ao_dm0 = [numint._dot_ao_dm(mol, ao[i], dm0, mask, shls_slice, ao_loc) for i in range(4)] wf = weight * fxc for ia in range(mol.natm): dR_rho1 = _make_dR_rho1(ao, ao_dm0, ia, aoslices, xctype) wv = numpy.einsum('xyg,sxg->syg', wf, dR_rho1) wv[:,0] *= .5 for i in range(3): aow = rks_grad._make_dR_dao_w(ao, wv[i]) rks_grad._d1_dot_(vmat[ia,i], mol, aow, ao[0], mask, ao_loc, True) aow = [numint._scale_ao(ao[:4], wv[i,:4]) for i in range(3)] _d1d2_dot_(vmat[ia], mol, ao[1:4], aow, mask, ao_loc, False) ao_dm0 = aow = None for ia in range(mol.natm): p0, p1 = aoslices[ia][2:] vmat[ia,:,:,:,p0:p1] += ipip[:,:,:,p0:p1] vmat[ia,:,:,:,p0:p1] += ipip[:,:,p0:p1].transpose(1,0,3,2) elif xctype == 'MGGA': XX, XY, XZ = 4, 5, 6 YX, YY, YZ = 5, 7, 8 ZX, ZY, ZZ = 6, 8, 9 ao_deriv = 2 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): rho = ni.eval_rho2(mol, ao[:10], mo_coeff, mo_occ, mask, xctype) vxc, fxc = ni.eval_xc_eff(mf.xc, rho, 2, xctype=xctype)[1:3] wv = weight * vxc wv[0] *= .5 wv[4] *= .25 aow = rks_grad._make_dR_dao_w(ao, wv) _d1d2_dot_(ipip, mol, aow, ao[1:4], mask, ao_loc, False) aow = [numint._scale_ao(ao[i], wv[4]) for i in range(4, 10)] _d1d2_dot_(ipip, mol, [aow[0], aow[1], aow[2]], [ao[XX], ao[XY], ao[XZ]], mask, ao_loc, False) _d1d2_dot_(ipip, mol, [aow[1], aow[3], aow[4]], [ao[YX], ao[YY], ao[YZ]], mask, ao_loc, False) _d1d2_dot_(ipip, mol, [aow[2], aow[4], aow[5]], [ao[ZX], ao[ZY], ao[ZZ]], mask, ao_loc, False) ao_dm0 = [numint._dot_ao_dm(mol, ao[i], dm0, mask, shls_slice, ao_loc) for i in range(4)] wf = weight * fxc for ia in range(mol.natm): dR_rho1 = _make_dR_rho1(ao, ao_dm0, ia, aoslices, xctype) wv = numpy.einsum('xyg,sxg->syg', wf, dR_rho1) wv[:,0] *= .5 wv[:,4] *= .5 # for the factor 1/2 in tau for i in range(3): aow = rks_grad._make_dR_dao_w(ao, wv[i]) rks_grad._d1_dot_(vmat[ia,i], mol, aow, ao[0], mask, ao_loc, True) aow = [numint._scale_ao(ao[:4], wv[i,:4]) for i in range(3)] _d1d2_dot_(vmat[ia], mol, ao[1:4], aow, mask, ao_loc, False) aow = [numint._scale_ao(ao[1], wv[i,4]) for i in range(3)] _d1d2_dot_(vmat[ia], mol, [ao[XX], ao[XY], ao[XZ]], aow, mask, ao_loc, False) aow = [numint._scale_ao(ao[2], wv[i,4]) for i in range(3)] _d1d2_dot_(vmat[ia], mol, [ao[YX], ao[YY], ao[YZ]], aow, mask, ao_loc, False) aow = [numint._scale_ao(ao[3], wv[i,4]) for i in range(3)] _d1d2_dot_(vmat[ia], mol, [ao[ZX], ao[ZY], ao[ZZ]], aow, mask, ao_loc, False) for ia in range(mol.natm): p0, p1 = aoslices[ia][2:] vmat[ia,:,:,:,p0:p1] += ipip[:,:,:,p0:p1] vmat[ia,:,:,:,p0:p1] += ipip[:,:,p0:p1].transpose(1,0,3,2) return vmat def _get_enlc_deriv2_numerical(hessobj, mo_coeff, mo_occ, max_memory): """ Attention: Numerical nlc energy 2nd derivative includes grid response. """ mol = hessobj.mol mf = hessobj.base mocc = mo_coeff[:,mo_occ>0] dm0 = numpy.dot(mocc, mocc.T) * 2 de2 = numpy.empty([mol.natm, mol.natm, 3, 3]) def get_nlc_de(grad_obj, dm): from pyscf.grad.rks import _initialize_grids, get_nlc_vxc_full_response mol = grad_obj.mol mf = grad_obj.base ni = mf._numint _, nlcgrids = _initialize_grids(grad_obj) if ni.libxc.is_nlc(mf.xc): xc = mf.xc else: xc = mf.nlc enlc, vnlc = get_nlc_vxc_full_response( ni, mol, nlcgrids, xc, dm, max_memory=max_memory, verbose=grad_obj.verbose) aoslices = mol.aoslice_by_atom() de = numpy.zeros((mol.natm,3)) for i_atom in range(mol.natm): p0, p1 = aoslices[i_atom, 2:] de[i_atom] += numpy.einsum('xij,ij->x', vnlc[:,p0:p1], dm[p0:p1]) * 2 assert enlc is not None de += enlc return de dx = 1e-3 mol_copy = mol.copy() mol_copy.verbose = 0 grad_obj = mf.Gradients() for i_atom in range(mol.natm): for i_xyz in range(3): xyz_p = mol.atom_coords() xyz_p[i_atom, i_xyz] += dx mol_copy.set_geom_(xyz_p, unit='Bohr') grad_obj.reset(mol_copy) de_p = get_nlc_de(grad_obj, dm0) xyz_m = mol.atom_coords() xyz_m[i_atom, i_xyz] -= dx mol_copy.set_geom_(xyz_m, unit='Bohr') mol_copy.build() grad_obj.reset(mol_copy) de_m = get_nlc_de(grad_obj, dm0) de2[i_atom, :, i_xyz, :] = (de_p - de_m) / (2 * dx) grad_obj.reset(mol) return de2
[docs] def get_d2mu_dr2(ao): assert ao.ndim == 3 nao = ao.shape[1] ngrids = ao.shape[2] d2mu_dr2 = numpy.empty([3, 3, nao, ngrids]) d2mu_dr2[0,0,:,:] = ao[XX, :, :] d2mu_dr2[0,1,:,:] = ao[XY, :, :] d2mu_dr2[1,0,:,:] = ao[XY, :, :] d2mu_dr2[0,2,:,:] = ao[XZ, :, :] d2mu_dr2[2,0,:,:] = ao[XZ, :, :] d2mu_dr2[1,1,:,:] = ao[YY, :, :] d2mu_dr2[1,2,:,:] = ao[YZ, :, :] d2mu_dr2[2,1,:,:] = ao[YZ, :, :] d2mu_dr2[2,2,:,:] = ao[ZZ, :, :] return d2mu_dr2
[docs] def get_d3mu_dr3(ao): assert ao.ndim == 3 nao = ao.shape[1] ngrids = ao.shape[2] d3mu_dr3 = numpy.empty([3, 3, 3, nao, ngrids]) d3mu_dr3[0,0,0,:,:] = ao[XXX,:,:] d3mu_dr3[0,0,1,:,:] = ao[XXY,:,:] d3mu_dr3[0,1,0,:,:] = ao[XXY,:,:] d3mu_dr3[1,0,0,:,:] = ao[XXY,:,:] d3mu_dr3[0,0,2,:,:] = ao[XXZ,:,:] d3mu_dr3[0,2,0,:,:] = ao[XXZ,:,:] d3mu_dr3[2,0,0,:,:] = ao[XXZ,:,:] d3mu_dr3[0,1,1,:,:] = ao[XYY,:,:] d3mu_dr3[1,0,1,:,:] = ao[XYY,:,:] d3mu_dr3[1,1,0,:,:] = ao[XYY,:,:] d3mu_dr3[0,1,2,:,:] = ao[XYZ,:,:] d3mu_dr3[1,0,2,:,:] = ao[XYZ,:,:] d3mu_dr3[1,2,0,:,:] = ao[XYZ,:,:] d3mu_dr3[0,2,1,:,:] = ao[XYZ,:,:] d3mu_dr3[2,0,1,:,:] = ao[XYZ,:,:] d3mu_dr3[2,1,0,:,:] = ao[XYZ,:,:] d3mu_dr3[0,2,2,:,:] = ao[XZZ,:,:] d3mu_dr3[2,0,2,:,:] = ao[XZZ,:,:] d3mu_dr3[2,2,0,:,:] = ao[XZZ,:,:] d3mu_dr3[1,1,1,:,:] = ao[YYY,:,:] d3mu_dr3[1,1,2,:,:] = ao[YYZ,:,:] d3mu_dr3[1,2,1,:,:] = ao[YYZ,:,:] d3mu_dr3[2,1,1,:,:] = ao[YYZ,:,:] d3mu_dr3[1,2,2,:,:] = ao[YZZ,:,:] d3mu_dr3[2,1,2,:,:] = ao[YZZ,:,:] d3mu_dr3[2,2,1,:,:] = ao[YZZ,:,:] d3mu_dr3[2,2,2,:,:] = ao[ZZZ,:,:] return d3mu_dr3
[docs] def get_d2rho_dAdr_orbital_response(d2mu_dr2, dmu_dr, mu, dm0, aoslices): assert mu.ndim == 2 nao = mu.shape[0] ngrids = mu.shape[1] natm = len(aoslices) assert d2mu_dr2.shape == (3, 3, nao, ngrids) assert dmu_dr.shape == (3, nao, ngrids) assert dm0.shape == (nao, nao) d2rho_dAdr = numpy.zeros([natm, 3, 3, ngrids]) for i_atom in range(natm): p0, p1 = aoslices[i_atom][2:] # d2rho_dAdr[i_atom, :, :, :] += numpy.einsum('dDig,jg,ij->dDg', -d2mu_dr2[:, :, p0:p1, :], mu, dm0[p0:p1, :]) # d2rho_dAdr[i_atom, :, :, :] += numpy.einsum('dDig,jg,ij->dDg', -d2mu_dr2[:, :, p0:p1, :], mu, dm0[:, p0:p1].T) # d2rho_dAdr[i_atom, :, :, :] += numpy.einsum('dig,Djg,ij->dDg', -dmu_dr[:, p0:p1, :], dmu_dr, dm0[p0:p1, :]) # d2rho_dAdr[i_atom, :, :, :] += numpy.einsum('dig,Djg,ij->dDg', -dmu_dr[:, p0:p1, :], dmu_dr, dm0[:, p0:p1].T) nu_dot_dm = dm0[p0:p1, :] @ mu d2rho_dAdr[i_atom, :, :, :] += contract('dDig,ig->dDg', -d2mu_dr2[:, :, p0:p1, :], nu_dot_dm) nu_dot_dm = None mu_dot_dm = dm0[:, p0:p1].T @ mu d2rho_dAdr[i_atom, :, :, :] += contract('dDig,ig->dDg', -d2mu_dr2[:, :, p0:p1, :], mu_dot_dm) mu_dot_dm = None dnudr_dot_dm = contract('djg,ij->dig', dmu_dr, dm0[p0:p1, :]) d2rho_dAdr[i_atom, :, :, :] += contract('dig,Dig->dDg', -dmu_dr[:, p0:p1, :], dnudr_dot_dm) dnudr_dot_dm = None dmudr_dot_dm = contract('djg,ij->dig', dmu_dr, dm0[:, p0:p1].T) d2rho_dAdr[i_atom, :, :, :] += contract('dig,Dig->dDg', -dmu_dr[:, p0:p1, :], dmudr_dot_dm) dmudr_dot_dm = None return d2rho_dAdr
[docs] def get_d2rho_dAdr_grid_response(d2mu_dr2, dmu_dr, mu, dm0, atom_to_grid_index_map = None, i_atom = None): assert mu.ndim == 2 nao = mu.shape[0] ngrids = mu.shape[1] assert d2mu_dr2.shape == (3, 3, nao, ngrids) assert dmu_dr.shape == (3, nao, ngrids) assert dm0.shape == (nao, nao) if i_atom is None: assert atom_to_grid_index_map is not None natm = len(atom_to_grid_index_map) d2rho_dAdr_grid_response = numpy.zeros([natm, 3, 3, ngrids]) for i_atom in range(natm): associated_grid_index = atom_to_grid_index_map[i_atom] # d2rho_dAdr_response = numpy.einsum('dDig,jg,ij->dDg', # d2mu_dr2[:, :, :, associated_grid_index], mu[:, associated_grid_index], dm0) # d2rho_dAdr_response += numpy.einsum('dDig,jg,ij->dDg', # d2mu_dr2[:, :, :, associated_grid_index], mu[:, associated_grid_index], dm0.T) # d2rho_dAdr_response += numpy.einsum('dig,Djg,ij->dDg', # dmu_dr[:, :, associated_grid_index], dmu_dr[:, :, associated_grid_index], dm0) # d2rho_dAdr_response += numpy.einsum('dig,Djg,ij->dDg', # dmu_dr[:, :, associated_grid_index], dmu_dr[:, :, associated_grid_index], dm0.T) dm_dot_mu_and_nu = (dm0 + dm0.T) @ mu[:, associated_grid_index] d2rho_dAdr_response = contract('dDig,ig->dDg', d2mu_dr2[:, :, :, associated_grid_index], dm_dot_mu_and_nu) dm_dot_mu_and_nu = None dm_dot_dmu_and_dnu = contract('djg,ij->dig', dmu_dr[:, :, associated_grid_index], dm0 + dm0.T) d2rho_dAdr_response += contract('dig,Dig->dDg', dmu_dr[:, :, associated_grid_index], dm_dot_dmu_and_dnu) dm_dot_dmu_and_dnu = None d2rho_dAdr_grid_response[i_atom][:, :, associated_grid_index] = d2rho_dAdr_response else: assert atom_to_grid_index_map is None # Here we assume all grids belong to atom i dm_dot_mu_and_nu = (dm0 + dm0.T) @ mu d2rho_dAdr_grid_response = contract('dDig,ig->dDg', d2mu_dr2, dm_dot_mu_and_nu) dm_dot_mu_and_nu = None dm_dot_dmu_and_dnu = contract('djg,ij->dig', dmu_dr, dm0 + dm0.T) d2rho_dAdr_grid_response += contract('dig,Dig->dDg', dmu_dr, dm_dot_dmu_and_dnu) dm_dot_dmu_and_dnu = None return d2rho_dAdr_grid_response
