Source code for pyscf.grad.casscf

#!/usr/bin/env python
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
CASSCF analytical nuclear gradients

Ref.
J. Comput. Chem., 5, 589

MRH: copied from pyscf.grad.casscf.py on 12/07/2019
Contains my modifications for SA-CASSCF gradients
1. Generalized Fock has nonzero i->a and u->a
2. Memory footprint for differentiated eris bugfix
'''

from functools import reduce
import numpy
from pyscf import gto
from pyscf import lib
from pyscf import ao2mo
from pyscf.lib import logger
from pyscf.grad import casci as casci_grad
from pyscf.grad import rhf as rhf_grad  # noqa
from pyscf.grad.mp2 import _shell_prange
from pyscf.mcscf.addons import StateAverageMCSCFSolver

[docs] def grad_elec(mc_grad, mo_coeff=None, ci=None, atmlst=None, verbose=None): mc = mc_grad.base if mo_coeff is None: mo_coeff = mc.mo_coeff if ci is None: ci = mc.ci if mc.frozen is not None: raise NotImplementedError time0 = logger.process_clock(), logger.perf_counter() log = logger.new_logger(mc_grad, verbose) mol = mc_grad.mol ncore = mc.ncore ncas = mc.ncas nocc = ncore + ncas nelecas = mc.nelecas nao, nmo = mo_coeff.shape nao_pair = nao * (nao+1) // 2 # Necessary kludge because gfock isn't zero in occ-virt space in SA-CASSCf # Among many other potential applications! if hasattr (mc, '_tag_gfock_ov_nonzero'): if mc._tag_gfock_ov_nonzero: nocc = nmo mo_occ = mo_coeff[:,:nocc] mo_core = mo_coeff[:,:ncore] mo_cas = mo_coeff[:,ncore:ncore+ncas] casdm1, casdm2 = mc.fcisolver.make_rdm12(ci, ncas, nelecas) # gfock = Generalized Fock, Adv. Chem. Phys., 69, 63 dm_core = numpy.dot(mo_core, mo_core.T) * 2 dm_cas = reduce(numpy.dot, (mo_cas, casdm1, mo_cas.T)) # MRH flag: this is one of my kludges # It would be better to just pass the ERIS object used in orbital optimization # But I am too lazy at the moment aapa = ao2mo.kernel(mol, (mo_cas, mo_cas, mo_occ, mo_cas), compact=False) aapa = aapa.reshape(ncas,ncas,nocc,ncas) vj, vk = mc._scf.get_jk(mol, (dm_core, dm_cas)) h1 = mc.get_hcore() vhf_c = vj[0] - vk[0] * .5 vhf_a = vj[1] - vk[1] * .5 gfock = numpy.zeros ((nocc, nocc)) gfock[:,:ncore] = reduce(numpy.dot, (mo_occ.T, h1 + vhf_c + vhf_a, mo_core)) * 2 gfock[:,ncore:ncore+ncas] = reduce(numpy.dot, (mo_occ.T, h1 + vhf_c, mo_cas, casdm1)) gfock[:,ncore:ncore+ncas] += numpy.einsum('uviw,vuwt->it', aapa, casdm2) dme0 = reduce(numpy.dot, (mo_occ, (gfock+gfock.T)*.5, mo_occ.T)) aapa = vj = vk = vhf_c = vhf_a = h1 = gfock = None dm1 = dm_core + dm_cas vj, vk = mc_grad.get_jk(mol, (dm_core, dm_cas)) vhf1c, vhf1a = vj - vk * .5 hcore_deriv = mc_grad.hcore_generator(mol) s1 = mc_grad.get_ovlp(mol) diag_idx = numpy.arange(nao) diag_idx = diag_idx * (diag_idx+1) // 2 + diag_idx casdm2_cc = casdm2 + casdm2.transpose(0,1,3,2) dm2buf = ao2mo._ao2mo.nr_e2(casdm2_cc.reshape(ncas**2,ncas**2), mo_cas.T, (0, nao, 0, nao)).reshape(ncas**2,nao,nao) dm2buf = lib.pack_tril(dm2buf) dm2buf[:,diag_idx] *= .5 dm2buf = dm2buf.reshape(ncas,ncas,nao_pair) casdm2 = casdm2_cc = None if atmlst is None: atmlst = range(mol.natm) aoslices = mol.aoslice_by_atom() de = numpy.zeros((len(atmlst),3)) max_memory = mc_grad.max_memory - lib.current_memory()[0] # MRH: this originally implied that the memory footprint would be max(p1-p0) * max(q1-q0) * nao_pair # In fact, that's the size of dm2_ao AND EACH COMPONENT of the differentiated eris # So the actual memory footprint is 4 times that! blksize = int(max_memory*.9e6/8 / (4*(aoslices[:,3]-aoslices[:,2]).max()*nao_pair)) blksize = min(nao, max(2, blksize)) for k, ia in