Source code for pyscf.grad.rks

#!/usr/bin/env python
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''Non-relativistic RKS analytical nuclear gradients'''


import numpy
from pyscf import gto
from pyscf import lib
from pyscf.lib import logger
from pyscf.grad import rhf as rhf_grad
from pyscf.dft import numint, radi, gen_grid, xc_deriv
from pyscf import __config__
import ctypes

libdft = lib.load_library('libdft')


[docs] def get_veff(ks_grad, mol=None, dm=None): ''' First order derivative of DFT effective potential matrix (wrt electron coordinates) Args: ks_grad : grad.uhf.Gradients or grad.uks.Gradients object ''' if mol is None: mol = ks_grad.mol if dm is None: dm = ks_grad.base.make_rdm1() t0 = (logger.process_clock(), logger.perf_counter()) mf = ks_grad.base ni = mf._numint grids, nlcgrids = _initialize_grids(ks_grad) mem_now = lib.current_memory()[0] max_memory = max(2000, ks_grad.max_memory*.9-mem_now) if ks_grad.grid_response: exc, vxc = get_vxc_full_response(ni, mol, grids, mf.xc, dm, max_memory=max_memory, verbose=ks_grad.verbose) if mf.do_nlc(): if ni.libxc.is_nlc(mf.xc): xc = mf.xc else: xc = mf.nlc enlc, vnlc = get_nlc_vxc_full_response( ni, mol, nlcgrids, xc, dm, max_memory=max_memory, verbose=ks_grad.verbose) exc += enlc vxc += vnlc logger.debug1(ks_grad, 'sum(grids response) %s', exc.sum(axis=0)) else: exc, vxc = get_vxc(ni, mol, grids, mf.xc, dm, max_memory=max_memory, verbose=ks_grad.verbose) if mf.do_nlc(): if ni.libxc.is_nlc(mf.xc): xc = mf.xc else: xc = mf.nlc enlc, vnlc = get_nlc_vxc( ni, mol, nlcgrids, xc, dm, max_memory=max_memory, verbose=ks_grad.verbose) vxc += vnlc t0 = logger.timer(ks_grad, 'vxc', *t0) if not ni.libxc.is_hybrid_xc(mf.xc): vj = ks_grad.get_j(mol, dm) vxc += vj else: omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, spin=mol.spin) vj, vk = ks_grad.get_jk(mol, dm) vk *= hyb if omega != 0: vk += ks_grad.get_k(mol, dm, omega=omega) * (alpha - hyb) vxc += vj - vk * .5 return lib.tag_array(vxc, exc1_grid=exc)
def _initialize_grids(ks_grad): mf = ks_grad.base if ks_grad.grids is not None: grids = ks_grad.grids else: grids = mf.grids if grids.coords is None: grids.build(with_non0tab=True) nlcgrids = None if mf.do_nlc(): if ks_grad.nlcgrids is not None: nlcgrids = ks_grad.nlcgrids else: nlcgrids = mf.nlcgrids if nlcgrids.coords is None: nlcgrids.build(with_non0tab=True) return grids, nlcgrids
[docs] def get_vxc(ni, mol, grids, xc_code, dms, relativity=0, hermi=1, max_memory=2000, verbose=None): xctype = ni._xc_type(xc_code) make_rho, nset, nao = ni._gen_rho_evaluator(mol, dms, hermi, False, grids) ao_loc = mol.ao_loc_nr() vmat = numpy.zeros((nset,3,nao,nao)) if xctype == 'LDA': ao_deriv = 1 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): for idm in range(nset): rho = make_rho(idm, ao[0], mask, xctype) vxc = ni.eval_xc_eff(xc_code, rho, 1, xctype=xctype)[1] wv = weight * vxc[0] aow = numint._scale_ao(ao[0], wv) _d1_dot_(vmat[idm], mol, ao[1:4], aow, mask, ao_loc, True) elif xctype == 'GGA': ao_deriv = 2 