#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#
'''
CASCI analytical nuclear gradients
Ref.
J. Comput. Chem., 5, 589
'''
import sys
from functools import reduce
import numpy
from pyscf import gto
from pyscf import lib
from pyscf import ao2mo
from pyscf.lib import logger
from pyscf.grad import rhf as rhf_grad
from pyscf.grad.mp2 import _shell_prange
from pyscf.scf import cphf
from pyscf.mcscf.addons import StateAverageMCSCFSolver
if sys.version_info < (3,):
RANGE_TYPE = list
else:
RANGE_TYPE = range
[docs]
def grad_elec(mc_grad, mo_coeff=None, ci=None, atmlst=None, verbose=None):
mc = mc_grad.base
if mo_coeff is None: mo_coeff = mc._scf.mo_coeff
if ci is None: ci = mc.ci
time0 = logger.process_clock(), logger.perf_counter()
log = logger.new_logger(mc_grad, verbose)
mol = mc_grad.mol
ncore = mc.ncore
ncas = mc.ncas
nocc = ncore + ncas
nelecas = mc.nelecas
nao, nmo = mo_coeff.shape
nao_pair = nao * (nao+1) // 2
mo_energy = mc._scf.mo_energy
mo_occ = mo_coeff[:,:nocc]
mo_core = mo_coeff[:,:ncore]
mo_cas = mo_coeff[:,ncore:nocc]
neleca, nelecb = mol.nelec
assert (neleca == nelecb)
orbo = mo_coeff[:,:neleca]
orbv = mo_coeff[:,neleca:]
casdm1, casdm2 = mc.fcisolver.make_rdm12(ci, ncas, nelecas)
dm_core = numpy.dot(mo_core, mo_core.T) * 2
dm_cas = reduce(numpy.dot, (mo_cas, casdm1, mo_cas.T))
aapa = ao2mo.kernel(mol, (mo_cas, mo_cas, mo_coeff, mo_cas), compact=False)
aapa = aapa.reshape(ncas,ncas,nmo,ncas)
vj, vk = mc._scf.get_jk(mol, (dm_core, dm_cas))
h1 = mc.get_hcore()
vhf_c = vj[0] - vk[0] * .5
vhf_a = vj[1] - vk[1] * .5
# Imat = h1_{pi} gamma1_{iq} + h2_{pijk} gamma_{iqkj}
Imat = numpy.zeros((nmo,nmo))
Imat[:,:nocc] = reduce(numpy.dot, (mo_coeff.T, h1 + vhf_c + vhf_a, mo_occ)) * 2
Imat[:,ncore:nocc] = reduce(numpy.dot, (mo_coeff.T, h1 + vhf_c, mo_cas, casdm1))
Imat[:,ncore:nocc] += lib.einsum('uviw,vuwt->it', aapa, casdm2)
aapa = vj = vk = vhf_c = vhf_a = h1 = None
ee = mo_energy[:,None] - mo_energy
zvec = numpy.zeros_like(Imat)
zvec[:ncore,ncore:neleca] = Imat[:ncore,ncore:neleca] / -ee[:ncore,ncore:neleca]
zvec[ncore:neleca,:ncore] = Imat[ncore:neleca,:ncore] / -ee[ncore:neleca,:ncore]
zvec[nocc:,neleca:nocc] = Imat[nocc:,neleca:nocc] / -ee[nocc:,neleca:nocc]
zvec[neleca:nocc,nocc:] = Imat[neleca:nocc,nocc:] / -ee[neleca:nocc,nocc:]
zvec_ao = reduce(numpy.dot, (mo_coeff, zvec+zvec.T, mo_coeff.T))
vhf = mc._scf.get_veff(mol, zvec_ao) * 2
xvo = reduce(numpy.dot, (orbv.T, vhf, orbo))
