Source code for pyscf.gw.rpa

#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Tianyu Zhu <zhutianyu1991@gmail.com>
#

"""
Spin-restricted random phase approximation (direct RPA/dRPA in chemistry)
with N^4 scaling

Method:
    Main routines are based on GW-AC method described in:
    T. Zhu and G.K.-L. Chan, J. Chem. Theory. Comput. 17, 727-741 (2021)
    X. Ren et al., New J. Phys. 14, 053020 (2012)
"""

import numpy as np, scipy

from pyscf import lib
from pyscf.lib import logger
from pyscf.ao2mo import _ao2mo
from pyscf import df, scf
from pyscf.mp.mp2 import get_nocc, get_nmo, get_frozen_mask

einsum = lib.einsum

# ****************************************************************************
# core routines kernel
# ****************************************************************************

[docs] def kernel(rpa, mo_energy, mo_coeff, cderi_ov=None, nw=40, x0=0.5, verbose=logger.NOTE): """ RPA correlation and total energy Args: cderi_ov: Array-like object, Cholesky decomposed ERI in OV subspace. nw: number of frequency point on imaginary axis. x0: scaling factor for frequency grid. Returns: e_tot: RPA total energy e_hf: EXX energy e_corr: RPA correlation energy """ mf = rpa._scf # only support frozen core if rpa.frozen is not None: assert isinstance(rpa.frozen, int) assert rpa.frozen < np.min(rpa.nocc) # Get orbital number with_df = rpa.with_df naux = with_df.get_naoaux() norb = rpa._scf.mol.nao_nr() # Get memory information max_memory = max(0, rpa.max_memory * 0.9 - lib.current_memory()[0]) if max_memory < naux ** 2 / 1e6: logger.warn( rpa, 'Memory may not be enough! Available memory %d MB < %d MB', max_memory, naux ** 2 / 1e6 ) # AO -> MO transformation if cderi_ov is None: blksize = int(max_memory * 1e6 / (8 * norb ** 2)) blksize = min(naux, blksize) blksize = max(1, blksize) # logger.debug(rpa, 'cderi memory: %6d MB', naux * norb ** 2 * 8 / 1e6) # logger.debug(rpa, 'cderi_ov memory: %6d MB', naux * nocc * nvir * 8 / 1e6) logger.debug(rpa, 'ao2mo blksize = %d', blksize) if blksize == 1: logger.warn(rpa, 'Memory too small for ao2mo! blksize = 1') cderi_ov = rpa.ao2mo(mo_coeff, blksize=blksize) # Compute exact exchange energy (EXX) e_hf = _ene_hf(mf, with_df) e_ov = rpa.make_e_ov(mo_energy) # Compute RPA correlation energy e_corr = 0.0 # Determine block size for dielectric matrix blksize = int(max_memory * 1e6 / 8 / naux) blksize = max(blksize, 1) if blksize == 1: logger.warn(rpa, 'Memory too small for dielectric matrix! blksize = 1') logger.debug(rpa, 'diel blksize = %d', blksize) # Grids for numerical integration on imaginary axis for omega, weigh in zip(*_get_scaled_legendre_roots(nw, x0)): diel = rpa.make_dielectric_matrix(omega, e_ov, cderi_ov, blksize=blksize) factor = weigh / (2.0 * np.pi) e_corr += factor * np.log(np.linalg.det(np.eye(naux) - diel)) e_corr += factor * np.trace(diel) # Compute total energy e_tot = e_hf + e_corr logger.debug(rpa, ' RPA total energy = %s', e_tot) logger.debug(rpa, ' EXX energy = %s, RPA corr energy = %s', e_hf, e_corr) return e_tot, e_hf, e_corr
