#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy
import h5py
from pyscf import gto
from pyscf import lib
from pyscf.lib import logger
from pyscf.ao2mo import _ao2mo
from pyscf.ao2mo import incore
from pyscf import __config__
IOBLK_SIZE = getattr(__config__, 'ao2mo_outcore_ioblk_size', 256) # 256 MB
IOBUF_WORDS = getattr(__config__, 'ao2mo_outcore_iobuf_words', 1e8) # 800 MB
IOBUF_ROW_MIN = getattr(__config__, 'ao2mo_outcore_row_min', 160)
MAX_MEMORY = getattr(__config__, 'ao2mo_outcore_max_memory', 2000) # 2GB
[docs]
def full(mol, mo_coeff, erifile, dataname='eri_mo',
intor='int2e', aosym='s4', comp=None,
max_memory=MAX_MEMORY, ioblk_size=IOBLK_SIZE, verbose=logger.WARN,
compact=True):
r'''Transfer arbitrary spherical AO integrals to MO integrals for given orbitals
Args:
mol : :class:`Mole` object
AO integrals will be generated in terms of mol._atm, mol._bas, mol._env
mo_coeff : ndarray
Transform (ij|kl) with the same set of orbitals.
erifile : str or h5py File or h5py Group object
To store the transformed integrals, in HDF5 format.
Kwargs:
dataname : str
The dataset name in the erifile (ref the hierarchy of HDF5 format
http://www.hdfgroup.org/HDF5/doc1.6/UG/09_Groups.html). By assigning
different dataname, the existed integral file can be reused. If
the erifile contains the dataname, the new integrals data will
overwrite the old one.
intor : str
Name of the 2-electron integral. Ref to :func:`getints_by_shell`
for the complete list of available 2-electron integral names
aosym : int or str
Permutation symmetry for the AO integrals
| 4 or '4' or 's4': 4-fold symmetry (default)
| '2ij' or 's2ij' : symmetry between i, j in (ij|kl)
| '2kl' or 's2kl' : symmetry between k, l in (ij|kl)
| 1 or '1' or 's1': no symmetry
| 'a4ij' : 4-fold symmetry with anti-symmetry between i, j in (ij|kl) (TODO)
| 'a4kl' : 4-fold symmetry with anti-symmetry between k, l in (ij|kl) (TODO)
| 'a2ij' : anti-symmetry between i, j in (ij|kl) (TODO)
| 'a2kl' : anti-symmetry between k, l in (ij|kl) (TODO)
comp : int
Components of the integrals, e.g. int2e_ip_sph has 3 components.
max_memory : float or int
The maximum size of cache to use (in MB), large cache may **not**
improve performance.
ioblk_size : float or int
The block size for IO, large block size may **not** improve performance
verbose : int
Print level
compact : bool
When compact is True, depending on the four orbital sets, the
returned MO integrals has (up to 4-fold) permutation symmetry.
If it's False, the function will abandon any permutation symmetry,
and return the "plain" MO integrals
Returns:
None
Examples:
>>> from pyscf import gto
>>> from pyscf import ao2mo
>>> import h5py
>>> def view(h5file, dataname='eri_mo'):
... f5 = h5py.File(h5file, 'r')
... print('dataset %s, shape %s' % (str(f5.keys()), str(f5[dataname].shape)))
... f5.close()
>>> mol = gto.M(atom='O 0 0 0; H 0 1 0; H 0 0 1', basis='sto3g')
>>> mo1 = numpy.random.random((mol.nao_nr(), 10))
>>> ao2mo.outcore.full(mol, mo1, 'full.h5')
>>> view('full.h5')
dataset ['eri_mo'], shape (55, 55)
>>> ao2mo.outcore.full(mol, mo1, 'full.h5', dataname='new', compact=False)
>>> view('full.h5', 'new')
dataset ['eri_mo', 'new'], shape (100, 100)
>>> ao2mo.outcore.full(mol, mo1, 'full.h5', intor='int2e_ip1_sph', aosym='s1', comp=3)
>>> view('full.h5')
dataset ['eri_mo', 'new'], shape (3, 100, 100)
>>> ao2mo.outcore.full(mol, mo1, 'full.h5', intor='int2e_ip1_sph', aosym='s2kl', comp=3)
>>> view('full.h5')
dataset ['eri_mo', 'new'], shape (3, 100, 55)
'''
general(mol, (mo_coeff,)*4, erifile, dataname,
intor, aosym, comp, max_memory, ioblk_size, verbose, compact)
return erifile
[docs]
def general(mol, mo_coeffs, erifile, dataname='eri_mo',
intor='int2e', aosym='s4', comp=None,
max_memory=MAX_MEMORY, ioblk_size=IOBLK_SIZE, verbose=logger.WARN,
compact=True):
r'''For the given four sets of orbitals, transfer arbitrary spherical AO
integrals to MO integrals on the fly.
