Source code for pyscf.grad.uks

#!/usr/bin/env python
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''Non-relativistic UKS analytical nuclear gradients'''


import numpy
from pyscf import lib
from pyscf.lib import logger
from pyscf.grad import rks as rks_grad
from pyscf.grad import uhf as uhf_grad
from pyscf.dft import numint, gen_grid
from pyscf import __config__


[docs] def get_veff(ks_grad, mol=None, dm=None): ''' First order derivative of DFT effective potential matrix (wrt electron coordinates) Args: ks_grad : grad.uhf.Gradients or grad.uks.Gradients object ''' if mol is None: mol = ks_grad.mol if dm is None: dm = ks_grad.base.make_rdm1() t0 = (logger.process_clock(), logger.perf_counter()) mf = ks_grad.base ni = mf._numint grids, nlcgrids = rks_grad._initialize_grids(ks_grad) ni = mf._numint mem_now = lib.current_memory()[0] max_memory = max(2000, ks_grad.max_memory*.9-mem_now) if ks_grad.grid_response: exc, vxc = get_vxc_full_response(ni, mol, grids, mf.xc, dm, max_memory=max_memory, verbose=ks_grad.verbose) if mf.do_nlc(): if ni.libxc.is_nlc(mf.xc): xc = mf.xc else: xc = mf.nlc enlc, vnlc = rks_grad.get_nlc_vxc_full_response( ni, mol, nlcgrids, xc, dm[0]+dm[1], max_memory=max_memory, verbose=ks_grad.verbose) exc += enlc vxc += vnlc logger.debug1(ks_grad, 'sum(grids response) %s', exc.sum(axis=0)) else: exc, vxc = get_vxc(ni, mol, grids, mf.xc, dm, max_memory=max_memory, verbose=ks_grad.verbose) if mf.do_nlc(): if ni.libxc.is_nlc(mf.xc): xc = mf.xc else: xc = mf.nlc enlc, vnlc = rks_grad.get_nlc_vxc( ni, mol, nlcgrids, xc, dm[0]+dm[1], max_memory=max_memory, verbose=ks_grad.verbose) vxc += vnlc t0 = logger.timer(ks_grad, 'vxc', *t0) if not ni.libxc.is_hybrid_xc(mf.xc): vj = ks_grad.get_j(mol, dm) vxc += vj[0] + vj[1] else: omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, spin=mol.spin) vj, vk = ks_grad.get_jk(mol, dm) vk *= hyb if omega != 0: vk += ks_grad.get_k(mol, dm, omega=omega) * (alpha - hyb) vxc += vj[0] + vj[1] - vk return lib.tag_array(vxc, exc1_grid=exc)
[docs] def get_vxc(ni, mol, grids, xc_code, dms, relativity=0, hermi=1, max_memory=2000, verbose=None): xctype = ni._xc_type(xc_code) make_rho, nset, nao = ni._gen_rho_evaluator(mol, dms, hermi, False, grids) ao_loc = mol.ao_loc_nr() vmat = numpy.zeros((2,3,nao,nao)) if xctype == 'LDA': ao_deriv = 1 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): rho_a = make_rho(0, ao[0], mask, xctype) rho_b = make_rho(1, ao[0], mask, xctype) vxc = ni.eval_xc_eff(xc_code, (rho_a,rho_b), 1, xctype=xctype)[1] wv = weight * vxc[:,0] aow = numint._scale_ao(ao[0], wv[0]) rks_grad._d1_dot_(vmat[0], mol, ao[1:4], aow, mask, ao_loc, True) aow = numint._scale_ao(ao[0], wv[1]) rks_grad._d1_dot_(vmat[1], mol, ao[1:4], aow, mask, ao_loc, True) elif xctype == 'GGA': ao_deriv = 2 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): rho_a = make_rho(0, ao[:4], mask, xctype) rho_b = make_rho(1, ao[:4], mask, xctype) vxc = ni.eval_xc_eff(xc_code, (rho_a,rho_b), 1, xctype=xctype)[1] wv = weight * vxc wv[:,0] *= .5 rks_grad._gga_grad_sum_(vmat[0], mol, ao, wv[0], mask, ao_loc) rks_grad._gga_grad_sum_(vmat[1], mol, ao, wv[1], mask, ao_loc) elif xctype == 'NLC': raise NotImplementedError('NLC') elif xctype == 'MGGA': ao_deriv = 2 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): rho_a = make_rho(0, ao[:10], mask, xctype) rho_b = make_rho(1, ao[:10], mask, xctype) vxc = ni.eval_xc_eff(xc_code, (rho_a,rho_b), 1, xctype=xctype)[1] wv = weight * vxc wv[:,0] *= .5 wv[:,4] *= .5 rks_grad._gga_grad_sum_(vmat[0], mol, ao, wv[0], mask, ao_loc) rks_grad._gga_grad_sum_(vmat[1], mol, ao, wv[1], mask, ao_loc) rks_grad._tau_grad_dot_(vmat[0], mol, ao, wv[0,4], mask, ao_loc, True) rks_grad._tau_grad_dot_(vmat[1], mol, ao, wv[1,4], mask, ao_loc, True) exc = numpy.zeros((mol.natm,3)) # - sign because nabla_X = -nabla_x return exc, -vmat