[docs] def get_drhodA_dgammadA_orbital_response(d2mu_dr2, dmu_dr, mu, drho_dr, dm0, aoslices): assert mu.ndim == 2 nao = mu.shape[0] ngrids = mu.shape[1] natm = len(aoslices) assert d2mu_dr2.shape == (3, 3, nao, ngrids) assert dmu_dr.shape == (3, nao, ngrids) assert drho_dr.shape == (3, ngrids) assert dm0.shape == (nao, nao) drhodr_dot_dmudr = contract('Djg,Dg->jg', dmu_dr, drho_dr) drho_dA = numpy.zeros([natm, 3, ngrids]) dgamma_dA = numpy.zeros([natm, 3, ngrids]) for i_atom in range(natm): p0, p1 = aoslices[i_atom][2:] # drho_dA[i_atom, :, :] += numpy.einsum('dig,jg,ij->dg', -dmu_dr[:, p0:p1, :], mu, dm0[p0:p1, :]) # drho_dA[i_atom, :, :] += numpy.einsum('dig,jg,ij->dg', -dmu_dr[:, p0:p1, :], mu, dm0[:, p0:p1].T) nu_dot_dm = dm0[p0:p1, :] @ mu drho_dA[i_atom, :, :] += contract('dig,ig->dg', -dmu_dr[:, p0:p1, :], nu_dot_dm) mu_dot_dm = dm0[:, p0:p1].T @ mu drho_dA[i_atom, :, :] += contract('dig,ig->dg', -dmu_dr[:, p0:p1, :], mu_dot_dm) # dgamma_dA[i_atom, :, :] += numpy.einsum('dDig,jg,Dg,ij->dg', # -d2mu_dr2[:, :, p0:p1, :], mu, drho_dr, dm0[p0:p1, :]) # dgamma_dA[i_atom, :, :] += numpy.einsum('dDig,jg,Dg,ij->dg', # -d2mu_dr2[:, :, p0:p1, :], mu, drho_dr, dm0[:, p0:p1].T) # dgamma_dA[i_atom, :, :] += numpy.einsum('dig,Djg,Dg,ij->dg', # -dmu_dr[:, p0:p1, :], dmu_dr, drho_dr, dm0[p0:p1, :]) # dgamma_dA[i_atom, :, :] += numpy.einsum('dig,Djg,Dg,ij->dg', # -dmu_dr[:, p0:p1, :], dmu_dr, drho_dr, dm0[:, p0:p1].T) d2mudAdr_dot_drhodr = contract('dDig,Dg->dig', -d2mu_dr2[:, :, p0:p1, :], drho_dr) dgamma_dA[i_atom, :, :] += contract('dig,ig->dg', d2mudAdr_dot_drhodr, nu_dot_dm) dgamma_dA[i_atom, :, :] += contract('dig,ig->dg', d2mudAdr_dot_drhodr, mu_dot_dm) d2mudAdr_dot_drhodr = None nu_dot_dm = None mu_dot_dm = None drhodr_dot_dnudr_dot_dm = dm0[p0:p1, :] @ drhodr_dot_dmudr dgamma_dA[i_atom, :, :] += contract('dig,ig->dg', -dmu_dr[:, p0:p1, :], drhodr_dot_dnudr_dot_dm) drhodr_dot_dnudr_dot_dm = None drhodr_dot_dmudr_dot_dm = dm0[:, p0:p1].T @ drhodr_dot_dmudr dgamma_dA[i_atom, :, :] += contract('dig,ig->dg', -dmu_dr[:, p0:p1, :], drhodr_dot_dmudr_dot_dm) drhodr_dot_dmudr_dot_dm = None dgamma_dA *= 2 return drho_dA, dgamma_dA
[docs] def get_drhodA_dgammadA_grid_response(d2mu_dr2, dmu_dr, mu, drho_dr, dm0, atom_to_grid_index_map = None, i_atom = None): assert mu.ndim == 2 nao = mu.shape[0] ngrids = mu.shape[1] assert d2mu_dr2.shape == (3, 3, nao, ngrids) assert dmu_dr.shape == (3, nao, ngrids) assert drho_dr.shape == (3, ngrids) assert dm0.shape == (nao, nao) if i_atom is None: assert atom_to_grid_index_map is not None natm = len(atom_to_grid_index_map) drho_dA_grid_response = numpy.zeros([natm, 3, ngrids]) dgamma_dA_grid_response = numpy.zeros([natm, 3, ngrids]) for i_atom in range(natm): associated_grid_index = atom_to_grid_index_map[i_atom] # rho_response = numpy.einsum('dig,jg,ij->dg', # dmu_dr[:, :, associated_grid_index], mu[:, associated_grid_index], dm0) # rho_response += numpy.einsum('dig,jg,ij->dg', # dmu_dr[:, :, associated_grid_index], mu[:, associated_grid_index], dm0.T) dm_dot_mu_and_nu = (dm0 + dm0.T) @ mu[:, associated_grid_index] rho_response = contract('dig,ig->dg', dmu_dr[:, :, associated_grid_index], dm_dot_mu_and_nu) drho_dA_grid_response[i_atom][:, associated_grid_index] = rho_response rho_response = None # gamma_response = numpy.einsum('dDig,jg,Dg,ij->dg', # d2mu_dr2[:, :, :, associated_grid_index], # mu[:, associated_grid_index], drho_dr[:, associated_grid_index], dm0) # gamma_response += numpy.einsum('dDig,jg,Dg,ij->dg', # d2mu_dr2[:, :, :, associated_grid_index], # mu[:, associated_grid_index], drho_dr[:, associated_grid_index], dm0.T) # gamma_response += numpy.einsum('dig,Djg,Dg,ij->dg', # dmu_dr[:, :, associated_grid_index], # dmu_dr[:, :, associated_grid_index], drho_dr[:, associated_grid_index], dm0) # gamma_response += numpy.einsum('dig,Djg,Dg,ij->dg', # dmu_dr[:, :, associated_grid_index], # dmu_dr[:, :, associated_grid_index], drho_dr[:, associated_grid_index], dm0.T) d2mudr2_dot_drhodr = contract('dDig,Dg->dig', d2mu_dr2[:, :, :, associated_grid_index], drho_dr[:, associated_grid_index]) gamma_response = contract('dig,ig->dg', d2mudr2_dot_drhodr, dm_dot_mu_and_nu) d2mudr2_dot_drhodr = None dm_dot_mu_and_nu = None dm_dot_dmu_and_dnu = contract('djg,ij->dig', dmu_dr[:, :, associated_grid_index], dm0 + dm0.T) dmudr_dot_drhodr = contract('dig,dg->ig', dmu_dr[:, :, associated_grid_index], drho_dr[:, associated_grid_index]) gamma_response += contract('dig,ig->dg', dm_dot_dmu_and_dnu, dmudr_dot_drhodr) dmudr_dot_drhodr = None dm_dot_dmu_and_dnu = None dgamma_dA_grid_response[i_atom][:, associated_grid_index] = gamma_response gamma_response = None else: assert atom_to_grid_index_map is None # Here we assume all grids belong to atom i dm_dot_mu_and_nu = (dm0 + dm0.T) @ mu drho_dA_grid_response = contract('dig,ig->dg', dmu_dr, dm_dot_mu_and_nu) d2mudr2_dot_drhodr = contract('dDig,Dg->dig', d2mu_dr2, drho_dr) dgamma_dA_grid_response = contract('dig,ig->dg', d2mudr2_dot_drhodr, dm_dot_mu_and_nu) d2mudr2_dot_drhodr = None dm_dot_mu_and_nu = None dm_dot_dmu_and_dnu = contract('djg,ij->dig', dmu_dr, dm0 + dm0.T) dmudr_dot_drhodr = contract('dig,dg->ig', dmu_dr, drho_dr) dgamma_dA_grid_response += contract('dig,ig->dg', dm_dot_dmu_and_dnu, dmudr_dot_drhodr) dmudr_dot_drhodr = None dm_dot_dmu_and_dnu = None dgamma_dA_grid_response *= 2 return drho_dA_grid_response, dgamma_dA_grid_response
[docs] def get_d2rhodAdB_d2gammadAdB(mol, grids_coords, dm0): """ This function should never be used in practice. It requires crazy amount of memory, and it's left for debug purpose only. Use the contract function instead. """ natm = mol.natm ngrids = grids_coords.shape[0] ao = numint.eval_ao(mol, grids_coords, deriv = 3) rho_drho = numint.eval_rho(mol, ao[:4, :], dm0, xctype = "GGA", hermi = 1, with_lapl = False) ao = ao.transpose(0,2,1) # order: component, ao, grid drho = rho_drho[1:4, :] mu = ao[0, :, :] dmu_dr = ao[1:4, :, :] d2mu_dr2 = get_d2mu_dr2(ao) d3mu_dr3 = get_d3mu_dr3(ao) aoslices = mol.aoslice_by_atom() d2rho_dAdB = numpy.zeros([natm, natm, 3, 3, ngrids]) d2gamma_dAdB = numpy.zeros([natm, natm, 3, 3, ngrids]) for i_atom in range(natm): pi0, pi1 = aoslices[i_atom][2:] d2rho_dAdB[i_atom, i_atom, :, :, :] += numpy.einsum('dDig,jg,ij->dDg', d2mu_dr2[:, :, pi0:pi1, :], mu, dm0[pi0:pi1, :]) d2rho_dAdB[i_atom, i_atom, :, :, :] += numpy.einsum('dDig,jg,ij->dDg', d2mu_dr2[:, :, pi0:pi1, :], mu, dm0[:, pi0:pi1].T) d2gamma_dAdB[i_atom, i_atom, :, :, :] += numpy.einsum('dDPig,jg,Pg,ij->dDg', d3mu_dr3[:, :, :, pi0:pi1, :], mu, drho, dm0[pi0:pi1, :]) d2gamma_dAdB[i_atom, i_atom, :, :, :] += numpy.einsum('dDPig,jg,Pg,ij->dDg', d3mu_dr3[:, :, :, pi0:pi1, :], mu, drho, dm0[:, pi0:pi1].T) d2gamma_dAdB[i_atom, i_atom, :, :, :] += numpy.einsum('dDig,Pjg,Pg,ij->dDg', d2mu_dr2[:, :, pi0:pi1, :], dmu_dr, drho, dm0[pi0:pi1, :]) d2gamma_dAdB[i_atom, i_atom, :, :, :] += numpy.einsum('dDig,Pjg,Pg,ij->dDg', d2mu_dr2[:, :, pi0:pi1, :], dmu_dr, drho, dm0[:, pi0:pi1].T) for j_atom in range(natm): pj0, pj1 = aoslices[j_atom][2:] d2rho_dAdB[i_atom, j_atom, :, :, :] += numpy.einsum('dig,Djg,ij->dDg', dmu_dr[:, pi0:pi1, :], dmu_dr[:, pj0:pj1, :], dm0[pi0:pi1, pj0:pj1]) d2rho_dAdB[i_atom, j_atom, :, :, :] += numpy.einsum('dig,Djg,ij->dDg', dmu_dr[:, pi0:pi1, :], dmu_dr[:, pj0:pj1, :], dm0[pj0:pj1, pi0:pi1].T) d2gamma_dAdB[i_atom, j_atom, :, :, :] += numpy.einsum('dPig,Djg,Pg,ij->dDg', d2mu_dr2[:, :, pi0:pi1, :], dmu_dr[:, pj0:pj1, :], drho, dm0[pi0:pi1, pj0:pj1]) d2gamma_dAdB[i_atom, j_atom, :, :, :] += numpy.einsum('dPig,Djg,Pg,ij->dDg', d2mu_dr2[:, :, pi0:pi1, :], dmu_dr[:, pj0:pj1, :], drho, dm0[pj0:pj1, pi0:pi1].T) d2gamma_dAdB[i_atom, j_atom, :, :, :] += numpy.einsum('dig,DPjg,Pg,ij->dDg', dmu_dr[:, pi0:pi1, :], d2mu_dr2[:, :, pj0:pj1, :], drho, dm0[pi0:pi1, pj0:pj1]) d2gamma_dAdB[i_atom, j_atom, :, :, :] += numpy.einsum('dig,DPjg,Pg,ij->dDg', dmu_dr[:, pi0:pi1, :], d2mu_dr2[:, :, pj0:pj1, :], drho, dm0[pj0:pj1, pi0:pi1].T) d2rho_dAdr = get_d2rho_dAdr_orbital_response(d2mu_dr2, dmu_dr, mu, dm0, aoslices) d2gamma_dAdB += numpy.einsum('AdPg,BDPg->ABdDg', d2rho_dAdr, d2rho_dAdr) d2gamma_dAdB *= 2 return d2rho_dAdB, d2gamma_dAdB