enumerate(atmlst): shl0, shl1, p0, p1 = aoslices[ia] h1ao = hcore_deriv(ia) de[k] += numpy.einsum('xij,ij->x', h1ao, dm1) de[k] -= numpy.einsum('xij,ij->x', s1[:,p0:p1], dme0[p0:p1]) * 2 q1 = 0 for b0, b1, nf in _shell_prange(mol, 0, mol.nbas, blksize): q0, q1 = q1, q1 + nf dm2_ao = lib.einsum('ijw,pi,qj->pqw', dm2buf, mo_cas[p0:p1], mo_cas[q0:q1]) shls_slice = (shl0,shl1,b0,b1,0,mol.nbas,0,mol.nbas) eri1 = mol.intor('int2e_ip1', comp=3, aosym='s2kl', shls_slice=shls_slice).reshape(3,p1-p0,nf,nao_pair) de[k] -= numpy.einsum('xijw,ijw->x', eri1, dm2_ao) * 2 eri1 = None de[k] += numpy.einsum('xij,ij->x', vhf1c[:,p0:p1], dm1[p0:p1]) * 2 de[k] += numpy.einsum('xij,ij->x', vhf1a[:,p0:p1], dm_core[p0:p1]) * 2 log.timer('CASSCF nuclear gradients', *time0) return de
[docs] def as_scanner(mcscf_grad): '''Generating a nuclear gradients scanner/solver (for geometry optimizer). The returned solver is a function. This function requires one argument "mol" as input and returns energy and first order nuclear derivatives. The solver will automatically use the results of last calculation as the initial guess of the new calculation. All parameters assigned in the nuc-grad object and SCF object (DIIS, conv_tol, max_memory etc) are automatically applied in the solver. Note scanner has side effects. It may change many underlying objects (_scf, with_df, with_x2c, ...) during calculation. Examples: >>> from pyscf import gto, scf, mcscf >>> mol = gto.M(atom='N 0 0 0; N 0 0 1.1', verbose=0) >>> mc_grad_scanner = mcscf.CASSCF(scf.RHF(mol), 4, 4).nuc_grad_method().as_scanner() >>> etot, grad = mc_grad_scanner(gto.M(atom='N 0 0 0; N 0 0 1.1')) >>> etot, grad = mc_grad_scanner(gto.M(atom='N 0 0 0; N 0 0 1.5')) ''' if isinstance(mcscf_grad, lib.GradScanner): return mcscf_grad logger.info(mcscf_grad, 'Create scanner for %s', mcscf_grad.__class__) name = mcscf_grad.__class__.__name__ + CASSCF_GradScanner.__name_mixin__ return lib.set_class(CASSCF_GradScanner(mcscf_grad), (CASSCF_GradScanner, mcscf_grad.__class__), name)
[docs] class CASSCF_GradScanner(lib.GradScanner): def __init__(self, g): lib.GradScanner.__init__(self, g) def __call__(self, mol_or_geom, **kwargs): if isinstance(mol_or_geom, gto.MoleBase): assert mol_or_geom.__class__ == gto.Mole mol = mol_or_geom else: mol = self.mol.set_geom_(mol_or_geom, inplace=False) self.reset(mol) mc_scanner = self.base e_tot = mc_scanner(mol) if isinstance(mc_scanner, StateAverageMCSCFSolver): e_tot = mc_scanner.e_average de = self.kernel(**kwargs) return e_tot, de
[docs] class Gradients(casci_grad.Gradients): '''Non-relativistic restricted Hartree-Fock gradients''' grad_elec = grad_elec
[docs] def kernel(self, mo_coeff=None, ci=None, atmlst=None, verbose=None): log = logger.new_logger(self, verbose) if atmlst is None: atmlst = self.atmlst else: self.atmlst = atmlst if self.verbose >= logger.WARN: self.check_sanity() if self.verbose >= logger.INFO: self.dump_flags() de = self.grad_elec(mo_coeff, ci, atmlst, log) self.de = de = de + self.grad_nuc(atmlst=atmlst) if self.mol.symmetry: self.de = self.symmetrize(self.de, atmlst) self._finalize() return self.de
def _finalize(self): if self.verbose >= logger.NOTE: logger.note(self, '--------------- %s gradients ---------------', self.base.__class__.__name__) self._write(self.mol, self.de, self.atmlst) logger.note(self, '----------------------------------------------') as_scanner = as_scanner to_gpu = lib.to_gpu
Grad = Gradients from pyscf import mcscf mcscf.mc1step.CASSCF.Gradients = lib.class_as_method(Gradients)