# **************************************************************************** # frequency integral quadrature, legendre, clenshaw_curtis # ****************************************************************************
[docs] def make_dielectric_matrix(omega, e_ov, cderi_ov, blksize=None): """ Compute dielectric matrix at a given frequency omega Args: omega : float, frequency e_ov : 1D array (nocc * nvir), orbital energy differences cderi_ov : 2D array (naux, nocc * nvir), Cholesky decomposed ERI in OV subspace. Returns: diel : 2D array (naux, naux), dielectric matrix """ assert blksize is not None naux, nov = cderi_ov.shape chi0 = (2.0 * e_ov / (omega ** 2 + e_ov ** 2)).ravel() diel = np.zeros((naux, naux)) for s in [slice(*x) for x in lib.prange(0, nov, blksize)]: v_ov = cderi_ov[:, s] diel += np.dot(v_ov * chi0[s], v_ov.T) v_ov = None return diel
def _get_scaled_legendre_roots(nw, x0=0.5): """ Scale nw Legendre roots, which lie in the interval [-1, 1], so that they lie in [0, inf) Ref: www.cond-mat.de/events/correl19/manuscripts/ren.pdf Returns: freqs : 1D array wts : 1D array """ freqs, wts = np.polynomial.legendre.leggauss(nw) freqs_new = x0 * (1.0 + freqs) / (1.0 - freqs) wts = wts * 2.0 * x0 / (1.0 - freqs)**2 return freqs_new, wts def _get_clenshaw_curtis_roots(nw): """ Clenshaw-Curtis quadrature on [0,inf) Ref: J. Chem. Phys. 132, 234114 (2010) Returns: freqs : 1D array wts : 1D array """ freqs = np.zeros(nw) wts = np.zeros(nw) a = 0.2 for w in range(nw): t = (w + 1.0) / nw * np.pi * 0.5 freqs[w] = a / np.tan(t) if w != nw - 1: wts[w] = a * np.pi * 0.50 / nw / (np.sin(t)**2) else: wts[w] = a * np.pi * 0.25 / nw / (np.sin(t)**2) return freqs[::-1], wts[::-1] def _ene_hf(mf=None, with_df=None): """ Args: mf: converged mean-field object, can be either HF or KS with_df: density fitting object Returns: e_hf: float, total Hartree-Fock energy """ assert mf.converged hf_obj = mf if not isinstance(mf, scf.hf.KohnShamDFT) else mf.to_hf() if not getattr(hf_obj, 'with_df', None): hf_obj = hf_obj.density_fit(with_df=with_df) dm = hf_obj.make_rdm1() e_hf = hf_obj.energy_elec(dm=dm)[0] e_hf += hf_obj.energy_nuc() return e_hf def _mo_energy_without_core(rpa, mo_energy): return mo_energy[get_frozen_mask(rpa)] def _mo_without_core(rpa, mo): return mo[:,get_frozen_mask(rpa)]
[docs] class DirectRPA(lib.StreamObject): _keys = { 'mol', 'frozen', 'with_df', 'mo_energy', 'mo_coeff', 'mo_occ', 'e_corr', 'e_hf', 'e_tot', } def __init__(self, mf, frozen=None, auxbasis=None): self.mol = mf.mol self._scf = mf self.verbose = self.mol.verbose self.stdout = self.mol.stdout self.max_memory = mf.max_memory self.frozen = frozen # DF-RPA must use density fitting integrals if getattr(mf, 'with_df', None): self.with_df = mf.with_df else: self.with_df = df.DF(mf.mol) if auxbasis: self.with_df.auxbasis = auxbasis else: self.with_df.auxbasis = df.make_auxbasis(mf.mol, mp2fit=True) ################################################## # don't modify the following attributes, they are not input options self._nocc = None self._nmo = None self.mo_energy = mf.mo_energy self.mo_coeff = mf.mo_coeff self.mo_occ = mf.mo_occ self.e_corr = None self.e_hf = None self.e_tot = None
[docs] def dump_flags(self): log = logger.Logger(self.stdout, self.verbose) log.info('') log.info('******** %s ********', self.__class__) log.info('method = %s', self.__class__.__name__) nocc = self.nocc nvir = self.nmo - nocc log.info('RPA nocc = %d, nvir = %d', nocc, nvir) if self.frozen is not None: log.info('frozen orbitals = %d', self.frozen) return self
@property def nocc(self): return self.get_nocc() @nocc.setter def nocc(self, n): self._nocc = n @property def nmo(self): return self.get_nmo() @nmo.setter def nmo(self, n): self._nmo = n get_nocc = get_nocc get_nmo = get_nmo get_frozen_mask = get_frozen_mask