Args:
mol : :class:`Mole` object
AO integrals will be generated in terms of mol._atm, mol._bas, mol._env
mo_coeffs : 4-item list of ndarray
Four sets of orbital coefficients, corresponding to the four
indices of (ij|kl)
erifile : str or h5py File or h5py Group object
To store the transformed integrals, in HDF5 format.
Kwargs
dataname : str
The dataset name in the erifile (ref the hierarchy of HDF5 format
http://www.hdfgroup.org/HDF5/doc1.6/UG/09_Groups.html). By assigning
different dataname, the existed integral file can be reused. If
the erifile contains the dataname, the new integrals data will
overwrite the old one.
intor : str
Name of the 2-electron integral. Ref to :func:`getints_by_shell`
for the complete list of available 2-electron integral names
aosym : int or str
Permutation symmetry for the AO integrals
| 4 or '4' or 's4': 4-fold symmetry (default)
| '2ij' or 's2ij' : symmetry between i, j in (ij|kl)
| '2kl' or 's2kl' : symmetry between k, l in (ij|kl)
| 1 or '1' or 's1': no symmetry
| 'a4ij' : 4-fold symmetry with anti-symmetry between i, j in (ij|kl) (TODO)
| 'a4kl' : 4-fold symmetry with anti-symmetry between k, l in (ij|kl) (TODO)
| 'a2ij' : anti-symmetry between i, j in (ij|kl) (TODO)
| 'a2kl' : anti-symmetry between k, l in (ij|kl) (TODO)
comp : int
Components of the integrals, e.g. int2e_ip_sph has 3 components.
max_memory : float or int
The maximum size of cache to use (in MB), large cache may **not**
improve performance.
ioblk_size : float or int
The block size for IO, large block size may **not** improve performance
verbose : int
Print level
compact : bool
When compact is True, depending on the four orbital sets, the
returned MO integrals has (up to 4-fold) permutation symmetry.
If it's False, the function will abandon any permutation symmetry,
and return the "plain" MO integrals
Returns:
None
Examples:
>>> from pyscf import gto
>>> from pyscf import ao2mo
>>> import h5py
>>> def view(h5file, dataname='eri_mo'):
... f5 = h5py.File(h5file, 'r')
... print('dataset %s, shape %s' % (str(f5.keys()), str(f5[dataname].shape)))
... f5.close()
>>> mol = gto.M(atom='O 0 0 0; H 0 1 0; H 0 0 1', basis='sto3g')
>>> mo1 = numpy.random.random((mol.nao_nr(), 10))
>>> mo2 = numpy.random.random((mol.nao_nr(), 8))
>>> mo3 = numpy.random.random((mol.nao_nr(), 6))
>>> mo4 = numpy.random.random((mol.nao_nr(), 4))
>>> ao2mo.outcore.general(mol, (mo1,mo2,mo3,mo4), 'oh2.h5')
>>> view('oh2.h5')
dataset ['eri_mo'], shape (80, 24)
>>> ao2mo.outcore.general(mol, (mo1,mo2,mo3,mo3), 'oh2.h5')
>>> view('oh2.h5')
dataset ['eri_mo'], shape (80, 21)
>>> ao2mo.outcore.general(mol, (mo1,mo2,mo3,mo3), 'oh2.h5', compact=False)
>>> view('oh2.h5')
dataset ['eri_mo'], shape (80, 36)
>>> ao2mo.outcore.general(mol, (mo1,mo1,mo2,mo2), 'oh2.h5')
>>> view('oh2.h5')
dataset ['eri_mo'], shape (55, 36)
>>> ao2mo.outcore.general(mol, (mo1,mo1,mo1,mo1), 'oh2.h5', dataname='new')
>>> view('oh2.h5', 'new')
dataset ['eri_mo', 'new'], shape (55, 55)
>>> ao2mo.outcore.general(mol, (mo1,mo1,mo1,mo1), 'oh2.h5', intor='int2e_ip1_sph', aosym='s1', comp=3)
>>> view('oh2.h5')
dataset ['eri_mo', 'new'], shape (3, 100, 100)
>>> ao2mo.outcore.general(mol, (mo1,mo1,mo1,mo1), 'oh2.h5', intor='int2e_ip1_sph', aosym='s2kl', comp=3)
>>> view('oh2.h5')
dataset ['eri_mo', 'new'], shape (3, 100, 55)
'''
if any(c.dtype == numpy.complex128 for c in mo_coeffs):
raise NotImplementedError('Integral transformation for complex orbitals')
time_0pass = (logger.process_clock(), logger.perf_counter())
log = logger.new_logger(mol, verbose)
nmoi = mo_coeffs[0].shape[1]
nmoj = mo_coeffs[1].shape[1]
nmol = mo_coeffs[3].shape[1]
nao = mo_coeffs[0].shape[0]
intor, comp = gto.moleintor._get_intor_and_comp(mol._add_suffix(intor), comp)
assert (nao == mol.nao_nr('_cart' in intor))
aosym = _stand_sym_code(aosym)
if aosym in ('s4', 's2kl'):
nao_pair = nao * (nao+1) // 2
else:
nao_pair = nao * nao
if (compact and iden_coeffs(mo_coeffs[0], mo_coeffs[1]) and
aosym in ('s4', 's2ij')):
nij_pair = nmoi*(nmoi+1) // 2
else:
nij_pair = nmoi*nmoj
klmosym, nkl_pair, mokl, klshape = \
incore._conc_mos(mo_coeffs[2], mo_coeffs[3],
compact and aosym in ('s4', 's2kl'))