xvo += Imat[neleca:,:neleca] - Imat[:neleca,neleca:].T
def fvind(x):
x = x.reshape(xvo.shape)
dm = reduce(numpy.dot, (orbv, x, orbo.T))
v = mc._scf.get_veff(mol, dm + dm.T)
v = reduce(numpy.dot, (orbv.T, v, orbo))
return v * 2
dm1resp = cphf.solve(fvind, mo_energy, mc._scf.mo_occ, xvo, max_cycle=30)[0]
zvec[neleca:,:neleca] = dm1resp
zeta = numpy.einsum('ij,j->ij', zvec, mo_energy)
zeta = reduce(numpy.dot, (mo_coeff, zeta, mo_coeff.T))
zvec_ao = reduce(numpy.dot, (mo_coeff, zvec+zvec.T, mo_coeff.T))
p1 = numpy.dot(mo_coeff[:,:neleca], mo_coeff[:,:neleca].T)
vhf_s1occ = reduce(numpy.dot, (p1, mc._scf.get_veff(mol, zvec_ao), p1))
Imat[:ncore,ncore:neleca] = 0
Imat[ncore:neleca,:ncore] = 0
Imat[nocc:,neleca:nocc] = 0
Imat[neleca:nocc,nocc:] = 0
Imat[neleca:,:neleca] = Imat[:neleca,neleca:].T
im1 = reduce(numpy.dot, (mo_coeff, Imat, mo_coeff.T))
casci_dm1 = dm_core + dm_cas
hf_dm1 = mc._scf.make_rdm1(mo_coeff, mc._scf.mo_occ)
hcore_deriv = mc_grad.hcore_generator(mol)
s1 = mc_grad.get_ovlp(mol)
diag_idx = numpy.arange(nao)
diag_idx = diag_idx * (diag_idx+1) // 2 + diag_idx
casdm2_cc = casdm2 + casdm2.transpose(0,1,3,2)
dm2buf = ao2mo._ao2mo.nr_e2(casdm2_cc.reshape(ncas**2,ncas**2), mo_cas.T,
(0, nao, 0, nao)).reshape(ncas**2,nao,nao)
dm2buf = lib.pack_tril(dm2buf)
dm2buf[:,diag_idx] *= .5
dm2buf = dm2buf.reshape(ncas,ncas,nao_pair)
casdm2 = casdm2_cc = None
if atmlst is None:
atmlst = range(mol.natm)
aoslices = mol.aoslice_by_atom()
de = numpy.zeros((len(atmlst),3))
max_memory = mc_grad.max_memory - lib.current_memory()[0]
blksize = int(max_memory*.9e6/8 / ((aoslices[:,3]-aoslices[:,2]).max()*nao_pair))
blksize = min(nao, max(2, blksize))
for k, ia in enumerate(atmlst):
shl0, shl1, p0, p1 = aoslices[ia]
h1ao = hcore_deriv(ia)
de[k] += numpy.einsum('xij,ij->x', h1ao, casci_dm1)
de[k] += numpy.einsum('xij,ij->x', h1ao, zvec_ao)
q1 = 0
for b0, b1, nf in _shell_prange(mol, 0, mol.nbas, blksize):
q0, q1 = q1, q1 + nf
dm2_ao = lib.einsum('ijw,pi,qj->pqw', dm2buf, mo_cas[p0:p1], mo_cas[q0:q1])
shls_slice = (shl0,shl1,b0,b1,0,mol.nbas,0,mol.nbas)
eri1 = mol.intor('int2e_ip1', comp=3, aosym='s2kl',
shls_slice=shls_slice).reshape(3,p1-p0,nf,nao_pair)
de[k] -= numpy.einsum('xijw,ijw->x', eri1, dm2_ao) * 2
for i in range(3):
eri1tmp = lib.unpack_tril(eri1[i].reshape((p1-p0)*nf,-1))
eri1tmp = eri1tmp.reshape(p1-p0,nf,nao,nao)
de[k,i] -= numpy.einsum('ijkl,ij,kl', eri1tmp, hf_dm1[p0:p1,q0:q1], zvec_ao) * 2
