Source code for pyscf.gw.urpa

#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Tianyu Zhu <zhutianyu1991@gmail.com>
#

"""
Spin-unrestricted random phase approximation (direct RPA/dRPA in chemistry)
with N^4 scaling

Method:
    Main routines are based on GW-AC method described in:
    T. Zhu and G.K.-L. Chan, J. Chem. Theory. Comput. 17, 727-741 (2021)
    X. Ren et al., New J. Phys. 14, 053020 (2012)
"""

import numpy as np
from pyscf import lib
from pyscf.lib import logger
from pyscf.ao2mo import _ao2mo
from pyscf import df, scf
from pyscf.mp import dfump2

from pyscf.gw.rpa import RPA

einsum = lib.einsum


[docs] def make_dielectric_matrix(omega, e_ov, f_ov, eris, blksize=None): ''' Compute dielectric matrix at a given frequency omega Args: omega : float, frequency e_ov : 1D array (nocc * nvir), orbital energy differences eris : DF ERI object Returns: diel : 2D array (naux, naux), dielectric matrix ''' assert blksize is not None nocc, nvir, naux = eris.nocc, eris.nvir, eris.naux isreal = eris.dtype == np.float64 diel = np.zeros((naux, naux), dtype=eris.dtype) for s in [0,1]: chi0 = (2.0 * e_ov[s] * f_ov[s] / (omega ** 2 + e_ov[s] ** 2)).ravel() for p0,p1 in lib.prange(0, nocc[s]*nvir[s], blksize): ovL = eris.get_ov_blk(s,p0,p1) ovL_chi = (ovL.T * chi0[p0:p1]).T if isreal: lib.ddot(ovL_chi.T, ovL, c=diel, beta=1) else: lib.dot(ovL_chi.T, ovL.conj(), c=diel, beta=1) ovL = ovL_chi = None return diel
[docs] class URPA(dfump2.DFUMP2): get_e_hf = RPA.get_e_hf kernel = RPA.kernel _finalize = RPA._finalize
[docs] def make_e_ov(self): ''' Compute orbital energy differences ''' log = logger.new_logger(self) split_mo_energy = self.split_mo_energy() e_ov = [(split_mo_energy[s][1][:,None] - split_mo_energy[s][2]).ravel() for s in [0,1]] gap = [-e_ov[s].max() for s in [0,1]] log.info('Lowest orbital energy difference: (% 6.4e, % 6.4e)', gap[0], gap[1]) if (np.min(gap) < 1e-3): log.warn('RPA code is not well-defined for degenerate systems!') log.warn('Lowest orbital energy difference: % 6.4e', np.min(gap)) return e_ov
[docs] def make_f_ov(self): ''' Compute orbital occupation number differences ''' split_mo_occ = self.split_mo_occ() return [(split_mo_occ[s][1][:,None] - split_mo_occ[s][2]).ravel() for s in [0,1]]
[docs] def make_dielectric_matrix(self, omega, e_ov=None, f_ov=None, eris=None, max_memory=None, blksize=None): ''' Args: omega : float, frequency e_ov : 1D array (nocc * nvir), orbital energy differences mo_coeff : (nao, nmo), mean-field mo coefficient cderi_ov : (naux, nocc, nvir), Cholesky decomposed ERI in OV subspace. Returns: diel : 2D array (naux, naux), dielectric matrix ''' if e_ov is None: e_ov = self.make_e_ov() if f_ov is None: f_ov = self.make_f_ov() if eris is None: eris = self.ao2mo() if max_memory is None: max_memory = self.max_memory if blksize is None: mem_avail = max_memory - lib.current_memory()[0] nocc, nvir, naux = eris.nocc, eris.nvir, eris.naux dsize = eris.dsize mem_blk = 2*naux * dsize/1e6 # ovL and ovL*chi0 blksize = max(1, min(max(nocc)*max(nvir), int(np.floor(mem_avail*0.7 / mem_blk)))) else: blksize = min(blksize, e_ov.size) diel = make_dielectric_matrix(omega, e_ov, f_ov, eris, blksize=blksize) return diel
if __name__ == '__main__': from pyscf import gto, dft # Closed-shell unrestricted RPA mol = gto.Mole() mol.verbose = 0 mol.atom = [ [8 , (0. , 0. , 0.)], [1 , (0. , -0.7571 , 0.5861)], [1 , (0. , 0.7571 , 0.5861)]] mol.basis = 'def2svp' mol.build() mol.verbose = 4 mf = dft.UKS(mol) mf.xc = 'pbe' mf.kernel() # Shall be identical to the restricted RPA result rpa = URPA(mf) rpa.verbose = 5 rpa.kernel() print ('RPA e_tot, e_hf, e_corr = ', rpa.e_tot, rpa.e_hf, rpa.e_corr) assert (abs(rpa.e_corr - -0.307830040357800) < 1e-6) assert (abs(rpa.e_tot - -76.26651423730257) < 1e-6) # Open-shell RPA mol = gto.Mole() mol.verbose = 0 mol.atom = 'F 0 0 0' mol.basis = 'def2-svp' mol.spin = 1 mol.build() mol.verbose = 4 mf = dft.UKS(mol) mf.xc = 'pbe0' mf.kernel() rpa = URPA(mf) rpa.verbose = 5 rpa.kernel() print ('RPA e_tot, e_hf, e_corr = ', rpa.e_tot, rpa.e_hf, rpa.e_corr) assert (abs(rpa.e_corr - -0.20980646878974454) < 1e-6) assert (abs(rpa.e_tot - -99.49455969299747) < 1e-6)