# if nij_pair > nkl_pair:
# log.warn('low efficiency for AO to MO trans!')
if isinstance(erifile, str):
if h5py.is_hdf5(erifile):
feri = lib.H5FileWrap(erifile, 'a')
if dataname in feri:
del (feri[dataname])
else:
feri = lib.H5FileWrap(erifile, 'w')
else:
assert (isinstance(erifile, h5py.Group))
feri = erifile
if comp == 1:
chunks = (nmoj, nmol)
shape = (nij_pair, nkl_pair)
else:
chunks = (1, nmoj, nmol)
shape = (comp, nij_pair, nkl_pair)
if nij_pair == 0 or nkl_pair == 0:
feri.create_dataset(dataname, shape, 'f8')
if isinstance(erifile, str):
feri.close()
return erifile
else:
h5d_eri = feri.create_dataset(dataname, shape, 'f8', chunks=chunks)
log.debug('MO integrals %s are saved in %s/%s', intor, erifile, dataname)
log.debug('num. MO ints = %.8g, required disk %.8g MB',
float(nij_pair)*nkl_pair*comp, nij_pair*nkl_pair*comp*8/1e6)
# transform e1
fswap = lib.H5TmpFile()
half_e1(mol, mo_coeffs, fswap, intor, aosym, comp, max_memory, ioblk_size,
log, compact)
time_1pass = log.timer('AO->MO transformation for %s 1 pass'%intor,
*time_0pass)
def load(icomp, row0, row1, buf):
if icomp+1 < comp:
icomp += 1
else: # move to next row-block
row0, row1 = row1, min(nij_pair, row1+iobuflen)
icomp = 0
if row0 < row1:
_load_from_h5g(fswap['%d'%icomp], row0, row1, buf)
def save(icomp, row0, row1, buf):
if comp == 1:
h5d_eri[row0:row1] = buf[:row1-row0]
else:
h5d_eri[icomp,row0:row1] = buf[:row1-row0]
ioblk_size = max(max_memory*.1, ioblk_size)
iobuflen = guess_e2bufsize(ioblk_size, nij_pair, max(nao_pair,nkl_pair))[0]
buf = numpy.empty((iobuflen,nao_pair))
buf_prefetch = numpy.empty_like(buf)
outbuf = numpy.empty((iobuflen,nkl_pair))
buf_write = numpy.empty_like(outbuf)
log.debug('step2: kl-pair (ao %d, mo %d), mem %.8g MB, ioblock %.8g MB',
nao_pair, nkl_pair, iobuflen*nao_pair*8/1e6,
iobuflen*nkl_pair*8/1e6)
#klaoblks = len(fswap['0'])
ijmoblks = int(numpy.ceil(float(nij_pair)/iobuflen)) * comp
ao_loc = mol.ao_loc_nr('_cart' in intor)
ti0 = time_1pass
istep = 0
with lib.call_in_background(load) as prefetch:
with lib.call_in_background(save) as async_write:
_load_from_h5g(fswap['0'], 0, min(nij_pair, iobuflen), buf_prefetch)
for row0, row1 in prange(0, nij_pair, iobuflen):
nrow = row1 - row0
for icomp in range(comp):
istep += 1
log.debug1('step 2 [%d/%d], [%d,%d:%d], row = %d',
istep, ijmoblks, icomp, row0, row1, nrow)
buf, buf_prefetch = buf_prefetch, buf
prefetch(icomp, row0, row1, buf_prefetch)
_ao2mo.nr_e2(buf[:nrow], mokl, klshape, aosym, klmosym,
ao_loc=ao_loc, out=outbuf)
async_write(icomp, row0, row1, outbuf)
outbuf, buf_write = buf_write, outbuf # avoid flushing writing buffer
ti1 = (logger.process_clock(), logger.perf_counter())
log.debug1('step 2 [%d/%d] CPU time: %9.2f, Wall time: %9.2f',
istep, ijmoblks, ti1[0]-ti0[0], ti1[1]-ti0[1])
ti0 = ti1
fswap = None
if isinstance(erifile, str):
feri.close()
log.timer('AO->MO transformation for %s 2 pass'%intor, *time_1pass)
log.timer('AO->MO transformation for %s '%intor, *time_0pass)
