Source code for pyscf.grad.tdrhf

#!/usr/bin/env python
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#
# Ref:
# J. Chem. Phys. 117, 7433
#


from functools import reduce
import numpy
from pyscf import gto
from pyscf import lib
from pyscf.lib import logger
from pyscf.grad import rhf as rhf_grad
from pyscf.scf import cphf
from pyscf import __config__


[docs] def grad_elec(td_grad, x_y, singlet=True, atmlst=None, max_memory=2000, verbose=logger.INFO): ''' Electronic part of TDA, TDHF nuclear gradients Args: td_grad : grad.tdrhf.Gradients or grad.tdrks.Gradients object. x_y : a two-element list of numpy arrays TDDFT X and Y amplitudes. If Y is set to 0, this function computes TDA energy gradients. ''' log = logger.new_logger(td_grad, verbose) time0 = logger.process_clock(), logger.perf_counter() mol = td_grad.mol mf = td_grad.base._scf mo_coeff = mf.mo_coeff mo_energy = mf.mo_energy mo_occ = mf.mo_occ nao, nmo = mo_coeff.shape nocc = (mo_occ>0).sum() nvir = nmo - nocc x, y = x_y xpy = (x+y).reshape(nocc,nvir).T xmy = (x-y).reshape(nocc,nvir).T orbv = mo_coeff[:,nocc:] orbo = mo_coeff[:,:nocc] dvv = numpy.einsum('ai,bi->ab', xpy, xpy) + numpy.einsum('ai,bi->ab', xmy, xmy) doo =-numpy.einsum('ai,aj->ij', xpy, xpy) - numpy.einsum('ai,aj->ij', xmy, xmy) dmxpy = reduce(numpy.dot, (orbv, xpy, orbo.T)) dmxmy = reduce(numpy.dot, (orbv, xmy, orbo.T)) dmzoo = reduce(numpy.dot, (orbo, doo, orbo.T)) dmzoo+= reduce(numpy.dot, (orbv, dvv, orbv.T)) vj, vk = mf.get_jk(mol, (dmzoo, dmxpy+dmxpy.T, dmxmy-dmxmy.T), hermi=0) veff0doo = vj[0] * 2 - vk[0] wvo = reduce(numpy.dot, (orbv.T, veff0doo, orbo)) * 2 if singlet: veff = vj[1] * 2 - vk[1] else: veff = -vk[1] veff0mop = reduce(numpy.dot, (mo_coeff.T, veff, mo_coeff)) wvo -= numpy.einsum('ki,ai->ak', veff0mop[:nocc,:nocc], xpy) * 2 wvo += numpy.einsum('ac,ai->ci', veff0mop[nocc:,nocc:], xpy) * 2 veff = -vk[2] veff0mom = reduce(numpy.dot, (mo_coeff.T, veff, mo_coeff)) wvo -= numpy.einsum('ki,ai->ak', veff0mom[:nocc,:nocc], xmy) * 2 wvo += numpy.einsum('ac,ai->ci', veff0mom[nocc:,nocc:], xmy) * 2 # set singlet=None, generate function for CPHF type response kernel vresp = mf.gen_response(singlet=None, hermi=1) def fvind(x): # For singlet, closed shell ground state dm = reduce(numpy.dot, (orbv, x.reshape(nvir,nocc)*2, orbo.T)) v1ao = vresp(dm+dm.T) return reduce(numpy.dot, (orbv.T, v1ao, orbo)).ravel() z1 = cphf.solve(fvind, mo_energy, mo_occ, wvo, max_cycle=td_grad.cphf_max_cycle, tol=td_grad.cphf_conv_tol)[0] z1 = z1.reshape(nvir,nocc) time1 = log.timer('Z-vector using CPHF solver', *time0) z1ao = reduce(numpy.dot, (orbv, z1, orbo.T)) veff = vresp(z1ao+z1ao.T) im0 = numpy.zeros((nmo,nmo)) im0[:nocc,:nocc] = reduce(numpy.dot, (orbo.T, veff0doo+veff, orbo)) im0[:nocc,:nocc]+= numpy.einsum('ak,ai->ki', veff0mop[nocc:,:nocc], xpy) im0[:nocc,:nocc]+= numpy.einsum('ak,ai->ki', veff0mom[nocc:,:nocc], xmy) im0[nocc:,nocc:] = numpy.einsum('ci,ai->ac', veff0mop[nocc:,:nocc], xpy) im0[nocc:,nocc:]+= numpy.einsum('ci,ai->ac', veff0mom[nocc:,:nocc], xmy) im0[nocc:,:nocc] = numpy.einsum('ki,ai->ak', veff0mop[:nocc,:nocc], xpy)*2 im0[nocc:,:nocc]+= numpy.einsum('ki,ai->ak', veff0mom[:nocc,:nocc], xmy)*2 zeta = lib.direct_sum('i+j->ij', mo_energy, mo_energy) * .5 zeta[nocc:,:nocc] = mo_energy[:nocc] zeta[:nocc,nocc:] = mo_energy[nocc:] dm1 = numpy.zeros((nmo,nmo)) dm1[:nocc,:nocc] = doo