de[k,i] -= numpy.einsum('ijkl,kl,ij', eri1tmp, hf_dm1, zvec_ao[p0:p1,q0:q1]) * 2
de[k,i] += numpy.einsum('ijkl,il,kj', eri1tmp, hf_dm1[p0:p1], zvec_ao[:,q0:q1])
de[k,i] += numpy.einsum('ijkl,jk,il', eri1tmp, hf_dm1[q0:q1], zvec_ao[p0:p1])
#:vhf1c, vhf1a = mc_grad.get_veff(mol, (dm_core, dm_cas))
#:de[k] += numpy.einsum('xij,ij->x', vhf1c[:,p0:p1], casci_dm1[p0:p1]) * 2
#:de[k] += numpy.einsum('xij,ij->x', vhf1a[:,p0:p1], dm_core[p0:p1]) * 2
de[k,i] -= numpy.einsum('ijkl,lk,ij', eri1tmp, dm_core, casci_dm1[p0:p1,q0:q1]) * 2
de[k,i] += numpy.einsum('ijkl,jk,il', eri1tmp, dm_core[q0:q1], casci_dm1[p0:p1])
de[k,i] -= numpy.einsum('ijkl,lk,ij', eri1tmp, dm_cas, dm_core[p0:p1,q0:q1]) * 2
de[k,i] += numpy.einsum('ijkl,jk,il', eri1tmp, dm_cas[q0:q1], dm_core[p0:p1])
eri1 = eri1tmp = None
de[k] -= numpy.einsum('xij,ij->x', s1[:,p0:p1], im1[p0:p1])
de[k] -= numpy.einsum('xij,ji->x', s1[:,p0:p1], im1[:,p0:p1])
de[k] -= numpy.einsum('xij,ij->x', s1[:,p0:p1], zeta[p0:p1]) * 2
de[k] -= numpy.einsum('xij,ji->x', s1[:,p0:p1], zeta[:,p0:p1]) * 2
de[k] -= numpy.einsum('xij,ij->x', s1[:,p0:p1], vhf_s1occ[p0:p1]) * 2
de[k] -= numpy.einsum('xij,ji->x', s1[:,p0:p1], vhf_s1occ[:,p0:p1]) * 2
log.timer('CASCI nuclear gradients', *time0)
return de
[docs]
def as_scanner(mcscf_grad, state=None):
'''Generating a nuclear gradients scanner/solver (for geometry optimizer).
The returned solver is a function. This function requires one argument
"mol" as input and returns energy and first order nuclear derivatives.
The solver will automatically use the results of last calculation as the
initial guess of the new calculation. All parameters assigned in the
nuc-grad object and SCF object (DIIS, conv_tol, max_memory etc) are
automatically applied in the solver.
Note scanner has side effects. It may change many underlying objects
(_scf, with_df, with_x2c, ...) during calculation.
Examples:
>>> from pyscf import gto, scf, mcscf
>>> mol = gto.M(atom='N 0 0 0; N 0 0 1.1', verbose=0)
>>> mc_grad_scanner = mcscf.CASCI(scf.RHF(mol), 4, 4).nuc_grad_method().as_scanner()
>>> etot, grad = mc_grad_scanner(gto.M(atom='N 0 0 0; N 0 0 1.1'))
>>> etot, grad = mc_grad_scanner(gto.M(atom='N 0 0 0; N 0 0 1.5'))
'''
if isinstance(mcscf_grad, lib.GradScanner):
return mcscf_grad
if (state is not None and
isinstance(mcscf_grad.base, StateAverageMCSCFSolver)):
raise RuntimeError('State-Average MCSCF Gradients does not support '
'state-specific nuclear gradients.')