return erifile
# swapfile will be overwritten if exists.
[docs]
def half_e1(mol, mo_coeffs, swapfile,
intor='int2e', aosym='s4', comp=1,
max_memory=MAX_MEMORY, ioblk_size=IOBLK_SIZE, verbose=logger.WARN,
compact=True, ao2mopt=None):
r'''Half transform arbitrary spherical AO integrals to MO integrals
for the given two sets of orbitals
Args:
mol : :class:`Mole` object
AO integrals will be generated in terms of mol._atm, mol._bas, mol._env
mo_coeff : ndarray
Transform (ij|kl) with the same set of orbitals.
swapfile : str or h5py File or h5py Group object
To store the transformed integrals, in HDF5 format. The transformed
integrals are saved in blocks.
Kwargs
intor : str
Name of the 2-electron integral. Ref to :func:`getints_by_shell`
for the complete list of available 2-electron integral names
aosym : int or str
Permutation symmetry for the AO integrals
| 4 or '4' or 's4': 4-fold symmetry (default)
| '2ij' or 's2ij' : symmetry between i, j in (ij|kl)
| '2kl' or 's2kl' : symmetry between k, l in (ij|kl)
| 1 or '1' or 's1': no symmetry
| 'a4ij' : 4-fold symmetry with anti-symmetry between i, j in (ij|kl) (TODO)
| 'a4kl' : 4-fold symmetry with anti-symmetry between k, l in (ij|kl) (TODO)
| 'a2ij' : anti-symmetry between i, j in (ij|kl) (TODO)
| 'a2kl' : anti-symmetry between k, l in (ij|kl) (TODO)
comp : int
Components of the integrals, e.g. int2e_ip_sph has 3 components.
verbose : int
Print level
max_memory : float or int
The maximum size of cache to use (in MB), large cache may **not**
improve performance.
ioblk_size : float or int
The block size for IO, large block size may **not** improve performance
verbose : int
Print level
compact : bool
When compact is True, depending on the four orbital sets, the
returned MO integrals has (up to 4-fold) permutation symmetry.
If it's False, the function will abandon any permutation symmetry,
and return the "plain" MO integrals
ao2mopt : :class:`AO2MOpt` object
Precomputed data to improve performance
Returns:
None
'''
if any(c.dtype == numpy.complex128 for c in mo_coeffs):
raise NotImplementedError('Integral transformation for complex orbitals')
intor = mol._add_suffix(intor)
time0 = (logger.process_clock(), logger.perf_counter())
log = logger.new_logger(mol, verbose)
nao = mo_coeffs[0].shape[0]
aosym = _stand_sym_code(aosym)
if aosym in ('s4', 's2ij'):
nao_pair = nao * (nao+1) // 2
else:
nao_pair = nao * nao
ijmosym, nij_pair, moij, ijshape = \
incore._conc_mos(mo_coeffs[0], mo_coeffs[1],
compact and aosym in ('s4', 's2ij'))
e1buflen, mem_words, iobuf_words, ioblk_words = \
guess_e1bufsize(max_memory, ioblk_size, nij_pair, nao_pair, comp)
ioblk_size = ioblk_words * 8/1e6
# The buffer to hold AO integrals in C code, see line (@)
aobuflen = max(int((mem_words - 2*comp*e1buflen*nij_pair) // (nao_pair*comp)),
IOBUF_ROW_MIN)
ao_loc = mol.ao_loc_nr('_cart' in intor)
shranges = guess_shell_ranges(mol, (aosym in ('s4', 's2kl')), e1buflen,
aobuflen, ao_loc)
if ao2mopt is None:
if intor == 'int2e_cart' or intor == 'int2e_sph':
ao2mopt = _ao2mo.AO2MOpt(mol, intor, 'CVHFnr_schwarz_cond',
'CVHFsetnr_direct_scf')
else:
ao2mopt = _ao2mo.AO2MOpt(mol, intor)
if isinstance(swapfile, h5py.Group):
fswap = swapfile
else:
fswap = lib.H5FileWrap(swapfile, 'a')
for icomp in range(comp):