[docs] def contract_d2rhodAdB_d2gammadAdB(d3mu_dr3, d2mu_dr2, dmu_dr, mu, drho_dr, dm0, aoslices, fw_rho, fw_gamma): assert mu.ndim == 2 nao = mu.shape[0] ngrids = mu.shape[1] natm = len(aoslices) assert d3mu_dr3.shape == (3, 3, 3, nao, ngrids) assert d2mu_dr2.shape == (3, 3, nao, ngrids) assert dmu_dr.shape == (3, nao, ngrids) assert drho_dr.shape == (3, ngrids) assert dm0.shape == (nao, nao) drhodr_dot_dmudr = contract('djg,dg->jg', dmu_dr, drho_dr) d2e_rho_dAdB = numpy.zeros([natm, natm, 3, 3]) d2e_gamma_dAdB = numpy.zeros([natm, natm, 3, 3]) for i_atom in range(natm): pi0, pi1 = aoslices[i_atom][2:] nu_dot_dm = dm0[pi0:pi1, :] @ mu d2rho_dA2 = contract('dDig,ig->dDg', d2mu_dr2[:, :, pi0:pi1, :], nu_dot_dm) mu_dot_dm = dm0[:, pi0:pi1].T @ mu d2rho_dA2 += contract('dDig,ig->dDg', d2mu_dr2[:, :, pi0:pi1, :], mu_dot_dm) d2e_rho_dAdB[i_atom, i_atom, :, :] += contract('dDg,g->dD', d2rho_dA2, fw_rho) d2rho_dA2 = None d3mudA2dr_dot_drhodr = contract('dDPig,Pg->dDig', d3mu_dr3[:, :, :, pi0:pi1, :], drho_dr) d2gamma_dA2 = contract('dDig,ig->dDg', d3mudA2dr_dot_drhodr, nu_dot_dm) d2gamma_dA2 += contract('dDig,ig->dDg', d3mudA2dr_dot_drhodr, mu_dot_dm) d3mudA2dr_dot_drhodr = None nu_dot_dm = None mu_dot_dm = None drhodr_dot_dmudr_dot_dm = dm0[pi0:pi1, :] @ drhodr_dot_dmudr d2gamma_dA2 += contract('dDig,ig->dDg', d2mu_dr2[:, :, pi0:pi1, :], drhodr_dot_dmudr_dot_dm) drhodr_dot_dmudr_dot_dm = None drhodr_dot_dnudr_dot_dm = dm0[:, pi0:pi1].T @ drhodr_dot_dmudr d2gamma_dA2 += contract('dDig,ig->dDg', d2mu_dr2[:, :, pi0:pi1, :], drhodr_dot_dnudr_dot_dm) drhodr_dot_dnudr_dot_dm = None d2e_gamma_dAdB[i_atom, i_atom, :, :] += contract('dDg,g->dD', d2gamma_dA2, fw_gamma) d2gamma_dA2 = None for j_atom in range(natm): pj0, pj1 = aoslices[j_atom][2:] dnudr_dot_dm = contract('djg,ij->dig', dmu_dr[:, pj0:pj1, :], dm0[pi0:pi1, pj0:pj1]) d2rho_dAdB = contract('dig,Dig->dDg', dmu_dr[:, pi0:pi1, :], dnudr_dot_dm) dmudr_dot_dm = contract('djg,ij->dig', dmu_dr[:, pj0:pj1, :], dm0[pj0:pj1, pi0:pi1].T) d2rho_dAdB += contract('dig,Dig->dDg', dmu_dr[:, pi0:pi1, :], dmudr_dot_dm) d2e_rho_dAdB[i_atom, j_atom, :, :] += contract('dDg,g->dD', d2rho_dAdB, fw_rho) d2rho_dAdB = None drhodr_dot_d2mudAdr = contract('dDig,Dg->dig', d2mu_dr2[:, :, pi0:pi1, :], drho_dr) d2gamma_dAdB = contract('dig,Dig->dDg', drhodr_dot_d2mudAdr, dnudr_dot_dm) dnudr_dot_dm = None d2gamma_dAdB += contract('dig,Dig->dDg', drhodr_dot_d2mudAdr, dmudr_dot_dm) dmudr_dot_dm = None drhodr_dot_d2mudAdr = None d2gamma_dAdB = contract('dDg,g->dD', d2gamma_dAdB, fw_gamma) d2e_gamma_dAdB[i_atom, j_atom, :, :] += d2gamma_dAdB d2e_gamma_dAdB[j_atom, i_atom, :, :] += d2gamma_dAdB.T d2gamma_dAdB = None d2rho_dAdr = get_d2rho_dAdr_orbital_response(d2mu_dr2, dmu_dr, mu, dm0, aoslices) d2e_gamma_dAdB += contract('AdPg,BDPg->ABdD', d2rho_dAdr, d2rho_dAdr * fw_gamma) return d2e_rho_dAdB + 2 * d2e_gamma_dAdB
def _get_enlc_deriv2(hessobj, mo_coeff, mo_occ, max_memory): """ Equation notation follows: Liang J, Feng X, Liu X, Head-Gordon M. Analytical harmonic vibrational frequencies with VV10-containing density functionals: Theory, efficient implementation, and benchmark assessments. J Chem Phys. 2023 May 28;158(20):204109. doi: 10.1063/5.0152838. """ mol = hessobj.mol mf = hessobj.base mocc = mo_coeff[:,mo_occ>0] dm0 = 2 * mocc @ mocc.T grids = mf.nlcgrids if grids.coords is None: grids.build() if numint.libxc.is_nlc(mf.xc): xc_code = mf.xc else: xc_code = mf.nlc nlc_coefs = mf._numint.nlc_coeff(xc_code) if len(nlc_coefs) != 1: raise NotImplementedError('Additive NLC') nlc_pars, fac = nlc_coefs[0] kappa_prefactor = nlc_pars[0] * 1.5 * numpy.pi * (9 * numpy.pi)**(-1.0/6.0) C_in_omega = nlc_pars[1] beta = 0.03125 * (3.0 / nlc_pars[0]**2)**0.75 # ao = numint.eval_ao(mol, grids.coords, deriv = 3) # rho_drho = numint.eval_rho(mol, ao, dm0, xctype = "NLC", hermi = 1, with_lapl = False) ngrids_full = grids.coords.shape[0] rho_drho = numpy.empty([4, ngrids_full]) mem_now = lib.current_memory()[0] available_cpu_memory = max(16e3, max_memory * 0.5 - mem_now) * 1e6 ao_nbytes_per_grid = ((4*2) * mol.nao + 4) * 8 # factor of 2 from the ao sorting inside numint.eval_ao() ngrids_per_batch = int(available_cpu_memory / ao_nbytes_per_grid) if ngrids_per_batch < 16: raise MemoryError(f"Out of CPU memory for NLC energy second derivative, " f"available cpu memory = {available_cpu_memory}" f" bytes, nao = {mol.nao}, natm = {mol.natm}, ngrids = {ngrids_full}") ngrids_per_batch = (ngrids_per_batch + 16 - 1) // 16 * 16 ngrids_per_batch = min(ngrids_per_batch, min_grid_blksize) for g0 in range(0, ngrids_full, ngrids_per_batch): g1 = min(g0 + ngrids_per_batch, ngrids_full) split_grids_coords = grids.coords[g0:g1, :] split_ao = numint.eval_ao(mol, split_grids_coords, deriv = 1) split_rho_drho = numint.eval_rho(mol, split_ao, dm0, xctype = "NLC", hermi = 1, with_lapl = False) rho_drho[:, g0:g1] = split_rho_drho rho_i = rho_drho[0,:] rho_nonzero_mask = (rho_i >= NLC_REMOVE_ZERO_RHO_GRID_THRESHOLD) rho_i = rho_i[rho_nonzero_mask] nabla_rho_i = rho_drho[1:4, rho_nonzero_mask] grids_coords = numpy.ascontiguousarray(grids.coords[rho_nonzero_mask, :]) grids_weights = grids.weights[rho_nonzero_mask] ngrids = grids_coords.shape[0] gamma_i = nabla_rho_i[0,:]**2 + nabla_rho_i[1,:]**2 + nabla_rho_i[2,:]**2 omega_i = numpy.sqrt(C_in_omega * gamma_i**2 / rho_i**4 + (4.0/3.0*numpy.pi) * rho_i) kappa_i = kappa_prefactor * rho_i**(1.0/6.0) U_i = numpy.empty(ngrids) W_i = numpy.empty(ngrids) A_i = numpy.empty(ngrids) B_i = numpy.empty(ngrids) C_i = numpy.empty(ngrids) E_i = numpy.empty(ngrids) libdft.VXC_vv10nlc_hessian_eval_UWABCE( U_i.ctypes.data_as(ctypes.c_void_p), W_i.ctypes.data_as(ctypes.c_void_p), A_i.ctypes.data_as(ctypes.c_void_p), B_i.ctypes.data_as(ctypes.c_void_p), C_i.ctypes.data_as(ctypes.c_void_p), E_i.ctypes.data_as(ctypes.c_void_p), grids_coords.ctypes.data_as(ctypes.c_void_p), grids_weights.ctypes.data_as(ctypes.c_void_p), rho_i.ctypes.data_as(ctypes.c_void_p), omega_i.ctypes.data_as(ctypes.c_void_p), kappa_i.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(ngrids) ) domega_drho_i = numpy.empty(ngrids) domega_dgamma_i = numpy.empty(ngrids) d2omega_drho2_i = numpy.empty(ngrids) d2omega_dgamma2_i = numpy.empty(ngrids) d2omega_drho_dgamma_i = numpy.empty(ngrids) libdft.VXC_vv10nlc_hessian_eval_omega_derivative( domega_drho_i.ctypes.data_as(ctypes.c_void_p), domega_dgamma_i.ctypes.data_as(ctypes.c_void_p), d2omega_drho2_i.ctypes.data_as(ctypes.c_void_p), d2omega_dgamma2_i.ctypes.data_as(ctypes.c_void_p), d2omega_drho_dgamma_i.ctypes.data_as(ctypes.c_void_p), rho_i.ctypes.data_as(ctypes.c_void_p), gamma_i.ctypes.data_as(ctypes.c_void_p), ctypes.c_double(C_in_omega), ctypes.c_int(ngrids) ) dkappa_drho_i = kappa_prefactor * (1.0/6.0) * rho_i**(-5.0/6.0) d2kappa_drho2_i = kappa_prefactor * (-5.0/36.0) * rho_i**(-11.0/6.0) f_rho_i = beta + E_i + rho_i * (dkappa_drho_i * U_i + domega_drho_i * W_i) f_gamma_i = rho_i * domega_dgamma_i * W_i f_rho_i = f_rho_i * grids_weights f_gamma_i = f_gamma_i * grids_weights aoslices = mol.aoslice_by_atom() natm = mol.natm # ao = numint.eval_ao(mol, grids.coords, deriv = 3) # ao = ao.transpose(0,2,1) # order: component, ao, grid # ao_nonzero_rho = ao[:, :, rho_nonzero_mask] # mu = ao_nonzero_rho[0, :, :] # dmu_dr = ao_nonzero_rho[1:4, :, :] # d2mu_dr2 = get_d2mu_dr2(ao_nonzero_rho) # d3mu_dr3 = get_d3mu_dr3(ao_nonzero_rho) # drho_dA, dgamma_dA = get_drhodA_dgammadA_orbital_response(d2mu_dr2, dmu_dr, mu, nabla_rho_i, dm0, aoslices) # d2e = contract_d2rhodAdB_d2gammadAdB(d3mu_dr3, d2mu_dr2, dmu_dr, mu, nabla_rho_i, dm0, aoslices, # f_rho_i, f_gamma_i) drho_dA = numpy.empty([natm, 3, ngrids], order = "C") dgamma_dA = numpy.empty([natm, 3, ngrids], order = "C") d2e = numpy.zeros([natm, natm, 3, 3]) mem_now = lib.current_memory()[0] available_cpu_memory = max(16e3, max_memory * 0.5 - mem_now) * 1e6 ao_nbytes_per_grid = ((20 + 1*2 + 3*2 + 9 + 27) * mol.nao + (3*2 + 9) * mol.natm) * 8 ngrids_per_batch = int(available_cpu_memory / ao_nbytes_per_grid) if ngrids_per_batch < 16: raise MemoryError(f"Out of CPU memory for NLC energy second derivative, " f"available cpu memory = {available_cpu_memory}" f" bytes, nao = {mol.nao}, natm = {mol.natm}, ngrids (nonzero rho) = {ngrids}") ngrids_per_batch = (ngrids_per_batch + 16 - 1) // 16 * 16 ngrids_per_batch = min(ngrids_per_batch, min_grid_blksize) for g0 in range(0, ngrids, ngrids_per_batch): g1 = min(g0 + ngrids_per_batch, ngrids) split_grids_coords = grids_coords[g0:g1, :] split_ao = numint.eval_ao(mol, split_grids_coords, deriv = 3) split_ao = split_ao.transpose(0,2,1) # order: component, ao, grid mu = split_ao[0, :, :] dmu_dr = split_ao[1:4, :, :] d2mu_dr2 = get_d2mu_dr2(split_ao) d3mu_dr3 = get_d3mu_dr3(split_ao) split_drho_dr = nabla_rho_i[:, g0:g1] split_drho_dA, split_dgamma_dA = \ get_drhodA_dgammadA_orbital_response(d2mu_dr2, dmu_dr, mu, split_drho_dr, dm0, aoslices) drho_dA [:, :, g0:g1] = split_drho_dA dgamma_dA[:, :, g0:g1] = split_dgamma_dA split_fw_rho = f_rho_i [g0:g1] split_fw_gamma = f_gamma_i[g0:g1] d2e += contract_d2rhodAdB_d2gammadAdB( d3mu_dr3, d2mu_dr2, dmu_dr, mu, split_drho_dr, dm0, aoslices, split_fw_rho, split_fw_gamma) split_ao = None mu = None dmu_dr = None d2mu_dr2 = None d3mu_dr3 = None split_drho_dA = None split_dgamma_dA = None drho_dA = numpy.ascontiguousarray(drho_dA) dgamma_dA = numpy.ascontiguousarray(dgamma_dA) f_rho_A_i = numpy.empty([mol.natm, 3, ngrids], order = "C") f_gamma_A_i = numpy.empty([mol.natm, 3, ngrids], order = "C") libdft.VXC_vv10nlc_hessian_eval_f_t( f_rho_A_i.ctypes.data_as(ctypes.c_void_p), f_gamma_A_i.ctypes.data_as(ctypes.c_void_p), grids_coords.ctypes.data_as(ctypes.c_void_p), grids_weights.ctypes.data_as(ctypes.c_void_p), rho_i.ctypes.data_as(ctypes.c_void_p), omega_i.ctypes.data_as(ctypes.c_void_p), kappa_i.ctypes.data_as(ctypes.c_void_p), U_i.ctypes.data_as(ctypes.c_void_p), W_i.ctypes.data_as(ctypes.c_void_p), A_i.ctypes.data_as(ctypes.c_void_p), B_i.ctypes.data_as(ctypes.c_void_p), C_i.ctypes.data_as(ctypes.c_void_p), domega_drho_i.ctypes.data_as(ctypes.c_void_p), domega_dgamma_i.ctypes.data_as(ctypes.c_void_p), dkappa_drho_i.ctypes.data_as(ctypes.c_void_p), d2omega_drho2_i.ctypes.data_as(ctypes.c_void_p), d2omega_dgamma2_i.ctypes.data_as(ctypes.c_void_p), d2omega_drho_dgamma_i.ctypes.data_as(ctypes.c_void_p), d2kappa_drho2_i.ctypes.data_as(ctypes.c_void_p), drho_dA.ctypes.data_as(ctypes.c_void_p), dgamma_dA.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(ngrids), ctypes.c_int(3 * mol.natm), ) d2e += contract("Adg,BDg->ABdD", drho_dA, f_rho_A_i * grids_weights) d2e += contract("Adg,BDg->ABdD", dgamma_dA, f_gamma_A_i * grids_weights) return d2e def _get_vxc_deriv1(hessobj, mo_coeff, mo_occ, max_memory): mol = hessobj.mol mf = hessobj.base if hessobj.grids is not None: grids = hessobj.grids else: grids = mf.grids if grids.coords is None: grids.build(with_non0tab=True) nao, nmo = mo_coeff.shape ni = mf._numint xctype = ni._xc_type(mf.xc) aoslices = mol.aoslice_by_atom() shls_slice = (0, mol.nbas) ao_loc = mol.ao_loc_nr() dm0 = mf.make_rdm1(mo_coeff, mo_occ) v_ip = numpy.zeros((3,nao,nao)) vmat = numpy.zeros((mol.natm,3,nao,nao)) max_memory = max(2000, max_memory-vmat.size*8/1e6) if xctype == 'LDA': ao_deriv = 1 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): rho = ni.eval_rho2(mol, ao[0], mo_coeff, mo_occ, mask, xctype) vxc, fxc = ni.eval_xc_eff(mf.xc, rho, 2, xctype=xctype)[1:3] wv = weight * vxc[0] aow = numint._scale_ao(ao[0], wv) rks_grad._d1_dot_(v_ip, mol, ao[1:4], aow, mask, ao_loc, True) ao_dm0 = numint._dot_ao_dm(mol, ao[0], dm0, mask, shls_slice, ao_loc) wf = weight * fxc[0,0] for ia in range(mol.natm): p0, p1 = aoslices[ia][2:] # First order density = rho1 * 2. *2 is not applied because + c.c. in the end rho1 = numpy.einsum('xpi,pi->xp', ao[1:,:,p0:p1], ao_dm0[:,p0:p1]) wv = wf * rho1 aow = [numint._scale_ao(ao[0], wv[i]) for i in range(3)] rks_grad._d1_dot_(vmat[ia], mol, aow, ao[0], mask, ao_loc, True) ao_dm0 = aow = None elif xctype == 'GGA': ao_deriv = 2 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): rho = ni.eval_rho2(mol, ao[:4], mo_coeff, mo_occ, mask, xctype) vxc, fxc = ni.eval_xc_eff(mf.xc, rho, 2, xctype=xctype)[1:3] wv = weight * vxc wv[0] *= .5 rks_grad._gga_grad_sum_(v_ip, mol, ao, wv, mask, ao_loc) ao_dm0 = [numint._dot_ao_dm(mol, ao[i], dm0, mask, shls_slice, ao_loc) for i in range(4)] wf = weight * fxc for ia in range(mol.natm): dR_rho1 = _make_dR_rho1(ao, ao_dm0, ia, aoslices, xctype) wv = numpy.einsum('xyg,sxg->syg', wf, dR_rho1) wv[:,0] *= .5 aow = [numint._scale_ao(ao[:4], wv[i,:4]) for i in range(3)] rks_grad._d1_dot_(vmat[ia], mol, aow, ao[0], mask, ao_loc, True) ao_dm0 = aow = None elif xctype == 'MGGA': _check_mgga_grids(grids) ao_deriv = 2 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): rho = ni.eval_rho2(mol, ao[:10], mo_coeff, mo_occ, mask, xctype) vxc, fxc = ni.eval_xc_eff(mf.xc, rho, 2, xctype=xctype)[1:3] wv = weight * vxc wv[0] *= .5 wv[4] *= .5 # for the factor 1/2 in tau rks_grad._gga_grad_sum_(v_ip, mol, ao, wv, mask, ao_loc) rks_grad._tau_grad_dot_(v_ip, mol, ao, wv[4], mask, ao_loc, True) ao_dm0 = [numint._dot_ao_dm(mol, ao[i], dm0, mask, shls_slice, ao_loc) for i in range(4)] wf = weight * fxc for ia in range(mol.natm): dR_rho1 = _make_dR_rho1(ao, ao_dm0, ia, aoslices, xctype) wv = numpy.einsum('xyg,sxg->syg', wf, dR_rho1) wv[:,0] *= .5 wv[:,4] *= .25 aow = [numint._scale_ao(ao[:4], wv[i,:4]) for i in range(3)] rks_grad._d1_dot_(vmat[ia], mol, aow, ao[0], mask, ao_loc, True) for j in range(1, 4): aow = [numint._scale_ao(ao[j], wv[i,4]) for i in range(3)] rks_grad._d1_dot_(vmat[ia], mol, aow, ao[j], mask, ao_loc, True) ao_dm0 = aow = None for ia in range(mol.natm): p0, p1 = aoslices[ia][2:] vmat[ia,:,p0:p1] += v_ip[:,p0:p1] vmat[ia] = -vmat[ia] - vmat[ia].transpose(0,2,1) return vmat def _get_vnlc_deriv1_numerical(hessobj, mo_coeff, mo_occ, max_memory): """ Attention: Numerical nlc Fock matrix 1st derivative includes grid response. """ mol = hessobj.mol mf = hessobj.base mocc = mo_coeff[:,mo_occ>0] dm0 = numpy.dot(mocc, mocc.T) * 2 nao = mol.nao vmat = numpy.empty([mol.natm, 3, nao, nao]) def get_nlc_vmat(mol, mf, dm): ni = mf._numint if ni.libxc.is_nlc(mf.xc): xc = mf.xc else: assert ni.libxc.is_nlc(mf.nlc) xc = mf.nlc mf.nlcgrids.build() _, _, vnlc = ni.nr_nlc_vxc(mol, mf.nlcgrids, xc, dm) return vnlc dx = 1e-3 mol_copy = mol.copy() mol_copy.verbose = 0 for i_atom in range(mol.natm): for i_xyz in range(3): xyz_p = mol.atom_coords() xyz_p[i_atom, i_xyz] += dx mol_copy.set_geom_(xyz_p, unit='Bohr') mol_copy.build() mf.reset(mol_copy) vmat_p = get_nlc_vmat(mol_copy, mf, dm0) xyz_m = mol.atom_coords() xyz_m[i_atom, i_xyz] -= dx mol_copy.set_geom_(xyz_m, unit='Bohr') mol_copy.build() mf.reset(mol_copy) vmat_m = get_nlc_vmat(mol_copy, mf, dm0) vmat[i_atom, i_xyz, :, :] = (vmat_p - vmat_m) / (2 * dx) mf.reset(mol) return vmat
[docs] def get_dweight_dA(mol, grids): ngrids = grids.coords.shape[0] assert grids.atm_idx.shape[0] == ngrids assert grids.quadrature_weights.shape[0] == ngrids atm_coords = numpy.asarray(mol.atom_coords(), order = "C") from pyscf.dft.gen_grid import original_becke assert grids.becke_scheme is original_becke radii_adjust = grids.radii_adjust atomic_radii = grids.atomic_radii if callable(radii_adjust) and atomic_radii is not None: f_radii_adjust = radii_adjust(mol, atomic_radii) f_radii_table = numpy.asarray([f_radii_adjust(i, j, 0) for i in range(mol.natm) for j in range(mol.natm)]) else: f_radii_table = numpy.zeros([mol.natm, mol.natm]) dweight_dA = numpy.zeros([mol.natm, 3, ngrids], order = "C") libdft.VXCbecke_weight_derivative( dweight_dA.ctypes.data_as(ctypes.c_void_p), grids.coords.ctypes.data_as(ctypes.c_void_p), grids.quadrature_weights.ctypes.data_as(ctypes.c_void_p), atm_coords.ctypes.data_as(ctypes.c_void_p), f_radii_table.ctypes.data_as(ctypes.c_void_p), grids.atm_idx.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(ngrids), ctypes.c_int(mol.natm), ) dweight_dA[grids.atm_idx, 0, numpy.arange(ngrids)] = -numpy.sum(dweight_dA[:, 0, :], axis=0) dweight_dA[grids.atm_idx, 1, numpy.arange(ngrids)] = -numpy.sum(dweight_dA[:, 1, :], axis=0) dweight_dA[grids.atm_idx, 2, numpy.arange(ngrids)] = -numpy.sum(dweight_dA[:, 2, :], axis=0) return dweight_dA