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): for idm in range(nset): rho = make_rho(idm, ao[:4], mask, xctype) vxc = ni.eval_xc_eff(xc_code, rho, 1, xctype=xctype)[1] wv = weight * vxc wv[0] *= .5 _gga_grad_sum_(vmat[idm], mol, ao, wv, mask, ao_loc) elif xctype == 'MGGA': ao_deriv = 2 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): for idm in range(nset): rho = make_rho(idm, ao[:10], mask, xctype) vxc = ni.eval_xc_eff(xc_code, rho, 1, xctype=xctype)[1] wv = weight * vxc wv[0] *= .5 wv[4] *= .5 # for the factor 1/2 in tau _gga_grad_sum_(vmat[idm], mol, ao, wv, mask, ao_loc) _tau_grad_dot_(vmat[idm], mol, ao, wv[4], mask, ao_loc, True) exc = None if nset == 1: vmat = vmat[0] # - sign because nabla_X = -nabla_x return exc, -vmat
[docs] def get_nlc_vxc(ni, mol, grids, xc_code, dm, relativity=0, hermi=1, max_memory=2000, verbose=None): make_rho, nset, nao = ni._gen_rho_evaluator(mol, dm, hermi, False, grids) assert nset == 1 ao_loc = mol.ao_loc_nr() vmat = numpy.zeros((3,nao,nao)) nlc_coefs = ni.nlc_coeff(xc_code) if len(nlc_coefs) != 1: raise NotImplementedError('Additive NLC') nlc_pars, fac = nlc_coefs[0] ao_deriv = 2 vvrho = [] for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): vvrho.append(make_rho(0, ao[:4], mask, 'GGA')) rho = numpy.hstack(vvrho) vxc = numint._vv10nlc(rho, grids.coords, rho, grids.weights, grids.coords, nlc_pars)[1] vv_vxc = xc_deriv.transform_vxc(rho, vxc, 'GGA', spin=0) p1 = 0 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): p0, p1 = p1, p1 + weight.size wv = vv_vxc[:,p0:p1] * weight wv[0] *= .5 # *.5 because vmat + vmat.T at the end _gga_grad_sum_(vmat, mol, ao, wv, mask, ao_loc) exc = None # - sign because nabla_X = -nabla_x return exc, -vmat
def _make_dR_dao_w(ao, wv): #:aow = numpy.einsum('npi,p->npi', ao[1:4], wv[0]) aow = [ numint._scale_ao(ao[1], wv[0]), # dX nabla_x numint._scale_ao(ao[2], wv[0]), # dX nabla_y numint._scale_ao(ao[3], wv[0]), # dX nabla_z ] # XX, XY, XZ = 4, 5, 6 # YX, YY, YZ = 5, 7, 8 # ZX, ZY, ZZ = 6, 8, 9 aow[0] += numint._scale_ao(ao[4], wv[1]) # dX nabla_x aow[0] += numint._scale_ao(ao[5], wv[2]) # dX nabla_y aow[0] += numint._scale_ao(ao[6], wv[3]) # dX nabla_z aow[1] += numint._scale_ao(ao[5], wv[1]) # dY nabla_x aow[1] += numint._scale_ao(ao[7], wv[2]) # dY nabla_y aow[1] += numint._scale_ao(ao[8], wv[3]) # dY nabla_z aow[2] += numint._scale_ao(ao[6], wv[1]) # dZ nabla_x aow[2] += numint._scale_ao(ao[8], wv[2]) # dZ nabla_y aow[2] += numint._scale_ao(ao[9], wv[3]) # dZ nabla_z return aow def _d1_dot_(vmat, mol, ao1, ao2, mask, ao_loc, dR1_on_bra=True): shls_slice = (0, mol.nbas) if dR1_on_bra: vmat[0] += numint._dot_ao_ao(mol, ao1[0], ao2, mask, shls_slice, ao_loc) vmat[1] += numint._dot_ao_ao(mol, ao1[1], ao2, mask, shls_slice, ao_loc) vmat[2] += numint._dot_ao_ao(mol, ao1[2], ao2, mask, shls_slice, ao_loc) else: vmat[0] += numint._dot_ao_ao(mol, ao1, ao2[0], mask, shls_slice, ao_loc) vmat[1] += numint._dot_ao_ao(mol, ao1, ao2[1], mask, shls_slice, ao_loc) vmat[2] += numint._dot_ao_ao(mol, ao1, ao2[2], mask, shls_slice, ao_loc) def _gga_grad_sum_(vmat, mol, ao, wv, mask, ao_loc): #:aow = numpy.einsum('npi,np->pi', ao[:4], wv[:4]) aow = numint._scale_ao(ao[:4], wv[:4]) _d1_dot_(vmat, mol, ao[1:4], aow, mask, ao_loc, True) aow = _make_dR_dao_w(ao, wv[:4]) _d1_dot_(vmat, mol, aow, ao[0], mask, ao_loc, True) return vmat # XX, XY, XZ = 4, 5, 6 # YX, YY, YZ = 5, 7, 8 # ZX, ZY, ZZ = 6, 8, 9 def _tau_grad_dot_(vmat, mol, ao, wv, mask, ao_loc, dR1_on_bra=True): '''The tau part of MGGA functional''' aow = numint._scale_ao(ao[1], wv) _d1_dot_(vmat, mol, [ao[4], ao[5], ao[6]], aow, mask, ao_loc, True) aow = numint._scale_ao(ao[2], wv, aow) _d1_dot_(vmat, mol, [ao[5], ao[7], ao[8]], aow, mask, ao_loc, True) aow = numint._scale_ao(ao[3], wv, aow) _d1_dot_(vmat, mol, [ao[6], ao[8], ao[9]], aow, mask, ao_loc, True) def _vv10nlc_grad(rho, coords, vvrho, vvweight, vvcoords, nlc_pars): # VV10 gradient term from Vydrov and Van Voorhis 2010 eq. 25-26 # https://doi.org/10.1063/1.3521275 thresh=1e-8 #output exc=numpy.zeros((rho[0,:].size,3)) #outer grid needs threshing threshind=rho[0,:]>=thresh coords=coords[threshind] R=rho[0,:][threshind] Gx=rho[1,:][threshind] Gy=rho[2,:][threshind] Gz=rho[3,:][threshind] G=Gx**2.+Gy**2.+Gz**2. #inner grid needs threshing innerthreshind=vvrho[0,:]>=thresh vvcoords=vvcoords[innerthreshind] vvweight=vvweight[innerthreshind] Rp=vvrho[0,:][innerthreshind] RpW=Rp*vvweight Gxp=vvrho[1,:][innerthreshind] Gyp=vvrho[2,:][innerthreshind] Gzp=vvrho[3,:][innerthreshind] Gp=Gxp**2.+Gyp**2.+Gzp**2. #constants and parameters Pi=numpy.pi Pi43=4.*Pi/3. Bvv, Cvv = nlc_pars Kvv=Bvv*1.5*Pi*((9.*Pi)**(-1./6.)) Beta=((3./(Bvv*Bvv))**(0.75))/32. #inner grid W0p=Gp/(Rp*Rp) W0p=Cvv*W0p*W0p W0p=(W0p+Pi43*Rp)**0.5 Kp=Kvv*(Rp**(1./6.)) #outer grid W0tmp=G/(R**2) W0tmp=Cvv*W0tmp*W0tmp W0=(W0tmp+Pi43*R)**0.5 K=Kvv*(R**(1./6.)) vvcoords = numpy.asarray(vvcoords, order='C') coords = numpy.asarray(coords, order='C') F = numpy.empty(R.shape +(3,), order='C') libdft.VXC_vv10nlc_grad(F.ctypes.data_as(ctypes.c_void_p), vvcoords.ctypes.data_as(ctypes.c_void_p), coords.ctypes.data_as(ctypes.c_void_p), W0p.ctypes.data_as(ctypes.c_void_p), W0.ctypes.data_as(ctypes.c_void_p), K.ctypes.data_as(ctypes.c_void_p), Kp.ctypes.data_as(ctypes.c_void_p), RpW.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(vvcoords.shape[0]), ctypes.c_int(coords.shape[0])) #exc is multiplied by Rho later exc[threshind] = F return exc, Beta
[docs] def get_vxc_full_response(ni, mol, grids, xc_code, dms, relativity=0, hermi=1, max_memory=2000, verbose=None): '''Full response including the response of the grids''' xctype = ni._xc_type(xc_code) make_rho, nset, nao = ni._gen_rho_evaluator(mol, dms, hermi, False, grids) ao_loc = mol.ao_loc_nr() excsum = numpy.zeros((mol.natm,3)) vmat = numpy.zeros((3,nao,nao)) if xctype == 'LDA': ao_deriv = 1 vtmp = numpy.empty((3,nao,nao)) for atm_id, (coords, weight, weight1) in enumerate(grids_response_cc(grids)): mask = gen_grid.make_mask(mol, coords) ao = ni.eval_ao(mol, coords, deriv=ao_deriv, non0tab=mask, cutoff=grids.cutoff) rho = make_rho(0, ao[0], mask, xctype) exc, vxc = ni.eval_xc_eff(xc_code, rho, 1, xctype=xctype)[:2] wv = weight * vxc[0] vtmp = numpy.zeros((3,nao,nao)) aow = numint._scale_ao(ao[0], wv) _d1_dot_(vtmp, mol, ao[1:4], aow, mask, ao_loc, True) vmat += vtmp # response of weights excsum += numpy.einsum('r,r,nxr->nx', exc, rho, weight1) # response of grids coordinates excsum[atm_id] += numpy.einsum('xij,ji->x', vtmp, dms) * 2 rho = vxc = aow = None elif xctype == 'GGA': ao_deriv = 2 for atm_id, (coords, weight, weight1) in enumerate(grids_response_cc(grids)): mask = gen_grid.make_mask(mol, coords) ao = ni.eval_ao(mol, coords, deriv=ao_deriv, non0tab=mask, cutoff=grids.cutoff) rho = make_rho(0, ao[:4], mask, xctype) exc, vxc = ni.eval_xc_eff(xc_code, rho, 1, xctype=xctype)[:2] wv = weight * vxc wv[0] *= .5 vtmp = numpy.zeros((3,nao,nao)) _gga_grad_sum_(vtmp, mol, ao, wv, mask, ao_loc) vmat += vtmp # response of weights excsum += numpy.einsum('r,r,nxr->nx', exc, rho[0], weight1) # response of grids coordinates excsum[atm_id] += numpy.einsum('xij,ji->x', vtmp, dms) * 2 rho = vxc = wv = None elif xctype == 'MGGA': ao_deriv = 2 for atm_id, (coords, weight, weight1) in enumerate(grids_response_cc(grids)): mask = gen_grid.make_mask(mol, coords) ao = ni.eval_ao(mol, coords, deriv=ao_deriv, non0tab=mask, cutoff=grids.cutoff) rho = make_rho(0, ao[:10], mask, xctype) exc, vxc = ni.eval_xc_eff(xc_code, rho, 1, xctype=xctype)[:2] wv = weight * vxc wv[0] *= .5 wv[4] *= .5 # for the factor 1/2 in tau vtmp = numpy.zeros((3,nao,nao)) _gga_grad_sum_(vtmp, mol, ao, wv, mask, ao_loc) _tau_grad_dot_(vtmp, mol, ao, wv[4], mask, ao_loc, True) vmat += vtmp # response of weights excsum += numpy.einsum('r,r,nxr->nx', exc, rho[0], weight1) # response of grids coordinates excsum[atm_id] += numpy.einsum('xij,ji->x', vtmp, dms) * 2 rho = vxc = wv = None # - sign because nabla_X = -nabla_x return excsum, -vmat
[docs] def get_nlc_vxc_full_response(ni, mol, grids, xc_code, dms, relativity=0, hermi=1, max_memory=2000, verbose=None): '''Full NLC functional response including the response of the grids''' make_rho, nset, nao = ni._gen_rho_evaluator(mol, dms, hermi, False, grids) ao_loc = mol.ao_loc_nr() excsum = numpy.zeros((mol.natm,3)) vmat = numpy.zeros((3,nao,nao)) nlc_coefs = ni.nlc_coeff(xc_code) if len(nlc_coefs) != 1: raise NotImplementedError('Additive NLC') nlc_pars, fac = nlc_coefs[0] ao_deriv = 2 vvrho = [] vvcoords = [] vvweights = [] for atm_id, (coords, weight) in enumerate(grids_noresponse_cc(grids)): mask = gen_grid.make_mask(mol, coords) ao = ni.eval_ao(mol, coords, deriv=ao_deriv, non0tab=mask, cutoff=grids.cutoff) vvrho.append(make_rho(0, ao[:4], mask, 'GGA')) vvcoords.append(coords) vvweights.append(weight) vvcoords_flat = numpy.vstack(vvcoords) vvweights_flat = numpy.concatenate(vvweights) vvrho_flat = numpy.hstack(vvrho) vv_vxc = [] for atm_id, (coords, weight, weight1) in enumerate(grids_response_cc(grids)): rho = vvrho[atm_id] mask = gen_grid.make_mask(mol, coords) ao = ni.eval_ao(mol, coords, deriv=ao_deriv, non0tab=mask, cutoff=grids.cutoff) exc, vxc = numint._vv10nlc(rho, coords, vvrho_flat, vvweights_flat, vvcoords_flat, nlc_pars) vv_vxc = xc_deriv.transform_vxc(rho, vxc, 'GGA', spin=0) wv = vv_vxc * weight wv[0] *= .5 vtmp = numpy.zeros((3,nao,nao)) _gga_grad_sum_(vtmp, mol, ao, wv, mask, ao_loc) vmat += vtmp vvrho_sub = numpy.hstack( [r for i, r in enumerate(vvrho) if i != atm_id]) vvcoords_sub = numpy.vstack( [r for i, r in enumerate(vvcoords) if i != atm_id]) vvweights_sub = numpy.concatenate( [r for i, r in enumerate(vvweights) if i != atm_id]) egrad, Beta = _vv10nlc_grad(rho, coords, vvrho_sub, vvweights_sub, vvcoords_sub, nlc_pars) # account for factor of 2 in double integration exc -= 0.5 * Beta # response of weights excsum += 2 * numpy.einsum('r,r,nxr->nx', exc, rho[0], weight1) # response of grids coordinates excsum[atm_id] += 2 * numpy.einsum('xij,ji->x', vtmp, dms) excsum[atm_id] += numpy.einsum('r,rx->x', rho[0]*weight, egrad) # - sign because nabla_X = -nabla_x return excsum, -vmat
# JCP 98, 5612 (1993); DOI:10.1063/1.464906
[docs] def grids_response_cc(grids): mol = grids.mol atom_grids_tab = grids.gen_atomic_grids(mol, grids.atom_grid, grids.radi_method, grids.level, grids.prune) atm_coords = numpy.asarray(mol.atom_coords() , order='C') atm_dist = gto.inter_distance(mol, atm_coords) def _radii_adjust(mol, atomic_radii): charges = mol.atom_charges() if grids.radii_adjust == radi.treutler_atomic_radii_adjust: rad = numpy.sqrt(atomic_radii[charges]) + 1e-200 elif grids.radii_adjust == radi.becke_atomic_radii_adjust: rad = atomic_radii[charges] + 1e-200 else: fadjust = lambda i, j, g: g gadjust = lambda *args: 1 return fadjust, gadjust rr = rad.reshape(-1,1) * (1./rad) a = .25 * (rr.T - rr) a[a<-.5] = -.5 a[a>0.5] = 0.5 def fadjust(i, j, g): return g + a[i,j]*(1-g**2) #: d[g + a[i,j]*(1-g**2)] /dg = 1 - 2*a[i,j]*g def gadjust(i, j, g): return 1 - 2*a[i,j]*g return fadjust, gadjust fadjust, gadjust = _radii_adjust(mol, grids.atomic_radii) def gen_grid_partition(coords, atom_id): ngrids = coords.shape[0] grid_dist = [] grid_norm_vec = [] for ia in range(mol.natm): v = (atm_coords[ia] - coords).T normv = numpy.linalg.norm(v,axis=0) + 1e-200 v /= normv grid_dist.append(normv) grid_norm_vec.append(v) def get_du(ia, ib): # JCP 98, 5612 (1993); (B10) uab = atm_coords[ia] - atm_coords[ib] duab = 1./atm_dist[ia,ib] * grid_norm_vec[ia] duab-= uab[:,None]/atm_dist[ia,ib]**3 * (grid_dist[ia]-grid_dist[ib]) return duab pbecke = numpy.ones((mol.natm,ngrids)) dpbecke = numpy.zeros((mol.natm,mol.natm,3,ngrids)) for ia in range(mol.natm): for ib in range(ia): g = 1/atm_dist[ia,ib] * (grid_dist[ia]-grid_dist[ib]) p0 = fadjust(ia, ib, g) p1 = (3 - p0**2) * p0 * .5 p2 = (3 - p1**2) * p1 * .5 p3 = (3 - p2**2) * p2 * .5 t_uab = 27./16 * (1-p2**2) * (1-p1**2) * (1-p0**2) * gadjust(ia, ib, g) s_uab = .5 * (1 - p3 + 1e-200) s_uba = .5 * (1 + p3 + 1e-200) pbecke[ia] *= s_uab pbecke[ib] *= s_uba pt_uab =-t_uab / s_uab