fswap.create_group(str(icomp)) # for h5py old version
log.debug('step1: tmpfile %s %.8g MB', fswap.filename, nij_pair*nao_pair*8/1e6)
log.debug('step1: (ij,kl) = (%d,%d), mem cache %.8g MB, iobuf %.8g MB',
nij_pair, nao_pair, mem_words*8/1e6, iobuf_words*8/1e6)
nstep = len(shranges)
e1buflen = max([x[2] for x in shranges])
e2buflen, chunks = guess_e2bufsize(ioblk_size, nij_pair, e1buflen)
def save(istep, iobuf):
for icomp in range(comp):
_transpose_to_h5g(fswap, '%d/%d'%(icomp,istep), iobuf[icomp],
e2buflen, None)
# transform e1
ti0 = log.timer('Initializing ao2mo.outcore.half_e1', *time0)
with lib.call_in_background(save) as async_write:
buf1 = numpy.empty((comp*e1buflen,nao_pair))
buf2 = numpy.empty((comp*e1buflen,nij_pair))
buf_write = numpy.empty_like(buf2)
fill = _ao2mo.nr_e1fill
f_e1 = _ao2mo.nr_e1
for istep,sh_range in enumerate(shranges):
log.debug1('step 1 [%d/%d], AO [%d:%d], len(buf) = %d',
istep+1, nstep, *(sh_range[:3]))
buflen = sh_range[2]
iobuf = numpy.ndarray((comp,buflen,nij_pair), buffer=buf2)
nmic = len(sh_range[3])
p1 = 0
for imic, aoshs in enumerate(sh_range[3]):
log.debug2(' fill iobuf micro [%d/%d], AO [%d:%d], len(aobuf) = %d',
imic+1, nmic, *aoshs)
buf = fill(intor, aoshs, mol._atm, mol._bas, mol._env,
aosym, comp, ao2mopt, out=buf1).reshape(-1,nao_pair)
buf = f_e1(buf, moij, ijshape, aosym, ijmosym)
p0, p1 = p1, p1 + aoshs[2]
iobuf[:,p0:p1] = buf.reshape(comp,aoshs[2],nij_pair)
ti0 = log.timer_debug1('gen AO/transform MO [%d/%d]'%(istep+1,nstep), *ti0)
async_write(istep, iobuf)
buf2, buf_write = buf_write, buf2
fswap = None
return swapfile
def _load_from_h5g(h5group, row0, row1, out=None):
nkeys = len(h5group)
dat = h5group['0']
ncol = sum(h5group[str(key)].shape[-1] for key in range(nkeys))
if dat.ndim == 2:
out = numpy.ndarray((row1-row0, ncol), dat.dtype, buffer=out)
col1 = 0
for key in range(nkeys):
col0, col1 = col1, col1 + h5group[str(key)].shape[1]
if col1 > col0:
h5group[str(key)].read_direct(out, dest_sel=numpy.s_[:,col0:col1],
source_sel=numpy.s_[row0:row1])
else: # multiple components
out = numpy.ndarray((dat.shape[0], row1-row0, ncol), dat.dtype, buffer=out)
col1 = 0
for key in range(nkeys):
col0, col1 = col1, col1 + h5group[str(key)].shape[2]
if col1 > col0:
h5group[str(key)].read_direct(out, dest_sel=numpy.s_[:,:,col0:col1],
source_sel=numpy.s_[:,row0:row1])
return out
def _transpose_to_h5g(h5group, key, dat, blksize, chunks=None):
nrow, ncol = dat.shape
dset = h5group.create_dataset(key, (ncol,nrow), 'f8', chunks=chunks)
for col0, col1 in prange(0, ncol, blksize):
dset[col0:col1] = lib.transpose(dat[:,col0:col1])
[docs]
def full_iofree(mol, mo_coeff, intor='int2e', aosym='s4', comp=None,
max_memory=MAX_MEMORY, ioblk_size=IOBLK_SIZE,
verbose=logger.WARN, compact=True):
r'''Transfer arbitrary spherical AO integrals to MO integrals for given orbitals
This function is a wrap for :func:`ao2mo.outcore.general`. It's not really
IO free. The returned MO integrals are held in memory. For backward compatibility,
it is used to replace the non-existed function direct.full_iofree.
Args:
mol : :class:`Mole` object
AO integrals will be generated in terms of mol._atm, mol._bas, mol._env
mo_coeff : ndarray
Transform (ij|kl) with the same set of orbitals.
erifile : str
To store the transformed integrals, in HDF5 format.