def _get_vnlc_deriv1(hessobj, mo_coeff, mo_occ, max_memory): """ Equation notation follows: Liang J, Feng X, Liu X, Head-Gordon M. Analytical harmonic vibrational frequencies with VV10-containing density functionals: Theory, efficient implementation, and benchmark assessments. J Chem Phys. 2023 May 28;158(20):204109. doi: 10.1063/5.0152838. """ # Note (Henry Wang 20250428): # We observed that in several very simple systems, for example H2O2, H2CO, C2H4, # if we do not include the grid response term, the analytical and numerical Fock matrix # derivative, although only diff by else than 1e-7 (norm 1), can cause a 1e-3 error in hessian, # likely because the CPHF converged to a different solution. grid_response = True mol = hessobj.mol mf = hessobj.base natm = mol.natm mocc = mo_coeff[:,mo_occ>0] dm0 = 2 * mocc @ mocc.T grids = mf.nlcgrids if grids.coords is None: grids.build() if numint.libxc.is_nlc(mf.xc): xc_code = mf.xc else: xc_code = mf.nlc nlc_coefs = mf._numint.nlc_coeff(xc_code) if len(nlc_coefs) != 1: raise NotImplementedError('Additive NLC') nlc_pars, fac = nlc_coefs[0] kappa_prefactor = nlc_pars[0] * 1.5 * numpy.pi * (9 * numpy.pi)**(-1.0/6.0) C_in_omega = nlc_pars[1] beta = 0.03125 * (3.0 / nlc_pars[0]**2)**0.75 # ao = numint.eval_ao(mol, grids.coords, deriv = 2) # rho_drho = numint.eval_rho(mol, ao[:4, :], dm0, xctype = "NLC", hermi = 1, with_lapl = False) ngrids_full = grids.coords.shape[0] rho_drho = numpy.empty([4, ngrids_full]) mem_now = lib.current_memory()[0] available_cpu_memory = max(16e3, max_memory * 0.5 - mem_now) * 1e6 ao_nbytes_per_grid = ((4*2) * mol.nao + 4) * 8 # factor of 2 from the ao sorting inside numint.eval_ao() ngrids_per_batch = int(available_cpu_memory / ao_nbytes_per_grid) if ngrids_per_batch < 16: raise MemoryError(f"Out of CPU memory for NLC Fock first derivative, " f"available cpu memory = {available_cpu_memory}" f" bytes, nao = {mol.nao}, natm = {mol.natm}, ngrids = {ngrids_full}") ngrids_per_batch = (ngrids_per_batch + 16 - 1) // 16 * 16 ngrids_per_batch = min(ngrids_per_batch, min_grid_blksize) for g0 in range(0, ngrids_full, ngrids_per_batch): g1 = min(g0 + ngrids_per_batch, ngrids_full) split_grids_coords = grids.coords[g0:g1, :] split_ao = numint.eval_ao(mol, split_grids_coords, deriv = 1) split_rho_drho = numint.eval_rho(mol, split_ao, dm0, xctype = "NLC", hermi = 1, with_lapl = False) rho_drho[:, g0:g1] = split_rho_drho rho_i = rho_drho[0,:] rho_nonzero_mask = (rho_i >= NLC_REMOVE_ZERO_RHO_GRID_THRESHOLD) rho_i = rho_i[rho_nonzero_mask] nabla_rho_i = rho_drho[1:4, rho_nonzero_mask] grids_coords = numpy.ascontiguousarray(grids.coords[rho_nonzero_mask, :]) grids_weights = grids.weights[rho_nonzero_mask] ngrids = grids_coords.shape[0] gamma_i = nabla_rho_i[0,:]**2 + nabla_rho_i[1,:]**2 + nabla_rho_i[2,:]**2 omega_i = numpy.sqrt(C_in_omega * gamma_i**2 / rho_i**4 + (4.0/3.0*numpy.pi) * rho_i) kappa_i = kappa_prefactor * rho_i**(1.0/6.0) U_i = numpy.empty(ngrids) W_i = numpy.empty(ngrids) A_i = numpy.empty(ngrids) B_i = numpy.empty(ngrids) C_i = numpy.empty(ngrids) E_i = numpy.empty(ngrids) libdft.VXC_vv10nlc_hessian_eval_UWABCE( U_i.ctypes.data_as(ctypes.c_void_p), W_i.ctypes.data_as(ctypes.c_void_p), A_i.ctypes.data_as(ctypes.c_void_p), B_i.ctypes.data_as(ctypes.c_void_p), C_i.ctypes.data_as(ctypes.c_void_p), E_i.ctypes.data_as(ctypes.c_void_p), grids_coords.ctypes.data_as(ctypes.c_void_p), grids_weights.ctypes.data_as(ctypes.c_void_p), rho_i.ctypes.data_as(ctypes.c_void_p), omega_i.ctypes.data_as(ctypes.c_void_p), kappa_i.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(ngrids) ) domega_drho_i = numpy.empty(ngrids) domega_dgamma_i = numpy.empty(ngrids) d2omega_drho2_i = numpy.empty(ngrids) d2omega_dgamma2_i = numpy.empty(ngrids) d2omega_drho_dgamma_i = numpy.empty(ngrids) libdft.VXC_vv10nlc_hessian_eval_omega_derivative( domega_drho_i.ctypes.data_as(ctypes.c_void_p), domega_dgamma_i.ctypes.data_as(ctypes.c_void_p), d2omega_drho2_i.ctypes.data_as(ctypes.c_void_p), d2omega_dgamma2_i.ctypes.data_as(ctypes.c_void_p), d2omega_drho_dgamma_i.ctypes.data_as(ctypes.c_void_p), rho_i.ctypes.data_as(ctypes.c_void_p), gamma_i.ctypes.data_as(ctypes.c_void_p), ctypes.c_double(C_in_omega), ctypes.c_int(ngrids) ) dkappa_drho_i = kappa_prefactor * (1.0/6.0) * rho_i**(-5.0/6.0) d2kappa_drho2_i = kappa_prefactor * (-5.0/36.0) * rho_i**(-11.0/6.0) f_rho_i = beta + E_i + rho_i * (dkappa_drho_i * U_i + domega_drho_i * W_i) f_gamma_i = rho_i * domega_dgamma_i * W_i aoslices = mol.aoslice_by_atom() if grid_response: assert grids.atm_idx.shape[0] == grids.coords.shape[0] grid_to_atom_index_map = grids.atm_idx[rho_nonzero_mask] atom_to_grid_index_map = [numpy.where(grid_to_atom_index_map == i_atom)[0] for i_atom in range(natm)] # ao = numint.eval_ao(mol, grids.coords, deriv = 2) # ao = ao.transpose(0,2,1) # order: component, ao, grid # ao_nonzero_rho = ao[:,:,rho_nonzero_mask] # mu = ao_nonzero_rho[0, :, :] # dmu_dr = ao_nonzero_rho[1:4, :, :] # d2mu_dr2 = get_d2mu_dr2(ao_nonzero_rho) # drho_dA, dgamma_dA = get_drhodA_dgammadA_orbital_response(d2mu_dr2, dmu_dr, mu, nabla_rho_i, dm0, aoslices) # if grid_response: # drho_dA_grid_response, dgamma_dA_grid_response = \ # get_drhodA_dgammadA_grid_response(d2mu_dr2, dmu_dr, mu, nabla_rho_i, dm0, # atom_to_grid_index_map = atom_to_grid_index_map) # drho_dA += drho_dA_grid_response # dgamma_dA += dgamma_dA_grid_response # drho_dA_grid_response = None # dgamma_dA_grid_response = None drho_dA = numpy.empty([natm, 3, ngrids], order = "C") dgamma_dA = numpy.empty([natm, 3, ngrids], order = "C") mem_now = lib.current_memory()[0] available_cpu_memory = max(16e3, max_memory * 0.5 - mem_now) * 1e6 ao_nbytes_per_grid = ((10 + 1*2 + 3*2 + 9) * mol.nao + (3*2) * mol.natm) * 8 ngrids_per_batch = int(available_cpu_memory / ao_nbytes_per_grid) if ngrids_per_batch < 16: raise MemoryError(f"Out of CPU memory for NLC Fock first derivative, " f"available cpu memory = {available_cpu_memory}" f" bytes, nao = {mol.nao}, natm = {mol.natm}, ngrids (nonzero rho) = {ngrids}") ngrids_per_batch = (ngrids_per_batch + 16 - 1) // 16 * 16 ngrids_per_batch = min(ngrids_per_batch, min_grid_blksize) for g0 in range(0, ngrids, ngrids_per_batch): g1 = min(g0 + ngrids_per_batch, ngrids) split_grids_coords = grids_coords[g0:g1, :] split_ao = numint.eval_ao(mol, split_grids_coords, deriv = 2) split_ao = split_ao.transpose(0,2,1) # order: component, ao, grid mu = split_ao[0, :, :] dmu_dr = split_ao[1:4, :, :] d2mu_dr2 = get_d2mu_dr2(split_ao) split_drho_dr = nabla_rho_i[:, g0:g1] split_drho_dA, split_dgamma_dA = \ get_drhodA_dgammadA_orbital_response(d2mu_dr2, dmu_dr, mu, split_drho_dr, dm0, aoslices) drho_dA [:, :, g0:g1] = split_drho_dA dgamma_dA[:, :, g0:g1] = split_dgamma_dA split_drho_dA = None split_dgamma_dA = None if grid_response: for i_atom in range(natm): associated_grid_index = atom_to_grid_index_map[i_atom] associated_grids_coords = grids_coords[associated_grid_index, :] ngrids_per_atom = associated_grids_coords.shape[0] associated_drho_dr = nabla_rho_i[:, associated_grid_index] drho_dA_grid_response = numpy.empty([3, ngrids_per_atom]) dgamma_dA_grid_response = numpy.empty([3, ngrids_per_atom]) for g0 in range(0, ngrids_per_atom, ngrids_per_batch): g1 = min(g0 + ngrids_per_batch, ngrids_per_atom) split_grids_coords = associated_grids_coords[g0:g1, :] split_ao = numint.eval_ao(mol, split_grids_coords, deriv = 2) split_ao = split_ao.transpose(0,2,1) # order: component, ao, grid mu = split_ao[0, :, :] dmu_dr = split_ao[1:4, :, :] d2mu_dr2 = get_d2mu_dr2(split_ao) split_drho_dr = associated_drho_dr[:, g0:g1] split_drho_dA_grid_response, split_dgamma_dA_grid_response = \ get_drhodA_dgammadA_grid_response(d2mu_dr2, dmu_dr, mu, split_drho_dr, dm0, i_atom = i_atom) drho_dA_grid_response [:, g0:g1] = split_drho_dA_grid_response dgamma_dA_grid_response[:, g0:g1] = split_dgamma_dA_grid_response drho_dA [i_atom][:, associated_grid_index] += drho_dA_grid_response dgamma_dA[i_atom][:, associated_grid_index] += dgamma_dA_grid_response drho_dA_grid_response = None dgamma_dA_grid_response = None drho_dA = numpy.ascontiguousarray(drho_dA) dgamma_dA = numpy.ascontiguousarray(dgamma_dA) f_rho_A_i = numpy.empty([natm, 3, ngrids], order = "C") f_gamma_A_i = numpy.empty([natm, 3, ngrids], order = "C") libdft.VXC_vv10nlc_hessian_eval_f_t( f_rho_A_i.ctypes.data_as(ctypes.c_void_p), f_gamma_A_i.ctypes.data_as(ctypes.c_void_p), grids_coords.ctypes.data_as(ctypes.c_void_p), grids_weights.ctypes.data_as(ctypes.c_void_p), rho_i.ctypes.data_as(ctypes.c_void_p), omega_i.ctypes.data_as(ctypes.c_void_p), kappa_i.ctypes.data_as(ctypes.c_void_p), U_i.ctypes.data_as(ctypes.c_void_p), W_i.ctypes.data_as(ctypes.c_void_p), A_i.ctypes.data_as(ctypes.c_void_p), B_i.ctypes.data_as(ctypes.c_void_p), C_i.ctypes.data_as(ctypes.c_void_p), domega_drho_i.ctypes.data_as(ctypes.c_void_p), domega_dgamma_i.ctypes.data_as(ctypes.c_void_p), dkappa_drho_i.ctypes.data_as(ctypes.c_void_p), d2omega_drho2_i.ctypes.data_as(ctypes.c_void_p), d2omega_dgamma2_i.ctypes.data_as(ctypes.c_void_p), d2omega_drho_dgamma_i.ctypes.data_as(ctypes.c_void_p), d2kappa_drho2_i.ctypes.data_as(ctypes.c_void_p), drho_dA.ctypes.data_as(ctypes.c_void_p), dgamma_dA.