[docs] def get_vxc_full_response(ni, mol, grids, xc_code, dms, relativity=0, hermi=1, max_memory=2000, verbose=None): '''Full response including the response of the grids''' xctype = ni._xc_type(xc_code) make_rho, nset, nao = ni._gen_rho_evaluator(mol, dms, hermi, False, grids) ao_loc = mol.ao_loc_nr() aoslices = mol.aoslice_by_atom() excsum = 0 vmat = numpy.zeros((2,3,nao,nao)) if xctype == 'LDA': ao_deriv = 1 for atm_id, (coords, weight, weight1) \ in enumerate(rks_grad.grids_response_cc(grids)): sh0, sh1 = aoslices[atm_id][:2] mask = gen_grid.make_mask(mol, coords) ao = ni.eval_ao(mol, coords, deriv=ao_deriv, non0tab=mask, cutoff=grids.cutoff) rho_a = make_rho(0, ao[0], mask, xctype) rho_b = make_rho(1, ao[0], mask, xctype) exc, vxc = ni.eval_xc_eff(xc_code, (rho_a,rho_b), 1, xctype=xctype)[:2] wv = weight * vxc[:,0] vtmp = numpy.zeros((3,nao,nao)) aow = numint._scale_ao(ao[0], wv[0]) rks_grad._d1_dot_(vtmp, mol, ao[1:4], aow, mask, ao_loc, True) vmat[0] += vtmp excsum += numpy.einsum('r,r,nxr->nx', exc, rho_a+rho_b, weight1) excsum[atm_id] += numpy.einsum('xij,ji->x', vtmp, dms[0]) * 2 vtmp = numpy.zeros((3,nao,nao)) aow = numint._scale_ao(ao[0], wv[1]) rks_grad._d1_dot_(vtmp, mol, ao[1:4], aow, mask, ao_loc, True) vmat[1] += vtmp excsum[atm_id] += numpy.einsum('xij,ji->x', vtmp, dms[1]) * 2 elif xctype == 'GGA': ao_deriv = 2 for atm_id, (coords, weight, weight1) \ in enumerate(rks_grad.grids_response_cc(grids)): sh0, sh1 = aoslices[atm_id][:2] mask = gen_grid.make_mask(mol, coords) ao = ni.eval_ao(mol, coords, deriv=ao_deriv, non0tab=mask, cutoff=grids.cutoff) rho_a = make_rho(0, ao[:4], mask, xctype) rho_b = make_rho(1, ao[:4], mask, xctype) exc, vxc = ni.eval_xc_eff(xc_code, (rho_a,rho_b), 1, xctype=xctype)[:2] wv = weight * vxc wv[:,0] *= .5 vtmp = numpy.zeros((3,nao,nao)) rks_grad._gga_grad_sum_(vtmp, mol, ao, wv[0], mask, ao_loc) vmat[0] += vtmp excsum += numpy.einsum('r,r,nxr->nx', exc, rho_a[0]+rho_b[0], weight1) excsum[atm_id] += numpy.einsum('xij,ji->x', vtmp, dms[0]) * 2 vtmp = numpy.zeros((3,nao,nao)) rks_grad._gga_grad_sum_(vtmp, mol, ao, wv[1], mask, ao_loc) vmat[1] += vtmp excsum[atm_id] += numpy.einsum('xij,ji->x', vtmp, dms[1]) * 2 elif xctype == 'NLC': raise NotImplementedError('NLC') elif xctype == 'MGGA': ao_deriv = 2 for atm_id, (coords, weight, weight1) \ in enumerate(rks_grad.grids_response_cc(grids)): sh0, sh1 = aoslices[atm_id][:2] mask = gen_grid.make_mask(mol, coords) ao = ni.eval_ao(mol, coords, deriv=ao_deriv, non0tab=mask, cutoff=grids.cutoff) rho_a = make_rho(0, ao[:10], mask, xctype) rho_b = make_rho(1, ao[:10], mask, xctype) exc, vxc = ni.eval_xc_eff(xc_code, (rho_a,rho_b), 1, xctype=xctype)[:2] wv = weight * vxc wv[:,0] *= .5 wv[:,4] *= .5 vtmp = numpy.zeros((3,nao,nao)) rks_grad._gga_grad_sum_(vtmp, mol, ao, wv[0], mask, ao_loc) rks_grad._tau_grad_dot_(vtmp, mol, ao, wv[0,4], mask, ao_loc, True) vmat[0] += vtmp excsum += numpy.einsum('r,r,nxr->nx', exc, rho_a[0]+rho_b[0], weight1) excsum[atm_id] += numpy.einsum('xij,ji->x', vtmp, dms[0]) * 2 vtmp = numpy.zeros((3,nao,nao)) rks_grad._gga_grad_sum_(vtmp, mol, ao, wv[1], mask, ao_loc) rks_grad._tau_grad_dot_(vtmp, mol, ao, wv[1,4], mask, ao_loc, True) vmat[1] += vtmp excsum[atm_id] += numpy.einsum('xij,ji->x', vtmp, dms[1]) * 2 # - sign because nabla_X = -nabla_x return excsum, -vmat
[docs] class Gradients(uhf_grad.Gradients): grid_response = getattr(__config__, 'grad_uks_Gradients_grid_response', False) _keys = {'grid_response', 'grids', 'nlcgrids'} def __init__(self, mf): uhf_grad.Gradients.__init__(self, mf) self.grids = None self.nlcgrids = None
[docs] def dump_flags(self, verbose=None): uhf_grad.Gradients.dump_flags(self, verbose) logger.info(self, 'grid_response = %s', self.grid_response) return self
get_veff = get_veff
[docs] def extra_force(self, atom_id, envs): '''Hook for extra contributions in analytical gradients. Contributions like the response of auxiliary basis in density fitting method, the grid response in DFT numerical integration can be put in this function. ''' if self.grid_response: vhf = envs['vhf'] log = envs['log'] log.debug('grids response for atom %d %s', atom_id, vhf.exc1_grid[atom_id]) return vhf.exc1_grid[atom_id] else: return 0
Grad = Gradients from pyscf import dft dft.uks.UKS.Gradients = dft.uks_symm.UKS.Gradients = lib.class_as_method(Gradients)