Kwargs
dataname : str
The dataset name in the erifile (ref the hierarchy of HDF5 format
http://www.hdfgroup.org/HDF5/doc1.6/UG/09_Groups.html). By assigning
different dataname, the existed integral file can be reused. If
the erifile contains the dataname, the new integrals data will
overwrite the old one.
intor : str
Name of the 2-electron integral. Ref to :func:`getints_by_shell`
for the complete list of available 2-electron integral names
aosym : int or str
Permutation symmetry for the AO integrals
| 4 or '4' or 's4': 4-fold symmetry (default)
| '2ij' or 's2ij' : symmetry between i, j in (ij|kl)
| '2kl' or 's2kl' : symmetry between k, l in (ij|kl)
| 1 or '1' or 's1': no symmetry
| 'a4ij' : 4-fold symmetry with anti-symmetry between i, j in (ij|kl) (TODO)
| 'a4kl' : 4-fold symmetry with anti-symmetry between k, l in (ij|kl) (TODO)
| 'a2ij' : anti-symmetry between i, j in (ij|kl) (TODO)
| 'a2kl' : anti-symmetry between k, l in (ij|kl) (TODO)
comp : int
Components of the integrals, e.g. int2e_ip_sph has 3 components.
verbose : int
Print level
max_memory : float or int
The maximum size of cache to use (in MB), large cache may **not**
improve performance.
ioblk_size : float or int
The block size for IO, large block size may **not** improve performance
verbose : int
Print level
compact : bool
When compact is True, depending on the four orbital sets, the
returned MO integrals has (up to 4-fold) permutation symmetry.
If it's False, the function will abandon any permutation symmetry,
and return the "plain" MO integrals
Returns:
2D/3D MO-integral array. They may or may not have the permutation
symmetry, depending on the given orbitals, and the kwargs compact. If
the four sets of orbitals are identical, the MO integrals will at most
have 4-fold symmetry.
Examples:
>>> from pyscf import gto
>>> from pyscf import ao2mo
>>> mol = gto.M(atom='O 0 0 0; H 0 1 0; H 0 0 1', basis='sto3g')
>>> mo1 = numpy.random.random((mol.nao_nr(), 10))
>>> eri1 = ao2mo.outcore.full_iofree(mol, mo1)
>>> print(eri1.shape)
(55, 55)
>>> eri1 = ao2mo.outcore.full_iofree(mol, mo1, compact=False)
>>> print(eri1.shape)
(100, 100)
>>> eri1 = ao2mo.outcore.full_iofree(mol, mo1, intor='int2e_ip1_sph', aosym='s1', comp=3)
>>> print(eri1.shape)
(3, 100, 100)
>>> eri1 = ao2mo.outcore.full_iofree(mol, mo1, intor='int2e_ip1_sph', aosym='s2kl', comp=3)
>>> print(eri1.shape)
(3, 100, 55)
'''
with lib.H5TmpFile() as feri:
general(mol, (mo_coeff,)*4, feri, dataname='eri_mo',
intor=intor, aosym=aosym, comp=comp,
max_memory=max_memory, ioblk_size=ioblk_size,
verbose=verbose, compact=compact)
return numpy.asarray(feri['eri_mo'])
[docs]
def general_iofree(mol, mo_coeffs, intor='int2e', aosym='s4', comp=None,
max_memory=MAX_MEMORY, ioblk_size=IOBLK_SIZE,
verbose=logger.WARN, compact=True):
r'''For the given four sets of orbitals, transfer arbitrary spherical AO
integrals to MO integrals on the fly. This function is a wrap for
:func:`ao2mo.outcore.general`. It's not really IO free. The returned MO
integrals are held in memory. For backward compatibility, it is used to
replace the non-existed function direct.general_iofree.
Args:
mol : :class:`Mole` object
AO integrals will be generated in terms of mol._atm, mol._bas, mol._env
mo_coeffs : 4-item list of ndarray
Four sets of orbital coefficients, corresponding to the four
indices of (ij|kl)
Kwargs
intor : str
Name of the 2-electron integral. Ref to :func:`getints_by_shell`
for the complete list of available 2-electron integral names
aosym : int or str
Permutation symmetry for the AO integrals
| 4 or '4' or 's4': 4-fold symmetry (default)
| '2ij' or 's2ij' : symmetry between i, j in (ij|kl)
| '2kl' or 's2kl' : symmetry between k, l in (ij|kl)
| 1 or '1' or 's1': no symmetry
| 'a4ij' : 4-fold symmetry with anti-symmetry between i, j in (ij|kl) (TODO)
| 'a4kl' : 4-fold symmetry with anti-symmetry between k, l in (ij|kl) (TODO)
| 'a2ij' : anti-symmetry between i, j in (ij|kl) (TODO)
| 'a2kl' : anti-symmetry between k, l in (ij|kl) (TODO)
comp : int
Components of the integrals, e.g. int2e_ip_sph has 3 components.
verbose : int
Print level
compact : bool
When compact is True, depending on the four orbital sets, the
returned MO integrals has (up to 4-fold) permutation symmetry.