[docs] def kernel(self, mo_energy=None, mo_coeff=None, cderi_ov=None, nw=40, x0=0.5): """ The kernel function for direct RPA """ cput0 = (logger.process_clock(), logger.perf_counter()) self.dump_flags() res = kernel( self, mo_energy, mo_coeff, cderi_ov=cderi_ov, nw=nw, x0=x0, verbose=self.verbose ) self.e_tot, self.e_hf, self.e_corr = res logger.timer(self, 'RPA', *cput0) return self.e_corr
[docs] def make_e_ov(self, mo_energy=None): """ Compute orbital energy differences """ if mo_energy is None: mo_energy = _mo_energy_without_core(self, self.mo_energy) nocc = self.nocc e_ov = (mo_energy[:nocc, None] - mo_energy[None, nocc:]).ravel() gap = (-e_ov.max(), ) logger.info(self, 'Lowest orbital energy difference: % 6.4e', np.min(gap)) if (np.min(gap) < 1e-3): logger.warn(rpa, 'RPA code not well-defined for degenerate systems!') logger.warn(rpa, 'Lowest orbital energy difference: % 6.4e', np.min(gap)) return e_ov
[docs] def make_dielectric_matrix(self, omega, e_ov=None, cderi_ov=None, blksize=None): """ Args: omega : float, frequency e_ov : 1D array (nocc * nvir), orbital energy differences mo_coeff : (nao, nmo), mean-field mo coefficient cderi_ov : (naux, nocc, nvir), Cholesky decomposed ERI in OV subspace. Returns: diel : 2D array (naux, naux), dielectric matrix """ assert e_ov is not None assert cderi_ov is not None blksize = blksize or max(e_ov.size) diel = 2.0 * make_dielectric_matrix( omega, e_ov, cderi_ov if isinstance(cderi_ov, np.ndarray) else cderi_ov["cderi_ov"], blksize=blksize ) return diel
[docs] def ao2mo(self, mo_coeff=None, blksize=None): if mo_coeff is None: mo_coeff = _mo_without_core(self, self.mo_coeff) nocc = self.nocc norb = self.nmo nvir = norb - nocc naux = self.with_df.get_naoaux() sov = (0, nocc, nocc, norb) # slice for OV block blksize = naux if blksize is None else blksize cderi_ov = None cput0 = (logger.process_clock(), logger.perf_counter()) if blksize >= naux or self.mol.incore_anyway: assert isinstance(self.with_df._cderi, np.ndarray) cderi_ov = _ao2mo.nr_e2( self.with_df._cderi, mo_coeff, sov, aosym='s2', out=cderi_ov ) logger.timer(self, 'incore ao2mo', *cput0) else: fswap = lib.H5TmpFile() fswap.create_dataset('cderi_ov', (naux, nocc * nvir)) q0 = 0 for cderi in self.with_df.loop(blksize=blksize): q1 = q0 + cderi.shape[0] v_ov = _ao2mo.nr_e2( cderi, mo_coeff, sov, aosym='s2' ) fswap['cderi_ov'][q0:q1] = v_ov v_ov = None q0 = q1 logger.timer(self, 'outcore ao2mo', *cput0) cderi_ov = fswap return cderi_ov
RPA = dRPA = DirectRPA if __name__ == '__main__': from pyscf import gto, dft mol = gto.Mole() mol.verbose = 4 mol.atom = [ [8 , (0. , 0. , 0.)], [1 , (0. , -0.7571 , 0.5861)], [1 , (0. , 0.7571 , 0.5861)]] mol.basis = 'def2svp' mol.build() mf = dft.RKS(mol) mf.xc = 'pbe' mf.kernel() rpa = RPA(mf) rpa.verbose = 6 nocc = rpa.nocc nvir = rpa.nmo - nocc norb = rpa.nmo e_ov = - (rpa.mo_energy[:nocc, None] - rpa.mo_energy[None, nocc:]).ravel() v_ov = rpa.ao2mo(rpa.mo_coeff, blksize=1) e_corr_0 = rpa.kernel(cderi_ov=v_ov) print ('RPA e_tot, e_hf, e_corr = ', rpa.e_tot, rpa.e_hf, rpa.e_corr) assert (abs(rpa.e_corr - -0.307830040357800) < 1e-6) assert (abs(rpa.e_tot - -76.26651423730257) < 1e-6) # Another implementation of direct RPA N^6 v_ov = np.array(v_ov["cderi_ov"]) a = e_ov * np.eye(nocc * nvir) + 2 * np.dot(v_ov.T, v_ov) b = 2 * np.dot(v_ov.T, v_ov) apb = a + b amb = a - b c = np.dot(amb, apb) e_corr_1 = 0.5 * np.trace( scipy.linalg.sqrtm(c) - a ) assert abs(e_corr_0 - e_corr_1) < 1e-8