Source code for pyscf.df.grad.uks

#!/usr/bin/env python
#
# This code was copied from the data generation program of Tencent Alchemy
# project (https://github.com/tencent-alchemy).
#

#
# Copyright 2019 Tencent America LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#


import numpy
from pyscf import lib
from pyscf.lib import logger
from pyscf.grad import rks as rks_grad
from pyscf.grad import uks as uks_grad
from pyscf.df.grad import rhf as df_rhf_grad


[docs] def get_veff(ks_grad, mol=None, dm=None): '''Coulomb + XC functional ''' if mol is None: mol = ks_grad.mol if dm is None: dm = ks_grad.base.make_rdm1() t0 = (logger.process_clock(), logger.perf_counter()) mf = ks_grad.base ni = mf._numint grids, nlcgrids = rks_grad._initialize_grids(ks_grad) mem_now = lib.current_memory()[0] max_memory = max(2000, ks_grad.max_memory*.9-mem_now) if ks_grad.grid_response: exc, vxc = uks_grad.get_vxc_full_response( ni, mol, grids, mf.xc, dm, max_memory=max_memory, verbose=ks_grad.verbose) if mf.do_nlc(): if ni.libxc.is_nlc(mf.xc): xc = mf.xc else: xc = mf.nlc enlc, vnlc = rks_grad.get_nlc_vxc_full_response( ni, mol, nlcgrids, xc, dm[0]+dm[1], max_memory=max_memory, verbose=ks_grad.verbose) exc += enlc vxc += vnlc logger.debug1(ks_grad, 'sum(grids response) %s', exc.sum(axis=0)) else: exc, vxc = uks_grad.get_vxc( ni, mol, grids, mf.xc, dm, max_memory=max_memory, verbose=ks_grad.verbose) if mf.do_nlc(): if ni.libxc.is_nlc(mf.xc): xc = mf.xc else: xc = mf.nlc enlc, vnlc = rks_grad.get_nlc_vxc( ni, mol, nlcgrids, xc, dm[0]+dm[1], max_memory=max_memory, verbose=ks_grad.verbose) vxc += vnlc t0 = logger.timer(ks_grad, 'vxc', *t0) if not ni.libxc.is_hybrid_xc(mf.xc): vj = ks_grad.get_j(mol, dm) vxc += vj[0] + vj[1] if ks_grad.auxbasis_response: e1_aux = vj.aux.sum ((0,1)) else: omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, spin=mol.spin) vj, vk = ks_grad.get_jk(mol, dm) if ks_grad.auxbasis_response: vk.aux = vk.aux * hyb vk[:] *= hyb # inplace * for vk[:] to keep the .aux tag if omega != 0: # For range separated Coulomb operator vk_lr = ks_grad.get_k(mol, dm, omega=omega) vk[:] += vk_lr * (alpha - hyb) if ks_grad.auxbasis_response: vk.aux[:] += vk_lr.aux * (alpha - hyb) vxc += vj[0] + vj[1] - vk if ks_grad.auxbasis_response: e1_aux = vj.aux.sum ((0,1)) e1_aux -= numpy.trace (vk.aux, axis1=0, axis2=1) if ks_grad.auxbasis_response: logger.debug1(ks_grad, 'sum(auxbasis response) %s', e1_aux.sum(axis=0)) vxc = lib.tag_array(vxc, exc1_grid=exc, aux=e1_aux) else: vxc = lib.tag_array(vxc, exc1_grid=exc) return vxc
[docs] class Gradients(uks_grad.Gradients): _keys = {'with_df', 'auxbasis_response'} def __init__(self, mf): uks_grad.Gradients.__init__(self, mf) # Whether to include the response of DF auxiliary basis when computing # nuclear gradients of J/K matrices auxbasis_response = True get_jk = df_rhf_grad.Gradients.get_jk get_j = df_rhf_grad.Gradients.get_j get_k = df_rhf_grad.Gradients.get_k get_veff = get_veff
[docs] def extra_force(self, atom_id, envs): e1 = uks_grad.Gradients.extra_force(self, atom_id, envs) if self.auxbasis_response: e1 += envs['vhf'].aux[atom_id] return e1
Grad = Gradients