dm1[nocc:,nocc:] = dvv dm1[nocc:,:nocc] = z1 dm1[:nocc,:nocc] += numpy.eye(nocc)*2 # for ground state im0 = reduce(numpy.dot, (mo_coeff, im0+zeta*dm1, mo_coeff.T)) # Initialize hcore_deriv with the underlying SCF object because some # extensions (e.g. QM/MM, solvent) modifies the SCF object only. mf_grad = td_grad.base._scf.nuc_grad_method() hcore_deriv = mf_grad.hcore_generator(mol) s1 = mf_grad.get_ovlp(mol) dmz1doo = z1ao + dmzoo oo0 = reduce(numpy.dot, (orbo, orbo.T)) vj, vk = td_grad.get_jk(mol, (oo0, dmz1doo+dmz1doo.T, dmxpy+dmxpy.T, dmxmy-dmxmy.T)) vj = vj.reshape(-1,3,nao,nao) vk = vk.reshape(-1,3,nao,nao) vhf1 = -vk if singlet: vhf1 += vj * 2 else: vhf1[:2] += vj[:2]*2 time1 = log.timer('2e AO integral derivatives', *time1) if atmlst is None: atmlst = range(mol.natm) offsetdic = mol.offset_nr_by_atom() de = numpy.zeros((len(atmlst),3)) for k, ia in enumerate(atmlst): shl0, shl1, p0, p1 = offsetdic[ia] # Ground state gradients h1ao = hcore_deriv(ia) h1ao[:,p0:p1] += vhf1[0,:,p0:p1] h1ao[:,:,p0:p1] += vhf1[0,:,p0:p1].transpose(0,2,1) # oo0*2 for doubly occupied orbitals de[k] = numpy.einsum('xpq,pq->x', h1ao, oo0) * 2 de[k] += numpy.einsum('xpq,pq->x', h1ao, dmz1doo) de[k] -= numpy.einsum('xpq,pq->x', s1[:,p0:p1], im0[p0:p1]) de[k] -= numpy.einsum('xqp,pq->x', s1[:,p0:p1], im0[:,p0:p1]) de[k] += numpy.einsum('xij,ij->x', vhf1[1,:,p0:p1], oo0[p0:p1]) de[k] += numpy.einsum('xij,ij->x', vhf1[2,:,p0:p1], dmxpy[p0:p1,:]) * 2 de[k] += numpy.einsum('xij,ij->x', vhf1[3,:,p0:p1], dmxmy[p0:p1,:]) * 2 de[k] += numpy.einsum('xji,ij->x', vhf1[2,:,p0:p1], dmxpy[:,p0:p1]) * 2 de[k] -= numpy.einsum('xji,ij->x', vhf1[3,:,p0:p1], dmxmy[:,p0:p1]) * 2 de[k] += td_grad.extra_force(ia, locals()) log.timer('TDHF nuclear gradients', *time0) return de
[docs] def as_scanner(td_grad, state=1): '''Generating a nuclear gradients scanner/solver (for geometry optimizer). The returned solver is a function. This function requires one argument "mol" as input and returns energy and first order nuclear derivatives. The solver will automatically use the results of last calculation as the initial guess of the new calculation. All parameters assigned in the nuc-grad object and SCF object (DIIS, conv_tol, max_memory etc) are automatically applied in the solver. Note scanner has side effects. It may change many underlying objects (_scf, with_df, with_x2c, ...) during calculation. Examples:: >>> from pyscf import gto, scf, tdscf, grad >>> mol = gto.M(atom='H 0 0 0; F 0 0 1') >>> td_grad_scanner = scf.RHF(mol).apply(tdscf.TDA).nuc_grad_method().as_scanner() >>> e_tot, grad = td_grad_scanner(gto.M(atom='H 0 0 0; F 0 0 1.1')) >>> e_tot, grad = td_grad_scanner(gto.M(atom='H 0 0 0; F 0 0 1.5')) ''' from pyscf import gto if isinstance(td_grad, lib.GradScanner): return td_grad if state == 0: return td_grad.base._scf.nuc_grad_method().as_scanner() logger.info(td_grad, 'Create scanner for %s', td_grad.__class__) name = td_grad.__class__.__name__ + TDSCF_GradScanner.__name_mixin__ return lib.set_class(TDSCF_GradScanner(td_grad, state), (TDSCF_GradScanner, td_grad.__class__), name)