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(ngrids), ctypes.c_int(3 * natm), ) drho_dA = None dgamma_dA = None vmat = numpy.zeros([natm, 3, mol.nao, mol.nao]) # ao = numint.eval_ao(mol, grids.coords, deriv = 2) # ao = ao.transpose(0,2,1) # order: component, ao, grid # ao_nonzero_rho = ao[:,:,rho_nonzero_mask] # mu = ao_nonzero_rho[0, :, :] # dmu_dr = ao_nonzero_rho[1:4, :, :] # d2mu_dr2 = get_d2mu_dr2(ao_nonzero_rho) # d2rho_dAdr = get_d2rho_dAdr_orbital_response(d2mu_dr2, dmu_dr, mu, dm0, aoslices) # if grid_response: # d2rho_dAdr_grid_response = get_d2rho_dAdr_grid_response(d2mu_dr2, dmu_dr, mu, dm0, # atom_to_grid_index_map = atom_to_grid_index_map) # d2rho_dAdr += d2rho_dAdr_grid_response # d2rho_dAdr_grid_response = None mem_now = lib.current_memory()[0] available_cpu_memory = max(16e3, max_memory * 0.5 - mem_now) * 1e6 ao_nbytes_per_grid = ((10 + 1*2 + 3*2 + 9) * mol.nao + (9*2)) * 8 ngrids_per_batch = int(available_cpu_memory / ao_nbytes_per_grid) if ngrids_per_batch < 16: raise MemoryError(f"Out of CPU memory for NLC Fock first derivative, " f"available cpu memory = {available_cpu_memory}" f" bytes, nao = {mol.nao}, natm = {mol.natm}, ngrids (nonzero rho) = {ngrids}") ngrids_per_batch = (ngrids_per_batch + 16 - 1) // 16 * 16 ngrids_per_batch = min(ngrids_per_batch, min_grid_blksize) for i_atom in range(natm): aoslice_one_atom = [aoslices[i_atom]] d2rho_dAdr = numpy.empty([3, 3, ngrids]) for g0 in range(0, ngrids, ngrids_per_batch): g1 = min(g0 + ngrids_per_batch, ngrids) split_grids_coords = grids_coords[g0:g1, :] split_ao = numint.eval_ao(mol, split_grids_coords, deriv = 2) split_ao = split_ao.transpose(0,2,1) # order: component, ao, grid mu = split_ao[0, :, :] dmu_dr = split_ao[1:4, :, :] d2mu_dr2 = get_d2mu_dr2(split_ao) split_drho_dr = nabla_rho_i[:, g0:g1] split_d2rho_dAdr = get_d2rho_dAdr_orbital_response(d2mu_dr2, dmu_dr, mu, dm0, aoslice_one_atom) d2rho_dAdr[:, :, g0:g1] = split_d2rho_dAdr split_d2rho_dAdr = None if grid_response: associated_grid_index = atom_to_grid_index_map[i_atom] associated_grids_coords = grids_coords[associated_grid_index, :] ngrids_per_atom = associated_grids_coords.shape[0] d2rho_dAdr_grid_response = numpy.empty([3, 3, ngrids_per_atom]) for g0 in range(0, ngrids_per_atom, ngrids_per_batch): g1 = min(g0 + ngrids_per_batch, ngrids_per_atom) split_grids_coords = associated_grids_coords[g0:g1, :] split_ao = numint.eval_ao(mol, split_grids_coords, deriv = 2) split_ao = split_ao.transpose(0,2,1) # order: component, ao, grid mu = split_ao[0, :, :] dmu_dr = split_ao[1:4, :, :] d2mu_dr2 = get_d2mu_dr2(split_ao) split_d2rho_dAdr_grid_response = \ get_d2rho_dAdr_grid_response(d2mu_dr2, dmu_dr, mu, dm0, i_atom = i_atom) d2rho_dAdr_grid_response[:, :, g0:g1] = split_d2rho_dAdr_grid_response d2rho_dAdr[:, :, associated_grid_index] += d2rho_dAdr_grid_response split_d2rho_dAdr_grid_response = None for g0 in range(0, ngrids, ngrids_per_batch): g1 = min(g0 + ngrids_per_batch, ngrids) split_grids_coords = grids_coords[g0:g1, :] split_ao = numint.eval_ao(mol, split_grids_coords, deriv = 2) split_ao = split_ao.transpose(0,2,1) # order: component, ao, grid mu = split_ao[0, :, :] dmu_dr = split_ao[1:4, :, :] d2mu_dr2 = get_d2mu_dr2(split_ao) split_drho_dr = nabla_rho_i[:, g0:g1] # # w_i 2 f_i^\gamma \nabla_A \nabla\rho \cdot \nabla(\phi_\mu \phi_nu)_i # vmat[i_atom, :, :, :] += 2 * numpy.einsum( # 'dDg,Dig,jg,g->dij', d2rho_dAdr[i_atom, :, :, :], dmu_dr, mu, f_gamma_i * grids_weights) # vmat[i_atom, :, :, :] += 2 * numpy.einsum( # 'dDg,Dig,jg,g->dji', d2rho_dAdr[i_atom, :, :, :], dmu_dr, mu, f_gamma_i * grids_weights) d2rhodAdr_dot_dmudr = contract('dDg,Dig->dig', d2rho_dAdr[:, :, g0:g1], dmu_dr) dF = contract('dig,jg->dij', d2rhodAdr_dot_dmudr, mu * f_gamma_i[g0:g1] * grids_weights[g0:g1]) d2rhodAdr_dot_dmudr = None # # w_i 2 (\nabla\rho)_i \cdot (\nabla(\phi_\mu \phi_nu))_i f_i^{\gamma, A} # vmat[i_atom, :, :, :] += 2 * numpy.einsum( # 'dg,Dig,jg,Dg->dij', f_gamma_A_i[i_atom, :, :], dmu_dr, mu, nabla_rho_i * grids_weights) # vmat[i_atom, :, :, :] += 2 * numpy.einsum( # 'dg,Dig,jg,Dg->dji', f_gamma_A_i[i_atom, :, :], dmu_dr, mu, nabla_rho_i * grids_weights) f_gamma_A_i_mu = contract('dg,ig->dig', f_gamma_A_i[i_atom, :, g0:g1], mu) drhodr_dot_dmudr = contract('dig,dg->ig', dmu_dr, split_drho_dr * grids_weights[g0:g1]) dF += contract('dig,jg->dij', f_gamma_A_i_mu, drhodr_dot_dmudr) drhodr_dot_dmudr = None f_gamma_A_i_mu = None dF += dF.transpose(0,2,1) dF *= 2 # # w_i \phi_{\mu i} \phi_{\nu i} f_i^{\rho, A} # vmat[i_atom, :, :, :] += numpy.einsum('dg,ig,jg,g->dij', f_rho_A_i[i_atom, :, :], mu, mu, grids_weights) f_rho_A_i_mu = contract('dg,ig->dig', f_rho_A_i[i_atom, :, g0:g1], mu) dF += contract('dig,jg->dij', f_rho_A_i_mu, mu * grids_weights[g0:g1]) f_rho_A_i_mu = None vmat[i_atom, :, :, :] += dF dF = None p0, p1 = aoslices[i_atom][2:] # # w_i f_i^\rho \nabla_A (\phi_\mu \phi_nu)_i # vmat[i_atom, :, p0:p1, :] += numpy.einsum( # 'dig,jg->dij', -dmu_dr[:, p0:p1, :], mu * f_rho_i * grids_weights) # vmat[i_atom, :, :, p0:p1] += numpy.einsum( # 'dig,jg->dji', -dmu_dr[:, p0:p1, :], mu * f_rho_i * grids_weights) f_rho_dmudA_nu = contract('dig,jg->dij', -dmu_dr[:, p0:p1, :], mu * f_rho_i[g0:g1] * grids_weights[g0:g1]) # # w_i 2 f_i^\gamma \nabla\rho \cdot \nabla_A \nabla(\phi_\mu \phi_nu)_i # vmat[i_atom, :, p0:p1, :] += 2 * numpy.einsum( # 'dDig,jg,Dg->dij', -d2mu_dr2[:, :, p0:p1, :], mu, nabla_rho_i * f_gamma_i * grids_weights) # vmat[i_atom, :, :, p0:p1] += 2 * numpy.einsum( # 'dDig,jg,Dg->dji', -d2mu_dr2[:, :, p0:p1, :], mu, nabla_rho_i * f_gamma_i * grids_weights) # vmat[i_atom, :, p0:p1, :] += 2 * numpy.einsum( # 'dig,Djg,Dg->dij', -dmu_dr[:, p0:p1, :], dmu_dr, nabla_rho_i * f_gamma_i * grids_weights) # vmat[i_atom, :, :, p0:p1] += 2 * numpy.einsum( # 'dig,Djg,Dg->dji', -dmu_dr[:, p0:p1, :], dmu_dr, nabla_rho_i * f_gamma_i * grids_weights) mu_dot_drhodr = contract('ig,dg->dig', mu, split_drho_dr * f_gamma_i[g0:g1] * grids_weights[g0:g1]) f_gamma_d2mudr2_nu = contract('dDig,Djg->dij', -d2mu_dr2[:, :, p0:p1, :], mu_dot_drhodr) mu_dot_drhodr = None dmudr_dot_drhodr = contract('dig,dg->ig', dmu_dr, split_drho_dr * f_gamma_i[g0:g1] * grids_weights[g0:g1]) f_gamma_dmudr_dnudr = contract('dig,jg->dij', -dmu_dr[:, p0:p1, :], dmudr_dot_drhodr) dmudr_dot_drhodr = None dF_ao = f_rho_dmudA_nu + 2 * (f_gamma_d2mudr2_nu + f_gamma_dmudr_dnudr) f_rho_dmudA_nu = None f_gamma_d2mudr2_nu = None f_gamma_dmudr_dnudr = None vmat[i_atom, :, p0:p1, :] += dF_ao vmat[i_atom, :, :, p0:p1] += dF_ao.transpose(0,2,1) dF_ao = None d2rho_dAdr = None if grid_response: associated_grid_index = atom_to_grid_index_map[i_atom] associated_grids_coords = grids_coords[associated_grid_index, :] ngrids_per_atom = associated_grids_coords.shape[0] associated_drho_dr = nabla_rho_i[:, associated_grid_index] fw_rho_associated_grids = f_rho_i[associated_grid_index] * grids_weights[associated_grid_index] fw_gamma_associated_grids = f_gamma_i[associated_grid_index] * grids_weights[associated_grid_index] for g0 in range(0, ngrids_per_atom, ngrids_per_batch): g1 = min(g0 + ngrids_per_batch, ngrids_per_atom) split_grids_coords = associated_grids_coords[g0:g1, :] split_ao = numint.eval_ao(mol, split_grids_coords, deriv = 2) split_ao = split_ao.transpose(0,2,1) # order: component, ao, grid mu = split_ao[0, :, :] dmu_dr = split_ao[1:4, :, :] d2mu_dr2 = get_d2mu_dr2(split_ao) split_drho_dr = associated_drho_dr[:, g0:g1] # # w_i f_i^\rho \nabla_A (\phi_\mu \phi_nu)_i # vmat[i_atom, :, :, :] += numpy.einsum('dig,jg->dij', # dmu_dr[:, :, associated_grid_index], # mu[:, associated_grid_index] * fw_rho_associated_grids) # vmat[i_atom, :, :, :] += numpy.einsum('dig,jg->dji', # dmu_dr[:, :, associated_grid_index], # mu[:, associated_grid_index] * fw_rho_associated_grids) f_rho_dmudA_nu = contract('dig,jg->dij', dmu_dr, mu * fw_rho_associated_grids[g0:g1]) # # w_i 2 f_i^\gamma \nabla\rho \cdot \nabla_A \nabla(\phi_\mu \phi_nu)_i # vmat[i_atom, :, :, :] += 2 * numpy.einsum('dDig,jg,Dg->dij', # d2mu_dr2[:, :, :, associated_grid_index], mu[:, associated_grid_index], # nabla_rho_i[:, associated_grid_index] * fw_gamma_associated_grids) # vmat[i_atom, :, :, :] += 2 * numpy.einsum('dDig,jg,Dg->dji', # d2mu_dr2[:, :, :, associated_grid_index], mu[:, associated_grid_index], # nabla_rho_i[:, associated_grid_index] * fw_gamma_associated_grids) # vmat[i_atom, :, :, :] += 2 * numpy.einsum('dig,Djg,Dg->dij', # dmu_dr[:, :, associated_grid_index], dmu_dr[:, :, associated_grid_index], # nabla_rho_i[:, associated_grid_index] * fw_gamma_associated_grids) # vmat[i_atom, :, :, :] += 2 * numpy.einsum('dig,Djg,Dg->dji', # dmu_dr[:, :, associated_grid_index], dmu_dr[:, :, associated_grid_index], # nabla_rho_i[:, associated_grid_index] * fw_gamma_associated_grids) d2mudr2_dot_drhodr = contract('dDig,Dg->dig', d2mu_dr2, split_drho_dr * fw_gamma_associated_grids[g0:g1]) f_gamma_d2mudr2_nu = contract('dig,jg->dij', d2mudr2_dot_drhodr, mu) d2mudr2_dot_drhodr = None dmudr_dot_drhodr = contract('dig,dg->ig', dmu_dr, split_drho_dr * fw_gamma_associated_grids[g0:g1]) f_gamma_dmudr_dnudr = contract('dig,jg->dij', dmu_dr, dmudr_dot_drhodr) dmudr_dot_drhodr = None dF_ao = f_rho_dmudA_nu + 2 * (f_gamma_d2mudr2_nu + f_gamma_dmudr_dnudr) f_rho_dmudA_nu = None f_gamma_d2mudr2_nu = None f_gamma_dmudr_dnudr = None dF_ao += dF_ao.transpose(0,2,1) vmat[i_atom, :, :, :] += dF_ao dF_ao = None if grid_response: E_Bgr_i = numpy.empty([natm, 3, ngrids], order = "C") U_Bgr_i = numpy.empty([natm, 3, ngrids], order = "C") W_Bgr_i = numpy.empty([natm, 3, ngrids], order = "C") libdft.VXC_vv10nlc_hessian_eval_EUW_grid_response( E_Bgr_i.ctypes.data_as(ctypes.c_void_p), U_Bgr_i.ctypes.data_as(ctypes.c_void_p), W_Bgr_i.ctypes.data_as(ctypes.c_void_p), grids_coords.ctypes.data_as(ctypes.c_void_p), grids_weights.ctypes.data_as(ctypes.c_void_p), rho_i.ctypes.data_as(ctypes.c_void_p), omega_i.ctypes.data_as(ctypes.c_void_p), kappa_i.ctypes.data_as(ctypes.c_void_p), grid_to_atom_index_map.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(ngrids), ctypes.c_int(natm), ) grids_weights_1 = get_dweight_dA(mol, grids) grids_weights_1 = grids_weights_1[:, :, rho_nonzero_mask] grids_weights_1 = numpy.ascontiguousarray(grids_weights_1) E_Bw_i = numpy.empty([natm, 3, ngrids], order = "C") U_Bw_i = numpy.empty([natm, 3, ngrids], order = "C") W_Bw_i = numpy.empty([natm, 3, ngrids], order = "C") libdft.VXC_vv10nlc_hessian_eval_EUW_with_weight1( E_Bw_i.ctypes.data_as(ctypes.c_void_p), U_Bw_i.ctypes.data_as(ctypes.c_void_p), W_Bw_i.ctypes.data_as(ctypes.c_void_p), grids_coords.ctypes.data_as(ctypes.c_void_p), grids_weights_1.ctypes.data_as(ctypes.c_void_p), rho_i.ctypes.data_as(ctypes.c_void_p), omega_i.ctypes.data_as(ctypes.c_void_p), kappa_i.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(ngrids), ctypes.c_int(natm * 3), ) f_rho_grid_response_i = (E_Bw_i + E_Bgr_i) \ + ((U_Bw_i + U_Bgr_i) * dkappa_drho_i + (W_Bw_i + W_Bgr_i) * domega_drho_i) * rho_i f_gamma_grid_response_i = (W_Bw_i + W_Bgr_i) * domega_dgamma_i * rho_i E_Bw_i = None U_Bw_i = None W_Bw_i = None E_Bgr_i = None U_Bgr_i = None W_Bgr_i = None mem_now = lib.current_memory()[0] available_cpu_memory = max(16e3, max_memory * 0.5 - mem_now) * 1e6 ao_nbytes_per_grid = ((4 + 1*2 + 3*2) * mol.nao) * 8 ngrids_per_batch = int(available_cpu_memory / ao_nbytes_per_grid) if ngrids_per_batch < 16: raise MemoryError(f"Out of CPU memory for NLC Fock first derivative, " f"available cpu memory = {available_cpu_memory}" f" bytes, nao = {mol.nao}, natm = {mol.natm}, ngrids (nonzero rho) = {ngrids}") ngrids_per_batch = (ngrids_per_batch + 16 - 1) // 16 * 16 ngrids_per_batch = min(ngrids_per_batch, min_grid_blksize) for g0 in range(0, ngrids, ngrids_per_batch): g1 = min(g0 + ngrids_per_batch, ngrids) split_grids_coords = grids_coords[g0:g1, :] split_ao = numint.eval_ao(mol, split_grids_coords, deriv = 2) split_ao = split_ao.transpose(0,2,1) # order: component, ao, grid mu = split_ao[0, :, :] dmu_dr = split_ao[1:4, :, :] d2mu_dr2 = get_d2mu_dr2(split_ao) split_drho_dr = nabla_rho_i[:, g0:g1] for i_atom in range(natm): # # \nabla_A w_i term # vmat[i_atom, :, :, :] += numpy.einsum( # 'dg,ig,jg->dij', grids_weights_1[i_atom, :, :], mu, mu * f_rho_i) # vmat[i_atom, :, :, :] += 2 * numpy.einsum( # 'dg,Dig,jg,Dg->dij', grids_weights_1[i_atom, :, :], dmu_dr, mu, nabla_rho_i * f_gamma_i) # vmat[i_atom, :, :, :] += 2 * numpy.einsum( # 'dg,Dig,jg,Dg->dji', grids_weights_1[i_atom, :, :], dmu_dr, mu, nabla_rho_i * f_gamma_i) dwdr_dot_mu = contract('dg,ig->dig', grids_weights_1[i_atom, :, g0:g1], mu) f_rho_dwdr = contract('dig,jg->dij', dwdr_dot_mu, mu * f_rho_i[g0:g1]) dmudr_dot_drhodr = contract('dig,dg->ig', dmu_dr, split_drho_dr * f_gamma_i[g0:g1]) f_gamma_dwdr = contract('dig,jg->dij', dwdr_dot_mu, dmudr_dot_drhodr) dmudr_dot_drhodr = None dwdr_dot_mu = None # # E_i^{Aw} and E_i^{Agr} terms combined # vmat[i_atom, :, :, :] += numpy.einsum( # 'dg,ig,jg->dij', f_rho_grid_response_i[i_atom, :, :], mu, mu * grids_weights) # vmat[i_atom, :, :, :] += 2 * numpy.einsum('dg,Dig,jg,Dg->dij', # f_gamma_grid_response_i[i_atom, :, :], dmu_dr, mu, nabla_rho_i * grids_weights) # vmat[i_atom, :, :, :] += 2 * numpy.einsum('dg,Dig,jg,Dg->dji', # f_gamma_grid_response_i[i_atom, :, :], dmu_dr, mu, nabla_rho_i * grids_weights) dfrhodr_dot_mu = contract('dg,ig->dig', f_rho_grid_response_i[i_atom, :, g0:g1], mu) f_rho_dwdr += contract('dig,jg->dij', dfrhodr_dot_mu, mu * grids_weights[g0:g1]) dfrhodr_dot_mu = None dfgammadr_dot_mu = contract('dg,ig->dig', f_gamma_grid_response_i[i_atom, :, g0:g1], mu) dmudr_dot_drhodr = contract('dig,dg->ig', dmu_dr, split_drho_dr * grids_weights[g0:g1]) f_gamma_dwdr += contract('dig,jg->dij', dfgammadr_dot_mu, dmudr_dot_drhodr) dmudr_dot_drhodr = None dfgammadr_dot_mu = None f_gamma_dwdr += f_gamma_dwdr.transpose(0,2,1) dF_ao = f_rho_dwdr + 2 * f_gamma_dwdr f_rho_dwdr = None f_gamma_dwdr = None vmat[i_atom, :, :, :] += dF_ao dF_ao = None return vmat
[docs] def get_vnlc_resp(mf, mol, mo_coeff, mo_occ, dm1s, max_memory): """ Equation notation follows: Liang J, Feng X, Liu X, Head-Gordon M. Analytical harmonic vibrational frequencies with VV10-containing density functionals: Theory, efficient implementation, and benchmark assessments. J Chem Phys. 2023 May 28;158(20):204109. doi: 10.1063/5.0152838. mo_coeff, mo_occ are 0-th order dm1s is first order TODO: check the effect of different grid, using mf.nlcgrids right now """ if isinstance(mo_coeff, numpy.ndarray) and mo_coeff.ndim == 2: mocc = mo_coeff[:,mo_occ>0] mo_occ = mo_occ[mo_occ > 0] dm0 = (mocc * mo_occ) @ mocc.T else: assert mo_coeff[0].ndim == 2 # unrestricted case assert len(mo_coeff) == 2 assert len(mo_occ) == 2 mocc_a = mo_coeff[0][:, mo_occ[0] > 0] mocc_b = mo_coeff[1][:, mo_occ[1] > 0] mo_occ_a = mo_occ[0][mo_occ[0] > 0] mo_occ_b = mo_occ[1][mo_occ[1] > 0] dm0 = (mocc_a * mo_occ_a) @ mocc_a.T + (mocc_b * mo_occ_b) @ mocc_b.T dm0 = numpy.asarray(dm0.real, order='C') output_in_2d = False if dm1s.ndim == 2: assert dm1s.shape == (mol.nao, mol.nao) dm1s = dm1s.reshape((1, mol.nao, mol.nao)) output_in_2d = True assert dm1s.ndim == 3 grids = mf.nlcgrids if grids.coords is None: grids.build() n_dm1 = dm1s.shape[0] ni = mf._numint if numint.libxc.is_nlc(mf.xc): xc_code = mf.xc else: xc_code = mf.nlc nlc_coefs = ni.nlc_coeff(xc_code) if len(nlc_coefs) != 1: raise NotImplementedError('Additive NLC') nlc_pars, fac = nlc_coefs[0] kappa_prefactor = nlc_pars[0] * 