Source code for pyscf.grad.mcpdft

#!/usr/bin/env python
# Copyright 2014-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from pyscf.mcscf import newton_casscf, casci, mc1step
from pyscf.grad import rks as rks_grad
from pyscf.dft import gen_grid
from pyscf.lib import logger, pack_tril, current_memory, einsum, tag_array
from pyscf.grad import sacasscf
from pyscf.mcscf.casci import cas_natorb

from pyscf.mcpdft.pdft_eff import _contract_eff_rho
from pyscf.mcpdft.otpd import get_ontop_pair_density, _grid_ao2mo
from pyscf.mcpdft import _dms

from itertools import product
from scipy import linalg
import numpy as np
import gc

BLKSIZE = gen_grid.BLKSIZE

[docs] def gfock_sym(mc, mo_coeff, casdm1, casdm2, h1e, eris): """Assume that h2e v_j = v_k""" ncore = mc.ncore ncas = mc.ncas nocc = ncore + ncas nao, nmo = mo_coeff.shape # gfock = Generalized Fock, Adv. Chem. Phys., 69, 63 # MRH: I need to replace aapa with the equivalent array from veff2 # I'm not sure how the outcore file-paging system works # I also need to generate vhf_c and vhf_a from veff2 rather than the # molecule's actual integrals. The true Coulomb repulsion should already be # in veff1, but I need to generate the "fake" vj - vk/2 from veff2 h1e_mo = mo_coeff.T @ h1e @ mo_coeff + eris.vhf_c aapa = np.zeros((ncas, ncas, nmo, ncas), dtype=h1e_mo.dtype) vhf_a = np.zeros((nmo, nmo), dtype=h1e_mo.dtype) for i in range(nmo): jbuf = eris.ppaa[i] aapa[:, :, i, :] = jbuf[ncore:nocc, :, :] vhf_a[i] = np.tensordot(jbuf, casdm1, axes=2) vhf_a *= 0.5 # we have assumed that vj = vk: vj - vk/2 = vj - vj/2 = vj/2 gfock = np.zeros((nmo, nmo)) gfock[:, :ncore] = (h1e_mo[:, :ncore] + vhf_a[:, :ncore]) * 2 gfock[:, ncore:nocc] = h1e_mo[:, ncore:nocc] @ casdm1 gfock[:, ncore:nocc] += einsum('uviw,vuwt->it', aapa, casdm2) return gfock
[docs] def xc_response(ot, vot, rho, Pi, weights, moval_occ, aoval, mo_occ, mo_occup, ncore, nocc, casdm2_pack, ndpi, mo_cas): vrho, vPi = vot # Vpq + Vpqrs * Drs ; I'm not sure why the list comprehension down # there doesn't break ao's stride order but I'm not complaining vrho = _contract_eff_rho(vPi, rho.sum(0), add_eff_rho=vrho) tmp_dv = np.stack( [ ot.get_veff_1body(rho, Pi, [ao_i, moval_occ], weights, kern=vrho) for ao_i in aoval ], axis=0, ) tmp_dv = (tmp_dv * mo_occ[None, :, :] * mo_occup[None, None, :nocc]).sum(2) # Vpuvx * Lpuvx ; remember the stupid slowest->fastest->medium # stride order of the ao grid arrays moval_cas = np.ascontiguousarray(moval_occ[..., ncore:].transpose(0,2,1)).transpose(0,2,1) tmp_dv1 = ot.get_veff_2body_kl(rho, Pi, moval_cas, moval_cas, weights, symm=True, kern=vPi) # tmp_dv.shape = ndpi,ngrids,ncas*(ncas+1)//2 tmp_dv1 = np.tensordot(tmp_dv1, casdm2_pack, axes=(-1,-1)) # tmp_dv.shape = ndpi, ngrids, ncas, ncas tmp_dv1[0] = (tmp_dv1[:ndpi] * moval_cas[:ndpi, :, None, :]).sum(0) # Chain and product rule tmp_dv1[1:ndpi] *= moval_cas[0, :, None, :] # Chain and product rule tmp_dv1 = tmp_dv1.sum(-1) # tmp_dv.shape = ndpi, ngrids, ncas tmp_dv1 = np.tensordot(aoval[:, :ndpi], tmp_dv1, axes=((1, 2), (0, 1))) # tmp_dv.shape = comp, nao (orb), ncas (dm2) tmp_dv1 = np.einsum('cpu,pu->cp', tmp_dv1, mo_cas) # tmp_dv.shape = comp, ncas return tmp_dv + tmp_dv1