[docs] class TDSCF_GradScanner(lib.GradScanner): _keys = {'e_tot'} def __init__(self, g, state): lib.GradScanner.__init__(self, g) if state is not None: self.state = state def __call__(self, mol_or_geom, state=None, **kwargs): if isinstance(mol_or_geom, gto.MoleBase): assert mol_or_geom.__class__ == gto.Mole mol = mol_or_geom else: mol = self.mol.set_geom_(mol_or_geom, inplace=False) self.reset(mol) if state is None: state = self.state else: self.state = state td_scanner = self.base td_scanner(mol) # TODO: Check root flip. Maybe avoid the initial guess in TDHF otherwise # large error may be found in the excited states amplitudes de = self.kernel(state=state, **kwargs) e_tot = self.e_tot[state-1] return e_tot, de @property def converged(self): td_scanner = self.base return all((td_scanner._scf.converged, td_scanner.converged[self.state]))
[docs] class Gradients(rhf_grad.GradientsBase): cphf_max_cycle = getattr(__config__, 'grad_tdrhf_Gradients_cphf_max_cycle', 20) cphf_conv_tol = getattr(__config__, 'grad_tdrhf_Gradients_cphf_conv_tol', 1e-8) _keys = { 'cphf_max_cycle', 'cphf_conv_tol', 'mol', 'base', 'chkfile', 'state', 'atmlst', 'de', } def __init__(self, td): self.verbose = td.verbose self.stdout = td.stdout self.mol = td.mol self.base = td self.chkfile = td.chkfile self.max_memory = td.max_memory self.state = 1 # of which the gradients to be computed. self.atmlst = None self.de = None
[docs] def dump_flags(self, verbose=None): log = logger.new_logger(self, verbose) log.info('\n') log.info('******** LR %s gradients for %s ********', self.base.__class__, self.base._scf.__class__) log.info('cphf_conv_tol = %g', self.cphf_conv_tol) log.info('cphf_max_cycle = %d', self.cphf_max_cycle) log.info('chkfile = %s', self.chkfile) log.info('State ID = %d', self.state) log.info('max_memory %d MB (current use %d MB)', self.max_memory, lib.current_memory()[0]) log.info('\n') return self
[docs] @lib.with_doc(grad_elec.__doc__) def grad_elec(self, xy, singlet, atmlst=None): return grad_elec(self, xy, singlet, atmlst, self.max_memory, self.verbose)
[docs] def kernel(self, xy=None, state=None, singlet=None, atmlst=None): ''' Args: state : int Excited state ID. state = 1 means the first excited state. ''' if xy is None: if state is None: state = self.state else: self.state = state if state == 0: logger.warn(self, 'state=0 found in the input. ' 'Gradients of ground state is computed.') return self.base._scf.nuc_grad_method().kernel(atmlst=atmlst) xy = self.base.xy[state-1] if singlet is None: singlet = self.base.singlet if atmlst is None: atmlst = self.atmlst else: self.atmlst = atmlst if self.verbose >= logger.WARN: self.check_sanity() if self.verbose >= logger.INFO: self.dump_flags() de = self.grad_elec(xy, singlet, atmlst) self.de = de = de + self.grad_nuc(atmlst=atmlst) if self.mol.symmetry: self.de = self.symmetrize(self.de, atmlst) self._finalize() return self.de
# Calling the underlying SCF nuclear gradients because it may be modified # by external modules (e.g. QM/MM, solvent)
[docs] def grad_nuc(self, mol=None, atmlst=None): mf_grad = self.base._scf.nuc_grad_method() return mf_grad.grad_nuc(mol, atmlst)
def _finalize(self): if self.verbose >= logger.NOTE: logger.note(self, '--------- %s gradients for state %d ----------', self.base.__class__.__name__, self.state) self._write(self.mol, self.de, self.atmlst) logger.note(self, '----------------------------------------------') as_scanner = as_scanner to_gpu = lib.to_gpu
Grad = Gradients from pyscf import tdscf tdscf.rhf.TDA.Gradients = tdscf.rhf.TDHF.Gradients = lib.class_as_method(Gradients)