Source code for pyscf.grad.cisd

#!/usr/bin/env python
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
CISD analytical nuclear gradients
'''

import numpy
from pyscf import gto
from pyscf import lib
from pyscf.lib import logger
from pyscf.ci import cisd
from pyscf.grad import rhf as rhf_grad
from pyscf.grad import ccsd as ccsd_grad


[docs] def grad_elec(cigrad, civec=None, eris=None, atmlst=None, verbose=logger.INFO): myci = cigrad.base if civec is None: civec = myci.ci assert (not isinstance(civec, (list, tuple))) nocc = myci.nocc nmo = myci.nmo d1 = cisd._gamma1_intermediates(myci, civec, nmo, nocc) fd2intermediate = lib.H5TmpFile() d2 = cisd._gamma2_outcore(myci, civec, nmo, nocc, fd2intermediate, True) t1 = t2 = l1 = l2 = civec return ccsd_grad.grad_elec(cigrad, t1, t2, l1, l2, eris, atmlst, d1, d2, verbose)
[docs] def as_scanner(grad_ci, state=0): '''Generating a nuclear gradients scanner/solver (for geometry optimizer). The returned solver is a function. This function requires one argument "mol" as input and returns total CISD energy. The solver will automatically use the results of last calculation as the initial guess of the new calculation. All parameters assigned in the CISD and the underlying SCF objects (conv_tol, max_memory etc) are automatically applied in the solver. Note scanner has side effects. It may change many underlying objects (_scf, with_df, with_x2c, ...) during calculation. Examples:: >>> from pyscf import gto, scf, ci >>> mol = gto.M(atom='H 0 0 0; F 0 0 1') >>> ci_scanner = ci.CISD(scf.RHF(mol)).nuc_grad_method().as_scanner() >>> e_tot, grad = ci_scanner(gto.M(atom='H 0 0 0; F 0 0 1.1')) >>> e_tot, grad = ci_scanner(gto.M(atom='H 0 0 0; F 0 0 1.5')) ''' from pyscf import gto if isinstance(grad_ci, lib.GradScanner): return grad_ci logger.info(grad_ci, 'Create scanner for %s', grad_ci.__class__) # cache eris object in CCSD base class. eris object is used many times # when calculating gradients g_ao2mo = grad_ci.base.__class__.ao2mo def _save_eris(self, *args, **kwargs): self._eris = g_ao2mo(self, *args, **kwargs) return self._eris grad_ci.base.__class__.ao2mo = _save_eris name = grad_ci.__class__.__name__ + CISD_GradScanner.__name_mixin__ return lib.set_class(CISD_GradScanner(grad_ci, state), (CISD_GradScanner, grad_ci.__class__), name)
[docs] class CISD_GradScanner(lib.GradScanner): def __init__(self, g, state): lib.GradScanner.__init__(self, g) if state is not None: self.state = state def __call__(self, mol_or_geom, state=None, **kwargs): if isinstance(mol_or_geom, gto.MoleBase): assert mol_or_geom.__class__ == gto.Mole mol = mol_or_geom else: mol = self.mol.set_geom_(mol_or_geom, inplace=False) self.reset(mol) if state is None: state = self.state else: self.state = state ci_scanner = self.base if ci_scanner.nroots > 1 and state >= ci_scanner.nroots: raise ValueError('State ID greater than the number of CISD roots') mf_scanner = ci_scanner._scf mf_scanner(mol) ci_scanner.mo_coeff = mf_scanner.mo_coeff ci_scanner.mo_occ = mf_scanner.mo_occ if getattr(ci_scanner.ci, 'size', 0) != ci_scanner.vector_size(): ci_scanner.ci = None eris = ci_scanner.ao2mo(ci_scanner.mo_coeff) ci_scanner.kernel(ci0=ci_scanner.ci, eris=eris) # TODO: Check root flip if ci_scanner.nroots > 1: e_tot = ci_scanner.e_tot[state] civec = ci_scanner.ci[state] else: e_tot = ci_scanner.e_tot civec = ci_scanner.ci de = self.kernel(civec, eris=eris, **kwargs) return e_tot, de @property def converged(self): ci_scanner = self.base if ci_scanner.nroots > 1: ci_conv = ci_scanner.converged[self.state] else: ci_conv = ci_scanner.converged return all((ci_scanner._scf.converged, ci_conv))
[docs] class Gradients(rhf_grad.GradientsBase): def __init__(self, myci): self.state = 0 # of which the gradients to be computed. rhf_grad.GradientsBase.__init__(self, myci)
[docs] def dump_flags(self, verbose=None): log = logger.new_logger(self, verbose) log.info('\n') if not self.base.converged: log.warn('Ground state %s not converged', self.base.__class__.__name__) log.info('******** %s for %s ********', self.__class__, self.base.__class__) if self.state != 0 and self.base.nroots > 1: log.info('State ID = %d', self.state) return self
grad_elec = grad_elec
[docs] def kernel(self, civec=None, eris=None, atmlst=None, state=None, verbose=None): log = logger.new_logger(self, verbose) myci = self.base if civec is None: civec = myci.ci if civec is None: civec = myci.kernel(eris=eris) if (isinstance(civec, (list, tuple)) or (isinstance(civec, numpy.ndarray) and civec.ndim > 1)): if state is None: state = self.state else: self.state = state civec = civec[state] logger.info(self, 'Multiple roots are found in CISD solver. ' 'Nuclear gradients of root %d are computed.', state) if atmlst is None: atmlst = self.atmlst else: self.atmlst = atmlst if self.verbose >= logger.WARN: self.check_sanity() if self.verbose >= logger.INFO: self.dump_flags() de = self.grad_elec(civec, eris, atmlst, verbose=log) self.de = de + self.grad_nuc(atmlst=atmlst) if self.mol.symmetry: self.de = self.symmetrize(self.de, atmlst) self._finalize() return self.de
# Calling the underlying SCF nuclear gradients because it may be modified # by external modules (e.g. QM/MM, solvent)
[docs] def grad_nuc(self, mol=None, atmlst=None): mf_grad = self.base._scf.nuc_grad_method() return mf_grad.grad_nuc(mol, atmlst)
def _finalize(self): if self.verbose >= logger.NOTE: logger.note(self, '--------- %s gradients for state %d ----------', self.base.__class__.__name__, self.state) self._write(self.mol, self.de, self.atmlst) logger.note(self, '----------------------------------------------') as_scanner = as_scanner to_gpu = lib.to_gpu
Grad = Gradients cisd.CISD.Gradients = lib.class_as_method(Gradients)