logger.info(mcscf_grad, 'Create scanner for %s', mcscf_grad.__class__)
name = mcscf_grad.__class__.__name__ + CASCI_GradScanner.__name_mixin__
return lib.set_class(CASCI_GradScanner(mcscf_grad, state),
(CASCI_GradScanner, mcscf_grad.__class__), name)
[docs]
class CASCI_GradScanner(lib.GradScanner):
def __init__(self, g, state):
lib.GradScanner.__init__(self, g)
if state is not None:
self.state = state
def __call__(self, mol_or_geom, state=None, **kwargs):
if isinstance(mol_or_geom, gto.MoleBase):
assert mol_or_geom.__class__ == gto.Mole
mol = mol_or_geom
else:
mol = self.mol.set_geom_(mol_or_geom, inplace=False)
self.reset(mol)
if state is None:
state = self.state
mc_scanner = self.base
# TODO: Check root flip
e_tot = mc_scanner(mol)
ci = mc_scanner.ci
if isinstance(mc_scanner, StateAverageMCSCFSolver):
e_tot = mc_scanner.e_average
elif not isinstance(e_tot, float):
if state >= mc_scanner.fcisolver.nroots:
raise ValueError('State ID greater than the number of CASCI roots')
e_tot = e_tot[state]
# target at a specific state, to avoid overwriting self.state
# in self.kernel
ci = ci[state]
de = self.kernel(ci=ci, state=state, **kwargs)
return e_tot, de
[docs]
class Gradients(rhf_grad.GradientsBase):
'''Non-relativistic restricted Hartree-Fock gradients'''
_keys = {'state'}
def __init__(self, mc):
if isinstance(mc, StateAverageMCSCFSolver):
self.state = None # not a specific state
else:
self.state = 0 # of which the gradients to be computed.
rhf_grad.GradientsBase.__init__(self, mc)
[docs]
def dump_flags(self, verbose=None):
log = logger.new_logger(self, verbose)
log.info('\n')
if not self.base.converged:
log.warn('Ground state %s not converged', self.base.__class__)
log.info('******** %s for %s ********',
self.__class__, self.base.__class__)
if self.state is None:
weights = self.base.weights
log.info('State-average gradients over %d states with weights %s',
len(weights), weights)
elif self.state != 0 and self.base.fcisolver.nroots > 1:
log.info('State ID = %d', self.state)
log.info('max_memory %d MB (current use %d MB)',
self.max_memory, lib.current_memory()[0])
return self
grad_elec = grad_elec
[docs]
def kernel(self, mo_coeff=None, ci=None, atmlst=None,
state=None, verbose=None):
log = logger.new_logger(self, verbose)
if ci is None: ci = self.base.ci
if self.state is None: # state average MCSCF calculations
assert (state is None)
elif isinstance(ci, (list, tuple, RANGE_TYPE)):
if state is None:
state = self.state
else:
self.state = state
ci = ci[state]
log.info('Multiple roots are found in CASCI solver. '
'Nuclear gradients of root %d are computed.', state)
if atmlst is None:
atmlst = self.atmlst
else:
self.atmlst = atmlst
if self.verbose >= logger.WARN:
self.check_sanity()
if self.verbose >= logger.INFO:
self.dump_flags()
de = self.grad_elec(mo_coeff, ci, atmlst, log)
self.de = de = de + self.grad_nuc(atmlst=atmlst)
if self.mol.symmetry:
self.de = self.symmetrize(self.de, atmlst)
self._finalize()
return self.de
# Initialize hcore_deriv with the underlying SCF object because some
# extensions (e.g. x2c, QM/MM, solvent) modifies the SCF object only.
[docs]
def hcore_generator(self, mol=None):
mf_grad = self.base._scf.nuc_grad_method()
return mf_grad.hcore_generator(mol)
# Calling the underlying SCF nuclear gradients because it may be modified
# by external modules (e.g. QM/MM, solvent)
[docs]
def grad_nuc(self, mol=None, atmlst=None):
mf_grad = self.base._scf.nuc_grad_method()
return mf_grad.grad_nuc(mol, atmlst)
def _finalize(self):
if self.verbose >= logger.NOTE:
if self.state is None:
logger.note(self, '--------- %s gradients ----------',
self.base.__class__.__name__)
else:
logger.note(self, '--------- %s gradients for state %d ----------',
self.base.__class__.__name__, self.state)
self._write(self.mol, self.de, self.atmlst)
logger.note(self, '----------------------------------------------')
as_scanner = as_scanner
to_gpu = lib.to_gpu
Grad = Gradients
from pyscf import mcscf
mcscf.casci.CASCI.Gradients = lib.class_as_method(Gradients)