pt_uba = t_uab / s_uba # * When grid is on atom ia/ib, ua/ub == 0, d_uba/d_uab may have huge error # How to remove this error? duab = get_du(ia, ib) duba = get_du(ib, ia) if ia == atom_id: dpbecke[ia,ia] += pt_uab * duba dpbecke[ia,ib] += pt_uba * duba else: dpbecke[ia,ia] += pt_uab * duab dpbecke[ia,ib] += pt_uba * duab if ib == atom_id: dpbecke[ib,ib] -= pt_uba * duab dpbecke[ib,ia] -= pt_uab * duab else: dpbecke[ib,ib] -= pt_uba * duba dpbecke[ib,ia] -= pt_uab * duba # * JCP 98, 5612 (1993); (B8) (B10) miss many terms if ia != atom_id and ib != atom_id: ua_ub = grid_norm_vec[ia] - grid_norm_vec[ib] ua_ub /= atm_dist[ia,ib] dpbecke[atom_id,ia] -= pt_uab * ua_ub dpbecke[atom_id,ib] -= pt_uba * ua_ub for ia in range(mol.natm): dpbecke[:,ia] *= pbecke[ia] return pbecke, dpbecke natm = mol.natm for ia in range(natm): coords, vol = atom_grids_tab[mol.atom_symbol(ia)] coords = coords + atm_coords[ia] pbecke, dpbecke = gen_grid_partition(coords, ia) z = 1./pbecke.sum(axis=0) w1 = dpbecke[:,ia] * z w1 -= pbecke[ia] * z**2 * dpbecke.sum(axis=1) w1 *= vol w0 = vol * pbecke[ia] * z yield coords, w0, w1
[docs] def grids_noresponse_cc(grids): # same as above but without the response, for nlc grids response routine assert grids.becke_scheme == gen_grid.original_becke mol = grids.mol atom_grids_tab = grids.gen_atomic_grids(mol, grids.atom_grid, grids.radi_method, grids.level, grids.prune) coords_all, weights_all = gen_grid.get_partition(mol, atom_grids_tab, grids.radii_adjust, grids.atomic_radii, grids.becke_scheme, concat=False) natm = mol.natm for ia in range(natm): yield coords_all[ia], weights_all[ia]
[docs] class Gradients(rhf_grad.Gradients): # This parameter has no effects for HF gradients. Add this attribute so that # the kernel function can be reused in the DFT gradients code. grid_response = getattr(__config__, 'grad_rks_Gradients_grid_response', False) _keys = {'grid_response', 'grids', 'nlcgrids'} def __init__(self, mf): rhf_grad.Gradients.__init__(self, mf) self.grids = None self.nlcgrids = None
[docs] def dump_flags(self, verbose=None): rhf_grad.Gradients.dump_flags(self, verbose) logger.info(self, 'grid_response = %s', self.grid_response) #if callable(self.base.grids.prune): # logger.info(self, 'Grid pruning %s may affect DFT gradients accuracy.' # 'Call mf.grids.run(prune=False) to mute grid pruning', # self.base.grids.prune) return self
get_veff = get_veff
[docs] def extra_force(self, atom_id, envs): '''Hook for extra contributions in analytical gradients. Contributions like the response of auxiliary basis in density fitting method, the grid response in DFT numerical integration can be put in this function. ''' if self.grid_response: vhf = envs['vhf'] log = envs['log'] log.debug('grids response for atom %d %s', atom_id, vhf.exc1_grid[atom_id]) return vhf.exc1_grid[atom_id] else: return 0
Grad = Gradients from pyscf import dft dft.rks.RKS.Gradients = dft.rks_symm.RKS.Gradients = lib.class_as_method(Gradients) dft.roks.ROKS.Gradients = lib.invalid_method('Gradients')