#!/usr/bin/env python
#
# This code was copied from the data generation program of Tencent Alchemy
# project (https://github.com/tencent-alchemy).
#
#
# Copyright 2019 Tencent America LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#
import numpy
from pyscf import lib
from pyscf.lib import logger
from pyscf.grad import rks as rks_grad
from pyscf.grad import uks as uks_grad
from pyscf.df.grad import rhf as df_rhf_grad
[docs]
def get_veff(ks_grad, mol=None, dm=None):
'''Coulomb + XC functional
'''
if mol is None: mol = ks_grad.mol
if dm is None: dm = ks_grad.base.make_rdm1()
t0 = (logger.process_clock(), logger.perf_counter())
mf = ks_grad.base
ni = mf._numint
grids, nlcgrids = rks_grad._initialize_grids(ks_grad)
mem_now = lib.current_memory()[0]
max_memory = max(2000, ks_grad.max_memory*.9-mem_now)
if ks_grad.grid_response:
exc, vxc = uks_grad.get_vxc_full_response(
ni, mol, grids, mf.xc, dm,
max_memory=max_memory, verbose=ks_grad.verbose)
if mf.do_nlc():
if ni.libxc.is_nlc(mf.xc):
xc = mf.xc
else:
xc = mf.nlc
enlc, vnlc = rks_grad.get_nlc_vxc_full_response(
ni, mol, nlcgrids, xc, dm[0]+dm[1],
max_memory=max_memory, verbose=ks_grad.verbose)
exc += enlc
vxc += vnlc
logger.debug1(ks_grad, 'sum(grids response) %s', exc.sum(axis=0))
else:
exc, vxc = uks_grad.get_vxc(
ni, mol, grids, mf.xc, dm,
max_memory=max_memory, verbose=ks_grad.verbose)
if mf.do_nlc():
if ni.libxc.is_nlc(mf.xc):
xc = mf.xc
else:
xc = mf.nlc
enlc, vnlc = rks_grad.get_nlc_vxc(
ni, mol, nlcgrids, xc, dm[0]+dm[1],
max_memory=max_memory, verbose=ks_grad.verbose)
vxc += vnlc
t0 = logger.timer(ks_grad, 'vxc', *t0)
if not ni.libxc.is_hybrid_xc(mf.xc):
vj = ks_grad.get_j(mol, dm)
vxc += vj[0] + vj[1]
if ks_grad.auxbasis_response:
e1_aux = vj.aux.sum ((0,1))
else:
omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, spin=mol.spin)
vj, vk = ks_grad.get_jk(mol, dm)
if ks_grad.auxbasis_response:
vk.aux = vk.aux * hyb
vk[:] *= hyb # inplace * for vk[:] to keep the .aux tag
if omega != 0: # For range separated Coulomb operator
vk_lr = ks_grad.get_k(mol, dm, omega=omega)
vk[:] += vk_lr * (alpha - hyb)
if ks_grad.auxbasis_response:
vk.aux[:] += vk_lr.aux * (alpha - hyb)
vxc += vj[0] + vj[1] - vk
if ks_grad.auxbasis_response:
e1_aux = vj.aux.sum ((0,1))
e1_aux -= numpy.trace (vk.aux, axis1=0, axis2=1)
if ks_grad.auxbasis_response:
logger.debug1(ks_grad, 'sum(auxbasis response) %s', e1_aux.sum(axis=0))
vxc = lib.tag_array(vxc, exc1_grid=exc, aux=e1_aux)
else:
vxc = lib.tag_array(vxc, exc1_grid=exc)
return vxc
[docs]
class Gradients(uks_grad.Gradients):
_keys = {'with_df', 'auxbasis_response'}
def __init__(self, mf):
uks_grad.Gradients.__init__(self, mf)
# Whether to include the response of DF auxiliary basis when computing
# nuclear gradients of J/K matrices
auxbasis_response = True
get_jk = df_rhf_grad.Gradients.get_jk
get_j = df_rhf_grad.Gradients.get_j
get_k = df_rhf_grad.Gradients.get_k
get_veff = get_veff
Grad = Gradients