If it's False, the function will abandon any permutation symmetry,
and return the "plain" MO integrals
Returns:
2D/3D MO-integral array. They may or may not have the permutation
symmetry, depending on the given orbitals, and the kwargs compact. If
the four sets of orbitals are identical, the MO integrals will at most
have 4-fold symmetry.
Examples:
>>> from pyscf import gto
>>> from pyscf import ao2mo
>>> import h5py
>>> def view(h5file, dataname='eri_mo'):
... f5 = h5py.File(h5file, 'r')
... print('dataset %s, shape %s' % (str(f5.keys()), str(f5[dataname].shape)))
... f5.close()
>>> mol = gto.M(atom='O 0 0 0; H 0 1 0; H 0 0 1', basis='sto3g')
>>> mo1 = numpy.random.random((mol.nao_nr(), 10))
>>> mo2 = numpy.random.random((mol.nao_nr(), 8))
>>> mo3 = numpy.random.random((mol.nao_nr(), 6))
>>> mo4 = numpy.random.random((mol.nao_nr(), 4))
>>> eri1 = ao2mo.outcore.general_iofree(mol, (mo1,mo2,mo3,mo4))
>>> print(eri1.shape)
(80, 24)
>>> eri1 = ao2mo.outcore.general_iofree(mol, (mo1,mo2,mo3,mo3))
>>> print(eri1.shape)
(80, 21)
>>> eri1 = ao2mo.outcore.general_iofree(mol, (mo1,mo2,mo3,mo3), compact=False)
>>> print(eri1.shape)
(80, 36)
>>> eri1 = ao2mo.outcore.general_iofree(mol, (mo1,mo1,mo1,mo1), intor='int2e_ip1_sph', aosym='s1', comp=3)
>>> print(eri1.shape)
(3, 100, 100)
>>> eri1 = ao2mo.outcore.general_iofree(mol, (mo1,mo1,mo1,mo1), intor='int2e_ip1_sph', aosym='s2kl', comp=3)
>>> print(eri1.shape)
(3, 100, 55)
'''
with lib.H5TmpFile() as feri:
general(mol, mo_coeffs, feri, dataname='eri_mo',
intor=intor, aosym=aosym, comp=comp,
max_memory=max_memory, ioblk_size=ioblk_size,
verbose=verbose, compact=compact)
return numpy.asarray(feri['eri_mo'])
[docs]
def iden_coeffs(mo1, mo2):
return (id(mo1) == id(mo2)) \
or (mo1.shape==mo2.shape and numpy.allclose(mo1,mo2))
[docs]
def prange(start, end, step):
for i in range(start, end, step):
yield i, min(i+step, end)
[docs]
def guess_e1bufsize(max_memory, ioblk_size, nij_pair, nao_pair, comp):
mem_words = max(1, max_memory * 1e6 / 8)