[docs] def pack_casdm2(cascm2, ncas): diag_idx = np.arange(ncas) # for puvx diag_idx = diag_idx * (diag_idx+1) // 2 + diag_idx casdm2_pack = (cascm2 + cascm2.transpose(0, 1, 3, 2)).reshape(ncas**2, ncas, ncas) casdm2_pack = pack_tril(casdm2_pack).reshape(ncas, ncas, -1) casdm2_pack[:, :, diag_idx] *= 0.5 return casdm2_pack
[docs] def sum_terms(mf_grad, mol, atmlst,dm1, gfock, coul_term, dvxc): de_hcore = np.zeros((len(atmlst), 3)) de_renorm = np.zeros((len(atmlst), 3)) de_coul = np.zeros((len(atmlst), 3)) de_xc = np.zeros((len(atmlst), 3)) aoslices = mol.aoslice_by_atom() hcore_deriv = mf_grad.hcore_generator(mol) s1 = mf_grad.get_ovlp(mol) for k, ia in enumerate(atmlst): p0, p1 = aoslices[ia][2:] h1ao = hcore_deriv(ia) de_hcore[k] += np.tensordot(h1ao, dm1) de_renorm[k] -= np.tensordot(s1[:, p0:p1], gfock[p0:p1])*2 de_coul[k] += coul_term(p0, p1) de_xc[k] += dvxc[:, p0:p1].sum(1)*2 de_nuc = mf_grad.grad_nuc(mol, atmlst) return de_hcore, de_coul, de_xc, de_nuc, de_renorm,
[docs] def mcpdft_HellmanFeynman_grad (mc, ot, veff1, veff2, mo_coeff=None, ci=None, atmlst=None, mf_grad=None, verbose=None, max_memory=None, auxbasis_response=False): '''Modification of pyscf.grad.casscf.kernel to compute instead the Hellman-Feynman gradient terms of MC-PDFT. From the differentiated Hamiltonian matrix elements, only the core and Coulomb energy parts remain. For the renormalization terms, the effective Fock matrix is as in CASSCF, but with the same Hamiltonian substutition that is used for the energy response terms. ''' if mo_coeff is None: mo_coeff = mc.mo_coeff if ci is None: ci = mc.ci if mf_grad is None: mf_grad = mc.get_rhf_base ().nuc_grad_method() if mc.frozen is not None: raise NotImplementedError if max_memory is None: max_memory = mc.max_memory t0 = (logger.process_clock (), logger.perf_counter ()) mol = mc.mol ncore = mc.ncore ncas = mc.ncas nocc = ncore + ncas nelecas = mc.nelecas nao, nmo = mo_coeff.shape mo_core = mo_coeff[:,:ncore] mo_cas = mo_coeff[:,ncore:nocc] casdm1, casdm2 = mc.fcisolver.make_rdm12(ci, ncas, nelecas) spin = abs(nelecas[0] - nelecas[1]) omega, _, hyb = ot._numint.rsh_and_hybrid_coeff(ot.otxc, spin=spin) if abs(omega) > 1e-11: raise NotImplementedError("range-separated on-top functionals") if abs(hyb[0] - hyb[1]) > 1e-11: raise NotImplementedError( "hybrid on-top functionals with different exchange,correlation components" ) cas_hyb = hyb[0] ot_hyb = 1.0 - cas_hyb if cas_hyb > 1e-11: # TODO: actually implement this in a more efficient manner # That is, lets not call grad_elec, but lets actually do this our self maybe? # Can then use get_pdft_veff with drop_mcwfn = False to automatically get # Generalized fock matrix terms, but then have to deal explicitly with the # derivative of eri terms and auxbasis stuff. Also, get_pdft_veff with # drop_mcwfn=False means the get_wfn_response doesn't have to add the # eris to the veff2 since it should just include it already if auxbasis_response: from pyscf.df.grad import casscf as casscf_grad else: from pyscf.grad import casscf as casscf_grad cas_grad = casscf_grad.Gradients(mc) de_cas = cas_hyb * cas_grad.grad_elec( mo_coeff=mo_coeff, ci=ci, atmlst=atmlst, verbose=verbose ) # gfock = Generalized Fock, Adv. Chem. Phys., 69, 63 dm_core = 2 * mo_core @ mo_core.T dm_cas = mo_cas @ casdm1 @ mo_cas.T gfock = gfock_sym(mc, mo_coeff, casdm1, casdm2, ot_hyb*mc.get_hcore() + veff1, veff2) dme0 = mo_coeff @ (0.5*(gfock+gfock.T)) @ mo_coeff.T del gfock if atmlst is None: atmlst = range(mol.natm) de_grid = np.zeros ((len(atmlst),3)) de_wgt = np.zeros ((len(atmlst),3)) de_aux = np.zeros ((len(atmlst),3)) t0 = logger.timer (mc, 'PDFT HlFn gfock', *t0) mo_coeff, ci, mo_occup = cas_natorb (mc, mo_coeff=mo_coeff, ci=ci) mo_occ = mo_coeff[:,:nocc] mo_cas = mo_coeff[:,ncore:nocc] dm1 = dm_core + dm_cas dm1 = tag_array (dm1, mo_coeff=mo_coeff, mo_occ=mo_occup) # MRH: vhf1c and vhf1a should be the TRUE vj_c and vj_a (no vk!) vj = mf_grad.get_jk (dm=dm1)[0] if auxbasis_response: de_aux += ot_hyb*np.squeeze (vj.aux[:,:,atmlst,:]) # MRH: Now I have to compute the gradient of the on-top energy # This involves derivatives of the orbitals that construct rho and Pi and # therefore another set of potentials. It also involves the derivatives of # quadrature grid points which propagate through the densities and # therefore yet another set of potentials. The orbital-derivative part # includes all the grid points and some of the orbitals (- sign); the # grid-derivative part includes all of the orbitals and some of the grid # points (+ sign). I'll do a loop over grid sections and make arrays of # type (3,nao, nao) and (3,nao, ncas, ncas, ncas). I'll contract them # within the grid loop for the grid derivatives and in the following # orbital loop for the xc derivatives # MRH, 05/09/2020: The actual spin density doesn't matter at all in PDFT! # I could probably save a fair amount of time by not screwing around with # the actual spin density! Also, the cumulant decomposition can always be # defined without the spin-density matrices and it's still valid! casdm1, casdm2 = mc.fcisolver.make_rdm12(ci, ncas, nelecas) twoCDM = _dms.dm2_cumulant (casdm2, casdm1) dm1 = tag_array (dm1, mo_coeff=mo_occ, mo_occ=mo_occup[:nocc]) make_rho = ot._numint._gen_rho_evaluator (mol, dm1, hermi=1, with_lapl=False)[0] dvxc = np.zeros ((3,nao)) idx = np.array ([[1,4,5,6],[2,5,7,8],[3,6,8,9]], dtype=np.int_) # For addressing particular ao derivatives if ot.xctype == 'LDA': idx = idx[:,0:1] # For LDAs, no second derivatives casdm2_pack = pack_casdm2(twoCDM, ncas) full_atmlst = -np.ones (mol.natm, dtype=np.int_) t1 = logger.timer (mc, 'PDFT HlFn quadrature setup', *t0) for k, ia in enumerate (atmlst): full_atmlst[ia] = k # for LDA we need 1 deriv, GGA: 2 deriv # for mGGA with tau, we only need 2 deriv ao_deriv = (1, 2, 2)[ot.dens_deriv] ndao = (1, 4, 10)[ao_deriv] ndrho = (1, 4, 5)[ot.dens_deriv] ndpi = (1, 4)[ot.Pi_deriv] ncols = 1.05 * 3 * (ndao * (nao + nocc) + max(ndrho * nao, ndpi * ncas * ncas)) for ia, (coords, w0, w1) in enumerate (rks_grad.grids_response_cc ( ot.grids)): # For the xc potential derivative, I need every grid point in the # entire molecule regardless of atmlist. (Because that's about orbs.) # For the grid and weight derivatives, I only need the gridpoints that # are in atmlst. It is conceivable that I can make this more efficient # by only doing cross-combinations of grids and AOs, but I don't know # how "mask" works yet or how else I could do this. gc.collect () ngrids = coords.shape[0] remaining_floats = (max_memory - current_memory()[0]) * 1e6 / 8 blksize = int (remaining_floats / (ncols*BLKSIZE)) * BLKSIZE blksize = max (BLKSIZE, min (blksize, ngrids, BLKSIZE*1200)) t1 = logger.timer (mc, 'PDFT HlFn quadrature atom {} mask and memory ' 'setup'.format (ia), *t1) for ip0 in range(0, ngrids, blksize): ip1 = min(ngrids, ip0 + blksize) mask = gen_grid.make_mask(mol, coords[ip0:ip1]) logger.info( mc, ("PDFT gradient atom {} slice {}-{} of {} total").format( ia, ip0, ip1, ngrids ), ) ao = ot._numint.eval_ao(mol, coords[ip0:ip1], deriv=ao_deriv, non0tab=mask) # Need 1st derivs for LDA, 2nd for GGA, etc. t1 = logger.timer( mc, ("PDFT HlFn quadrature atom {} ao " "grids").format(ia), *t1 ) # Slice down ao so as not to confuse the rho and Pi generators if ot.xctype == "LDA": aoval = ao[0] elif ot.xctype == "GGA": aoval = ao[:4] elif ot.xctype == "MGGA": aoval = ao[:4] else: raise ValueError("Unknown xctype: {}".format(ot.xctype)) rho = make_rho (0, aoval, mask, ot.xctype) / 2.0 rho = np.stack ((rho,)*2, axis=0) t1 = logger.timer (mc, ('PDFT HlFn quadrature atom {} rho ' 'calc').format (ia), *t1) Pi = get_ontop_pair_density (ot, rho, aoval, twoCDM, mo_cas, ot.Pi_deriv, mask) t1 = logger.timer (mc, ('PDFT HlFn quadrature atom {} Pi ' 'calc').format (ia), *t1) # TODO: consistent format requirements for shape of ao grid if ot.xctype == 'LDA': aoval = ao[:1] moval_occ = _grid_ao2mo (mol, aoval, mo_occ, mask) t1 = logger.timer (mc, ('PDFT HlFn quadrature atom {} ao2mo ' 'grid').format (ia), *t1) aoval = np.ascontiguousarray ([ao[ix].transpose (0,2,1) for ix in idx[:,:ndao]]).transpose (0,1,3,2) ao = None t1 = logger.timer (mc, ('PDFT HlFn quadrature atom {} ao grid ' 'reshape').format (ia), *t1) eot, vot = ot.eval_ot (rho, Pi, weights=w0[ip0:ip1])[:2] t1 = logger.timer (mc, ('PDFT HlFn quadrature atom {} ' 'eval_ot').format (ia), *t1) puvx_mem = 2 * ndpi * (ip1-ip0) * ncas * ncas * 8 / 1e6 remaining_mem = max_memory - current_memory ()[0] logger.info (mc, ('PDFT gradient memory note: working on {} grid ' 'points; estimated puvx usage = {:.1f} of {:.1f} remaining ' 'MB').format ((ip1-ip0), puvx_mem, remaining_mem)) # Weight response de_wgt += np.tensordot (eot, w1[atmlst,...,ip0:ip1], axes=(0,2)) t1 = logger.timer (mc, ('PDFT HlFn quadrature atom {} weight ' 'response').format (ia), *t1) # Find the atoms that are a part of the atomlist # grid correction shouldn't be added if they aren't there # The last stuff to vectorize is in get_veff_2body! k = full_atmlst[ia] tmp_dv = xc_response(ot, vot, rho, Pi, w0[ip0:ip1], moval_occ, aoval, mo_occ, mo_occup, ncore, nocc, casdm2_pack, ndpi, mo_cas) if k >=0: de_grid[k] += 2*tmp_dv.sum(1) # Grid response dvxc -= tmp_dv #XC response tmp_dv = None t1 = logger.timer (mc, ('PDFT HlFn quadrature atom {}').format (ia), *t1) rho = Pi = eot = vot = aoval = moval_occ = None gc.collect () def coul_term(p0, p1): return np.tensordot(vj[:,p0:p1], dm1[p0:p1])*2 de_hcore, de_coul, de_xc, de_nuc, de_renorm = sum_terms(mf_grad, mol, atmlst, dm1, dme0, coul_term, dvxc) # Deal with hybridization de_hcore *= ot_hyb de_coul *= ot_hyb logger.debug (mc, "MC-PDFT Hellmann-Feynman nuclear:\n{}".format (de_nuc)) logger.debug (mc, "MC-PDFT Hellmann-Feynman hcore component:\n{}".format ( de_hcore)) logger.debug (mc, "MC-PDFT Hellmann-Feynman coulomb component:\n{}".format (de_coul)) logger.debug (mc, "MC-PDFT Hellmann-Feynman xc component:\n{}".format ( de_xc)) logger.debug (mc, ("MC-PDFT Hellmann-Feynman quadrature point component:" "\n{}").format (de_grid)) logger.debug (mc, ("MC-PDFT Hellmann-Feynman quadrature weight component:" "\n{}").format (de_wgt)) logger.debug (mc, "MC-PDFT Hellmann-Feynman renorm component:\n{}".format ( de_renorm)) de = de_nuc + de_hcore + de_coul + de_renorm + de_xc + de_grid + de_wgt if auxbasis_response: de += de_aux logger.debug (mc, "MC-PDFT Hellmann-Feynman aux component:\n{}".format (de_aux)) if cas_hyb > 1e-11: de += de_cas logger.debug(mc, "MC-PDFT Hellmann-Feynman CAS component:\n{}".format(de_cas)) t1 = logger.timer (mc, 'PDFT HlFn total', *t0) return de
# TODO: docstrings (parent classes???) # TODO: add a consistent threshold for elimination of degenerate-state rotations
[docs] class Gradients (sacasscf.Gradients): def __init__(self, pdft, state=None): super().__init__(pdft, state=state) # TODO: gradient of PDFT state-average energy # i.e., state = 0 & nroots > 1 case if self.state is None and self.nroots == 1: self.state = 0 self.e_mcscf = self.base.e_mcscf self._not_implemented_check () def _not_implemented_check (self): name = self.__class__.__name__ if (isinstance (self.base, casci.CASCI) and not isinstance (self.base, mc1step.CASSCF)): raise NotImplementedError ( "{} for CASCI-based MC-PDFT".format (name) ) ot, otxc, nelecas = self.base.otfnal, self.base.otxc, self.base.nelecas spin = abs (nelecas[0]-nelecas[1]) omega, alpha, hyb = ot._numint.rsh_and_hybrid_coeff ( otxc, spin=spin) hyb_x, hyb_c = hyb if abs(hyb_x - hyb_c) >1e-11: raise NotImplementedError ( "{} for hybrid MC-PDFT functionals with different exchange, correlation".format (name) ) if omega: raise NotImplementedError ( "{} for range-separated MC-PDFT functionals".format (name) )
[docs] def get_wfn_response (self, state=None, verbose=None, mo=None, ci=None, veff1=None, veff2=None, nlag=None, **kwargs): if state is None: state = self.state if verbose is None: verbose = self.verbose if mo is None: mo = self.base.mo_coeff if ci is None: ci = self.base.ci if nlag is None: nlag = self.nlag if (veff1 is None) or (veff2 is None): veff1, veff2 = self.base.get_pdft_veff (mo, ci[state], incl_coul=True, paaa_only=True, drop_mcwfn=True) log = logger.new_logger(self, verbose) sing_tol = getattr(self, 'sing_tol_sasa', 1e-8) fcasscf = self.make_fcasscf(state) fcasscf.mo_coeff = mo fcasscf.ci = ci[state] def my_hcore (): return self.base.get_hcore () + veff1 fcasscf.get_hcore = my_hcore nelecas = self.base.nelecas spin = abs (nelecas[0]-nelecas[1]) omega, alpha, hyb = self.base.otfnal._numint.rsh_and_hybrid_coeff(self.base.otxc, spin=spin) if omega: raise NotImplementedError("range-separated MC-PDFT functionals") if abs(hyb[0] - hyb[1]) > 1e-11: raise NotImplementedError("hybrid on-top functional with different exchange,correlation components") cas_hyb = hyb[0] if cas_hyb > 1e-11:# and len(ci) > 1: # For SS-CASSCF, there are no Lagrange multipliers # This is only needed in SA case eris = self.base.ao2mo(mo_coeff=mo) terms = ["vhf_c", "papa", "ppaa", "j_pc", "k_pc"] for term in terms: setattr(eris, term, getattr(veff2, term) + cas_hyb*getattr(eris, term)[:]) veff2.vhf_c veff2 = eris g_all_state = newton_casscf.gen_g_hop (fcasscf, mo, ci[state], veff2, verbose)[0] g_all = np.zeros (nlag) g_all[:self.ngorb] = g_all_state[:self.ngorb] # Eliminate gradient of self-rotation and rotation into # degenerate states spin_states = np.asarray (self.spin_states) idx_spin = spin_states==spin_states[state] e_gap = self.e_mcscf-self.e_mcscf[state] if self.nroots>1 else [0.0] idx_degen = np.abs (e_gap)<sing_tol idx = np.where (idx_spin & idx_degen)[0] assert (state in idx) gci_state = g_all_state[self.ngorb:] ci_proj = np.asarray ([ci[i].ravel () for i in idx]) gci_sa = np.dot (ci_proj, gci_state) gci_state -= np.dot (gci_sa, ci_proj) gci = g_all[self.ngorb:] offs = 0 if state>0: offs = sum ([na * nb for na, nb in zip( self.na_states[:state], self.nb_states[:state])]) ndet = self.na_states[state]*self.nb_states[state] gci[offs:][:ndet] += gci_state # Debug log.debug("g_all mo:\n{}".format(g_all[:self.ngorb])) log.debug("g_all CI:\n{}".format(g_all[self.ngorb:])) return g_all
[docs] def get_ham_response (self, state=None, atmlst=None, verbose=None, mo=None, ci=None, eris=None, mf_grad=None, veff1=None, veff2=None, **kwargs): if state is None: state = self.state if atmlst is None: atmlst = self.atmlst if verbose is None: verbose = self.verbose if mo is None: mo = self.base.mo_coeff if ci is None: ci = self.base.ci if (veff1 is None) or (veff2 is None): assert (False), kwargs fcasscf = self.make_fcasscf (state) fcasscf.mo_coeff = mo fcasscf.ci = ci[state] return mcpdft_HellmanFeynman_grad( fcasscf, self.base.otfnal, veff1, veff2, mo_coeff=mo, ci=ci[state], atmlst=atmlst, mf_grad=mf_grad, verbose=verbose, )
[docs] def get_init_guess (self, bvec, Adiag, Aop, precond): '''Initial guess should solve the problem for SA-SA rotations''' sing_tol = getattr (self, 'sing_tol_sasa', 1e-8) ci = self.base.ci state = self.state if self.nroots == 1: ci = [ci,] idx_spin = [i for i in range (self.nroots) if self.spin_states[i]==self.spin_states[state]] ci_blk = np.asarray ([ci[i].ravel () for i in idx_spin]) b_orb, b_ci = self.unpack_uniq_var (bvec) b_ci_blk = np.asarray ([b_ci[i].ravel () for i in idx_spin]) x0 = np.zeros_like (bvec) if self.nroots > 1: b_sa = np.dot (ci_blk.conjugate (), b_ci[state].ravel ()) A_sa = 2 * self.weights[state] * (self.e_mcscf - self.e_mcscf[state]) idx_null = np.abs (A_sa)<sing_tol assert (idx_null[state]) A_sa = A_sa[idx_spin] idx_null = np.abs (A_sa)<sing_tol if np.any (np.abs (b_sa[idx_null])>=sing_tol): logger.warn (self, 'Singular Hessian in CP-MCPDFT!') idx_null &= np.abs (b_sa)<sing_tol A_sa[idx_null] = sing_tol x0_sa = -b_sa / A_sa # Hessian is diagonal so: easy ovlp = ci_blk.conjugate () @ b_ci_blk.T logger.debug (self, 'Linear response SA-SA part:\n{}'.format ( ovlp)) logger.debug (self, 'Linear response SA-CI norms:\n{}'.format ( linalg.norm (b_ci_blk.T - ci_blk.T @ ovlp, axis=1))) if self.ngorb: logger.debug (self, 'Linear response orbital ' 'norms:\n{}'.format (linalg.norm (bvec[:self.ngorb]))) logger.debug (self, 'SA-SA Lagrange multiplier for root ' '{}:\n{}'.format (state, x0_sa)) x0_orb, x0_ci = self.unpack_uniq_var (x0) x0_ci[state] = np.dot (x0_sa, ci_blk).reshape ( self.na_states[state], self.nb_states[state]) x0 = self.pack_uniq_var (x0_orb, x0_ci) r0 = bvec + Aop (x0) r0_orb, r0_ci = self.unpack_uniq_var (r0) r0_ci_blk = np.asarray ([r0_ci[i].ravel () for i in idx_spin]) ovlp = ci_blk.conjugate () @ r0_ci_blk.T logger.debug (self, 'Lagrange residual SA-SA part after solving SA-SA' ' part:\n{}'.format (ovlp)) logger.debug (self, 'Lagrange residual SA-CI norms after solving SA-SA' ' part:\n{}'.format (linalg.norm (r0_ci_blk.T - ci_blk.T @ ovlp, axis=1))) if self.ngorb: logger.debug (self, 'Lagrange residual orbital norms ' 'after solving SA-SA part:\n{}'.format (linalg.norm ( r0_orb))) x0 += precond (-r0) r1_orb, r1_ci = self.unpack_uniq_var (r0) r1_ci_blk = np.asarray ([r1_ci[i].ravel () for i in idx_spin]) ovlp = ci_blk.conjugate () @ r1_ci_blk.T logger.debug (self, 'Lagrange residual SA-SA part after first ' 'precondition:\n{}'.format (ovlp)) logger.debug (self, 'Lagrange residual SA-CI norms after first ' 'precondition:\n{}'.format (linalg.norm (r1_ci_blk.T - ci_blk.T @ ovlp, axis=1))) if self.ngorb: logger.debug (self, 'Lagrange residual orbital norms ' 'after first precondition:\n{}'.format (linalg.norm ( r1_orb))) return x0
[docs] def kernel (self, **kwargs): '''Cache the effective Hamiltonian terms so you don't have to calculate them twice ''' state = kwargs["state"] if "state" in kwargs else self.state if state is None: raise NotImplementedError("Gradient of PDFT state-average energy") self.state = state # Not the best code hygiene maybe mo = kwargs["mo"] if "mo" in kwargs else self.base.mo_coeff ci = kwargs["ci"] if "ci" in kwargs else self.base.ci if isinstance(ci, np.ndarray): ci = [ci] # hack hack hack... kwargs["ci"] = ci if ("veff1" not in kwargs) or ("veff2" not in kwargs): kwargs["veff1"], kwargs["veff2"] = self.base.get_pdft_veff( mo, ci, incl_coul=True, paaa_only=True, state=state, drop_mcwfn=True ) if "mf_grad" not in kwargs: kwargs["mf_grad"] = self.base.get_rhf_base().nuc_grad_method() return super().kernel (**kwargs)
[docs] def project_Aop (self, Aop, ci, state): '''Wrap the Aop function to project out redundant degrees of freedom for the CI part. What's redundant changes between SA-CASSCF and MC-PDFT so modify this part in child classes. ''' weights, e_mcscf = np.asarray (self.weights), np.asarray (self.e_mcscf) try: A_sa = 2 * weights[state] * (e_mcscf - e_mcscf[state]) except IndexError as e: assert (self.nroots == 1), e A_sa = 0 except Exception as e: print (self.weights, self.e_mcscf) raise (e) idx_spin = [i for i in range (self.nroots) if self.spin_states[i]==self.spin_states[state]] if self.nroots==1: ci_blk = ci.reshape (1, -1) ci = [ci] else: ci_blk = np.asarray ([ci[i].ravel () for i in idx_spin]) A_sa = A_sa[idx_spin] def my_Aop (x): Ax = Aop (x) x_orb, x_ci = self.unpack_uniq_var (x) Ax_orb, Ax_ci = self.unpack_uniq_var (Ax) for i, j in product (range (self.nroots), repeat=2): if self.spin_states[i] != self.spin_states[j]: continue Ax_ci[i] -= np.dot (Ax_ci[i].ravel (), ci[j].ravel ()) * ci[j] # Add back in the SA rotation part but from the true energy conds x_sa = np.dot (ci_blk.conjugate (), x_ci[state].ravel ()) Ax_ci[state] += np.dot (x_sa * A_sa, ci_blk).reshape ( Ax_ci[state].shape) Ax = self.pack_uniq_var (Ax_orb, Ax_ci) return Ax return my_Aop