1.5 * numpy.pi * (9 * numpy.pi)**(-1.0/6.0) C_in_omega = nlc_pars[1] # ao = numint.eval_ao(mol, grids.coords, deriv = 1) # rho_drho = numint.eval_rho(mol, ao, dm0, xctype = "NLC", hermi = 1, with_lapl = False) ngrids_full = grids.coords.shape[0] rho_drho = numpy.empty([4, ngrids_full]) g1 = 0 for split_ao, ao_mask_index, split_weights, split_coords in ni.block_loop(mol, grids, mol.nao, 1, max_memory): g0, g1 = g1, g1 + split_weights.size rho_drho[:, g0:g1] = numint.eval_rho(mol, split_ao, dm0, xctype = "NLC", hermi = 1) dm0 = None rho_i = rho_drho[0,:] rho_nonzero_mask = (rho_i >= NLC_REMOVE_ZERO_RHO_GRID_THRESHOLD) rho_i = rho_i[rho_nonzero_mask] nabla_rho_i = rho_drho[1:4, rho_nonzero_mask] grids_coords = numpy.ascontiguousarray(grids.coords[rho_nonzero_mask, :]) grids_weights = grids.weights[rho_nonzero_mask] ngrids = grids_coords.shape[0] gamma_i = nabla_rho_i[0,:]**2 + nabla_rho_i[1,:]**2 + nabla_rho_i[2,:]**2 omega_i = numpy.sqrt(C_in_omega * gamma_i**2 / rho_i**4 + (4.0/3.0*numpy.pi) * rho_i) kappa_i = kappa_prefactor * rho_i**(1.0/6.0) U_i = numpy.empty(ngrids) W_i = numpy.empty(ngrids) A_i = numpy.empty(ngrids) B_i = numpy.empty(ngrids) C_i = numpy.empty(ngrids) E_i = numpy.empty(ngrids) # Not used libdft.VXC_vv10nlc_hessian_eval_UWABCE( U_i.ctypes.data_as(ctypes.c_void_p), W_i.ctypes.data_as(ctypes.c_void_p), A_i.ctypes.data_as(ctypes.c_void_p), B_i.ctypes.data_as(ctypes.c_void_p), C_i.ctypes.data_as(ctypes.c_void_p), E_i.ctypes.data_as(ctypes.c_void_p), grids_coords.ctypes.data_as(ctypes.c_void_p), grids_weights.ctypes.data_as(ctypes.c_void_p), rho_i.ctypes.data_as(ctypes.c_void_p), omega_i.ctypes.data_as(ctypes.c_void_p), kappa_i.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(ngrids) ) E_i = None domega_drho_i = numpy.empty(ngrids) domega_dgamma_i = numpy.empty(ngrids) d2omega_drho2_i = numpy.empty(ngrids) d2omega_dgamma2_i = numpy.empty(ngrids) d2omega_drho_dgamma_i = numpy.empty(ngrids) libdft.VXC_vv10nlc_hessian_eval_omega_derivative( domega_drho_i.ctypes.data_as(ctypes.c_void_p), domega_dgamma_i.ctypes.data_as(ctypes.c_void_p), d2omega_drho2_i.ctypes.data_as(ctypes.c_void_p), d2omega_dgamma2_i.ctypes.data_as(ctypes.c_void_p), d2omega_drho_dgamma_i.ctypes.data_as(ctypes.c_void_p), rho_i.ctypes.data_as(ctypes.c_void_p), gamma_i.ctypes.data_as(ctypes.c_void_p), ctypes.c_double(C_in_omega), ctypes.c_int(ngrids) ) dkappa_drho_i = kappa_prefactor * (1.0/6.0) * rho_i**(-5.0/6.0) d2kappa_drho2_i = kappa_prefactor * (-5.0/36.0) * rho_i**(-11.0/6.0) f_gamma_i = rho_i * domega_dgamma_i * W_i # ao = numint.eval_ao(mol, grids.coords, deriv = 1) # rho_drho_t = numpy.empty([n_dm1, 4, ngrids]) # for i_dm in range(n_dm1): # dm1 = dm1s[i_dm, :, :] # rho_drho_1 = numint.eval_rho(mol, ao, dm1, xctype = "NLC", hermi = 0, with_lapl = False) # rho_drho_t[i_dm, :, :] = rho_drho_1[:, rho_nonzero_mask] vmat = numpy.zeros([n_dm1, mol.nao, mol.nao]) mem_now = lib.current_memory()[0] available_cpu_memory = max(16e3, max_memory * 0.5 - mem_now) * 1e6 fxc_nbytes_per_dm1 = ((1*6 + 3*2) * ngrids + (1*2 + 3*2) * ngrids_full) * 8 ndm1_per_batch = int(available_cpu_memory / fxc_nbytes_per_dm1) if ndm1_per_batch < 6: raise MemoryError(f"Out of CPU memory for NLC response (orbital hessian), " f"available cpu memory = {available_cpu_memory}" f" bytes, nao = {mol.nao}, natm = {mol.natm}, ngrids (nonzero rho) = {ngrids}") ndm1_per_batch = (ndm1_per_batch + 6 - 1) // 6 * 6 for i_dm1_batch in range(0, n_dm1, ndm1_per_batch): n_dm1_batch = min(ndm1_per_batch, n_dm1 - i_dm1_batch) rho_drho_t = numpy.empty([n_dm1_batch, 4, ngrids_full]) g1 = 0 for split_ao, ao_mask_index, split_weights, split_coords in ni.block_loop(mol, grids, mol.nao, 1, max_memory): g0, g1 = g1, g1 + split_weights.size for i_dm in range(n_dm1_batch): dm1_subset = dm1s[i_dm + i_dm1_batch, :, :] rho_drho_t[i_dm, :, g0:g1] = numint.eval_rho(mol, split_ao, dm1_subset, xctype = "NLC", hermi = 0) dm1_subset = None rho_drho_t = rho_drho_t[:, :, rho_nonzero_mask] rho_t_i = rho_drho_t[:, 0, :] nabla_rho_t_i = rho_drho_t[:, 1:4, :] gamma_t_i = nabla_rho_i[0, :] * nabla_rho_t_i[:, 0, :] \ + nabla_rho_i[1, :] * nabla_rho_t_i[:, 1, :] \ + nabla_rho_i[2, :] * nabla_rho_t_i[:, 2, :] gamma_t_i *= 2 # Account for the factor of 2 before gamma_j^t term in equation (22) rho_drho_t = None rho_t_i = numpy.ascontiguousarray(rho_t_i) gamma_t_i = numpy.ascontiguousarray(gamma_t_i) f_rho_t_i = numpy.empty([n_dm1_batch, ngrids], order = "C") f_gamma_t_i = numpy.empty([n_dm1_batch, ngrids], order = "C") libdft.VXC_vv10nlc_hessian_eval_f_t( f_rho_t_i.ctypes.data_as(ctypes.c_void_p), f_gamma_t_i.ctypes.data_as(ctypes.c_void_p), grids_coords.ctypes.data_as(ctypes.c_void_p), grids_weights.ctypes.data_as(ctypes.c_void_p), rho_i.ctypes.data_as(ctypes.c_void_p), omega_i.ctypes.data_as(ctypes.c_void_p), kappa_i.ctypes.data_as(ctypes.c_void_p), U_i.ctypes.data_as(ctypes.c_void_p), W_i.ctypes.data_as(ctypes.c_void_p), A_i.ctypes.data_as(ctypes.c_void_p), B_i.ctypes.data_as(ctypes.c_void_p), C_i.ctypes.data_as(ctypes.c_void_p), domega_drho_i.ctypes.data_as(ctypes.c_void_p), domega_dgamma_i.ctypes.data_as(ctypes.c_void_p), dkappa_drho_i.ctypes.data_as(ctypes.c_void_p), d2omega_drho2_i.ctypes.data_as(ctypes.c_void_p), d2omega_dgamma2_i.ctypes.data_as(ctypes.c_void_p), d2omega_drho_dgamma_i.ctypes.data_as(ctypes.c_void_p), d2kappa_drho2_i.ctypes.data_as(ctypes.c_void_p), rho_t_i.ctypes.data_as(ctypes.c_void_p), gamma_t_i.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(ngrids), ctypes.c_int(n_dm1_batch), ) rho_t_i = None gamma_t_i = None fxc_rho = f_rho_t_i * grids_weights f_rho_t_i = None fxc_gamma = contract("dg,tg->tdg", nabla_rho_i, f_gamma_t_i) f_gamma_t_i = None fxc_gamma += nabla_rho_t_i * f_gamma_i nabla_rho_t_i = None fxc_gamma = 2 * fxc_gamma * grids_weights fxc_rho_full = numpy.zeros([n_dm1_batch, ngrids_full]) fxc_rho_full[:, rho_nonzero_mask] = fxc_rho fxc_rho = None fxc_gamma_full = numpy.zeros([n_dm1_batch, 3, ngrids_full]) fxc_gamma_full[:, :, rho_nonzero_mask] = fxc_gamma fxc_gamma = None g1 = 0 for split_ao, ao_mask_index, split_weights, split_coords in ni.block_loop(mol, grids, mol.nao, 1, max_memory): split_ao = split_ao.transpose(0,2,1) # order: component, ao, grid g0, g1 = g1, g1 + split_weights.size split_fxc_rho = fxc_rho_full[:, g0:g1] split_fxc_gamma = fxc_gamma_full[:, :, g0:g1] for i_dm in range(n_dm1_batch): # \mu \nu V_munu = contract("ig,jg->ij", split_ao[0], split_ao[0] * split_fxc_rho[i_dm, :]) # \mu \nabla\nu + \nabla\mu \nu nabla_fxc_dot_nabla_ao = contract("dg,dig->ig", split_fxc_gamma[i_dm, :, :], split_ao[1:4]) V_munu_gamma = contract("ig,jg->ij", split_ao[0], nabla_fxc_dot_nabla_ao) nabla_fxc_dot_nabla_ao = None V_munu += V_munu_gamma V_munu += V_munu_gamma.T V_munu_gamma = None vmat[i_dm + i_dm1_batch, :, :] += V_munu V_munu = None if output_in_2d: vmat = vmat.reshape((mol.nao, mol.nao)) return vmat
def _check_mgga_grids(grids): mol = grids.mol atom_grid = grids.atom_grid if atom_grid: if isinstance(atom_grid, (tuple, list)): n_rad = atom_grid[0] if n_rad < 150 and any(mol.atom_charges() > 10): logger.warn(mol, 'MGGA Hessian is sensitive to dft grids. ' f'{atom_grid} may not be dense enough.') else: symbols = [mol.atom_symbol(ia) for ia in range(mol.natm)] problematic = [] for symb in symbols: chg = gto.charge(symb) if symb in atom_grid: n_rad = atom_grid[symb][0] else: n_rad = gen_grid._default_rad(chg, grids.level) if n_rad < 150 and chg > 10: problematic.append((symb, n_rad)) if problematic: problematic = [f'{symb}: {r}' for symb, r in problematic] logger.warn(mol, 'MGGA Hessian is sensitive to dft grids. ' f'Radial grids {",".join(problematic)} ' 'may not be dense enough.') elif grids.level < 5: logger.warn(mol, 'MGGA Hessian is sensitive to dft grids. ' f'grids.level {grids.level} may not be dense enough.')
[docs] class Hessian(rhf_hess.HessianBase): '''Non-relativistic RKS hessian''' _keys = {'grids', 'grid_response'} def __init__(self, mf): rhf_hess.Hessian.__init__(self, mf) self.grids = None self.grid_response = False partial_hess_elec = partial_hess_elec hess_elec = rhf_hess.hess_elec make_h1 = make_h1
from pyscf import dft dft.rks.RKS.Hessian = dft.rks_symm.RKS.Hessian = lib.class_as_method(Hessian) dft.roks.ROKS.Hessian = dft.rks_symm.ROKS.Hessian = lib.invalid_method('Hessian')