# part of the max_memory is used to hold the AO integrals. The iobuf is the
# buffer to temporary hold the transformed integrals before streaming to disk.
# iobuf is then divided to small blocks (ioblk_words) and streamed to disk.
iobuf_words = max(int(mem_words//6), IOBUF_WORDS)
ioblk_words = int(min(ioblk_size*1e6/8, iobuf_words))
e1buflen = int(mem_words*.66/(comp*(nij_pair*2+nao_pair)))
e1buflen = max(e1buflen, IOBUF_ROW_MIN)
return e1buflen, mem_words, iobuf_words, ioblk_words
[docs]
def guess_e2bufsize(ioblk_size, nrows, ncols):
e2buflen = int(min(ioblk_size*1e6/8/ncols, nrows))
e2buflen = max(e2buflen//IOBUF_ROW_MIN, 1) * IOBUF_ROW_MIN
chunks = (IOBUF_ROW_MIN, ncols)
return e2buflen, chunks
# based on the size of buffer, dynamic range of AO-shells for each buffer
[docs]
def guess_shell_ranges(mol, aosym, max_iobuf, max_aobuf=None, ao_loc=None,
compress_diag=True):
if ao_loc is None: ao_loc = mol.ao_loc_nr()
max_iobuf = max(1, max_iobuf)
ao_loc_long = ao_loc.astype(numpy.int64)
dims = ao_loc_long[1:] - ao_loc_long[:-1]
dijs = (dims.reshape(-1,1) * dims)
nbas = dijs.shape[0]
if aosym:
if compress_diag:
#:for i in range(mol.nbas):
#: di = ao_loc[i+1] - ao_loc[i]
#: for j in range(i):
#: dj = ao_loc[j+1] - ao_loc[j]
#: lstdij.append(di*dj)
#: lstdij.append(di*(di+1)//2)
idx = numpy.arange(nbas)
dijs[idx,idx] = dims*(dims+1)//2
lstdij = dijs[numpy.tril_indices(nbas)]
else:
#:for i in range(mol.nbas):
#: di = ao_loc[i+1] - ao_loc[i]
#: for j in range(i+1):
#: dj = ao_loc[j+1] - ao_loc[j]
#: lstdij.append(di*dj)
lstdij = dijs[numpy.tril_indices(nbas)]
else:
#:for i in range(mol.nbas):
#: di = ao_loc[i+1] - ao_loc[i]
#: for j in range(mol.nbas):
#: dj = ao_loc[j+1] - ao_loc[j]
#: lstdij.append(di*dj)
lstdij = dijs.ravel()
dij_loc = numpy.append(0, numpy.cumsum(lstdij))
ijsh_range = balance_partition(dij_loc, max_iobuf)
if max_aobuf is not None:
max_aobuf = max(1, max_aobuf)
def div_each_iobuf(ijstart, ijstop, buflen):
# to fill each iobuf, AO integrals may need to be fill to aobuf several times
return (ijstart, ijstop, buflen,
balance_partition(dij_loc, max_aobuf, ijstart, ijstop))
ijsh_range = [div_each_iobuf(*x) for x in ijsh_range]
return ijsh_range
def _stand_sym_code(sym):
if isinstance(sym, int):
return 's%d' % sym
elif 's' == sym[0] or 'a' == sym[0]:
return sym
else:
return 's' + sym
[docs]
def balance_segs(segs_lst, blksize, start_id=0, stop_id=None):
loc = numpy.append(0, numpy.cumsum(segs_lst))
return balance_partition(loc, blksize, start_id, stop_id)
[docs]
def balance_partition(ao_loc, blksize, start_id=0, stop_id=None):
if stop_id is None:
stop_id = len(ao_loc) - 1
else:
stop_id = min(stop_id, start_id+len(ao_loc)-1)
displs = lib.misc._blocksize_partition(ao_loc[start_id:stop_id+1], blksize)
displs = [i+start_id for i in displs]
tasks = []
for i0, i1 in zip(displs[:-1],displs[1:]):
tasks.append((i0, i1, int(ao_loc[i1]-ao_loc[i0])))
return tasks
del (MAX_MEMORY)
if __name__ == '__main__':
from pyscf import scf
from pyscf.ao2mo import addons
mol = gto.Mole()
mol.verbose = 5
#mol.output = 'out_outcore'
mol.atom = [
["O" , (0. , 0. , 0.)],
[1 , (0. , -0.757 , 0.587)],
[1 , (0. , 0.757 , 0.587)]]
mol.basis = {'H': 'cc-pvtz',
'O': 'cc-pvtz',}
mol.build()
nao = mol.nao_nr()
npair = nao*(nao+1)//2
rhf = scf.RHF(mol)
rhf.scf()
print(logger.process_clock())
full(mol, rhf.mo_coeff, 'h2oeri.h5', max_memory=10, ioblk_size=5)
print(logger.process_clock())
eri0 = incore.full(rhf._eri, rhf.mo_coeff)
feri = h5py.File('h2oeri.h5', 'r')
print('full', abs(eri0-feri['eri_mo']).sum())
feri.close()
print(logger.process_clock())
c = rhf.mo_coeff
general(mol, (c,c,c,c), 'h2oeri.h5', max_memory=10, ioblk_size=5)
print(logger.process_clock())
feri = h5py.File('h2oeri.h5', 'r')
print('general', abs(eri0-feri['eri_mo']).sum())
feri.close()
# set ijsame and klsame to False, then check
c = rhf.mo_coeff
n = c.shape[1]
general(mol, (c,c,c,c), 'h2oeri.h5', max_memory=10, ioblk_size=5, compact=False)
feri = h5py.File('h2oeri.h5', 'r')
eri1 = numpy.array(feri['eri_mo']).reshape(n,n,n,n)
eri1 = addons.restore(4, eri1, n)
print('general', abs(eri0-eri1).sum())